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Self-jetting high-yield oil flow was obtained from Ma 67 and Ma 36 wells drilled in the volcanic
reservoirs of the Haerjiawu Formation in the Santanghu Basin, China. This has shifted the
prospectors’ attention to the Haerjiawu Formation from the Kalagang Formation, which is
generally considered to have favorable physical properties. To further explain the geological
reasons why oil flow can jet itself from the volcanic rocks in the Haerjiawu Formation with
poor physical properties, this study carries out a systematic comparison on the microscopic
pore structures of volcanic rocks through unconventional tests such as low-temperature
nitrogen adsorption, high-pressure mercury injection, and constant-rate mercury injection
based on the analyses of physical properties and minerals. The results obtained are as
follows. The volcanic rocks of the Kalagang Formation have relatively high pore permeability.
However, their micropores have a wide distribution range of pore size and feature highly
meandering structures and strong heterogeneity. Meanwhile, small pore throats connect
large pores in the volcanic rocks, resulting in a relatively high pore/throat ratio. All these are
conducive to the occurrence of tight oil and gas but unfavorable for the flow of oil and gas.
The volcanic rocks in the Haerjiawu Formation have relatively low volcanic permeability.
However, small pores connect large pore throats in the volcanic rocks; thus, leading to a
relatively low pore/throat ratio. Meanwhile, the volcanic rocks feature low meandering
structures, strong homogeneity, and high connectivity. All these are favorable for the
formation of tight oil and gas reservoirs. These assessment results also indicate that the
assessment indices of tight volcanic reservoirs should not only include porosity and
permeability. Instead, more attention should be paid to the microscopic pore structures,
and itis necessary to analyze the charging and flow of tight oil from the configuration of pores
and pore throats. This study not only explains the geological factors of the wells with self-
jetting high-yield oil flow in the Haerjiawu Formation from the perspective of microscopic pore
structures but also provides a new idea and comparison method for the assessment of tight
reservoirs in other areas.

Keywords: Santanghu basin, Kalagang formation, Haerjiawu formation, micropore structure, pore/throat
configuration, volcanic rock
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INTRODUCTION

The Santanghu Basin is located in the northeast of Xinjiang Uygur
autonomous region, China, and lies in the part where the Siberia and
Kazakhstan plates converge. Carboniferous strata are widely
developed in the basin, with hugely thick source rocks of
marine-continental transitional facies deposited and hugely thick
volcanic rocks built, thus forming independent petroliferous
associations (Li et al, 2010; Wang et al, 2010; Liu et al, 2013;
Tian et al,, 2019). With an increase in the attention to oil and gas
exploration of volcanic rocks, many oil and gas reservoirs have been
discovered in the Malang Sag of the Santanghu Basin (Ma et al., 2017;
Su et al,, 2020; Yang et al., 2019; Liu, Bechtel, Sachsenhofer). In
particular, oil and gas manifestations were discovered in 23 layers
(height: about 294 m) in the Kalagang Formation during the drilling
of Well Niudong 110 that was deployed in the southern wing of the
Niudong structure in the Malang Sag in 2015, with the highest daily
oil production of 21.08 m’. This opened the exploration of the tight
oil in Carboniferous volcanic rocks in the Santanghu Basin. Owing to
the intense exploration of volcanic oil and gas reservoirs, the
corresponding  exploration  technologies and  theoretical
understanding have also been rapidly improved. (Hou et al., 2011;
Huang et al., 2012). However, the exploration of the volcanic rocks in
the Santanghu Basin suffers a late start and a low level. As a result,
much geological understanding of the volcanic rocks is still at the
exploratory stage overall, and most especially the pore structures in
the volcanic reservoirs are yet to be ascertained. Previous researchers
compared and assessed the Carboniferous volcanic reservoirs using
conventional test analysis methods such as casting thin section, core
observation, conventional mercury injection, and porosity and
permeability analysis. Accordingly, they generally believed that the
volcanic rocks in the Kalagang Formation should be the focus of
Carboniferous exploration due to their relatively high porosity and
permeability. However, self-jetting high-yield oil flow with the highest
daily oil production of 65.60 m® was discovered in the Haerjiawu
Formation in Ma 67 well in the Malang Sag later. This confirms that
the Haerjiawu Formation with poor physical properties also has great
development potential. Then some geological questions have been
raised, such as why high-yield spontaneous oil flow was obtained
from the volcanic rocks in the Haerjiawu Formation with low
physical properties and whether the phenomenon of self-jetting oil
flow indicates that the tight oil in the Haerjiawu Formation has better
mobility. To answer these questions, it is necessary to start with the
research on the refined microscopic pore structure of the reservoirs.
Therefore, based on various high-precision methods such as HPMI,
CRMI, and LTNA tests, this study compares and analyzes the
differences in the microscopic pore structures in the target layers
of the Kalagang and Haerjiawu formations and reasonably explains
the difference in enrichment conditions of tight oil between the two
formations, thus providing a basis for further exploration.

SAMPLES AND EXPERIMENTS

Geological Background
The Santanghu Basin is adjacent to the Junggar and Tuha basins
in the southwest across Dahei and Barkol mountains and borders

Microscopic Characteristics of Volcanic Reservoirs

Mongolia in the northeast. It lies between the Altai and Tianshan
mountains and is distributed in the form of a long strip in the
NW-SE trending, with a length of about 500 km, a width of
40-70 km, and an area of 2.3 x 10* km? Therefore, it is a long and
narrow intermountain superimposed basin. The first-order
tectonic units in the basin are present in an NW-trending
macroscopic pattern of two uplifts sandwiching one depression
(i.e., the northeastern thrust uplift zone, the southwestern thrust
nappe uplift belt, and the central depression zone). Among them,
the central depression zone can be divided into four convex and
five concave tectonic units (Figure 1), each of which is long and
narrow in the south-north direction and is convex in the south
and gentle in the north in terms of strata (Hou et al., 2011; Liu,
Bechtel, Sachsenhofer). The central depression zone serves as the
major oil and gas accumulation area, and most of the oil and gas
discovered so far are concentrated in the Malang Sag in the
central depression zone. The main Carboniferous target layers in
the Malang Sag include the Kalagang and Haerjiawu formations.
Among them, the Kalagang Formation is dominated by onshore
eruption-overflow facies, with amygdaloidal lava developing and
multiple-stage eruptive discontinuities visible inside. Therefore,
weathered and leached volcanic reservoirs have developed inside.
In terms of lithology, these reservoirs mainly include
amygdaloidal basalts and autoclastic brecciated basalts,
followed by autoclastic brecciated andesite and amygdaloidal
andesite. Among them, the amygdala is mostly unfilled and
semi-filled or shows corrosion characteristics (Liang et al,
2011; Liu et al, 2015). The Kalagang Formation is mainly
distributed on the southwestern edge of the Malang Sag. It
grows thinner from west to east and pinches out on the
Fangliang Salient, with a regional thickness of 540-1,600 m.
The Haerjiawu Formation is dominated by dotted central
volcanic eruptions. In terms of lithology, it mainly includes
the interbeds consisting of volcaniclastic sedimentary rocks,
pyroclastic rocks, and volcanic lava, interbedded with
carbonaceous mudstones, tuffaceous mudstones, and marls as
a whole. The Haerjiawu Formation is widely distributed. It is
thick in the southwestern, southeastern, and north-central parts
of the Santanghu Basin, with a general residual thickness of
400-1,451 m.

Tests and Analyses

To accurately characterize the microscopic pores in the
Carboniferous volcanic reservoirs in the Malang Sag of the
Basinhu Basin, targeted LTNA (JiaChengzao and Li, 2012; Yu,
2013; Yang et al., 2013a; Hadlari, 2015; Chen et al., 2015; Liu, Gao,
Liu; Liu, Sun, Zhang), CRMI, and HPMI tests were carried out on
samples based on the analyses of porosity, permeability, X-ray
diffraction, and scanning electron microscopy in this study. All
the samples were regular column samples (about 2.5cm in
diameter). They were washed to remove oil and dried before
tests. LTNA tests were conducted using a BSD-PS-series
automatic specific surface area and porosity analyzer, and the
steps are as follows. First, the samples were degassed at a high
temperature of 150°C for 3h. Then the isotherm
adsorption—desorption curves of the samples were obtained by
the static volume method at an absolute temperature of 77 K. The
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FIGURE 1 | Location of the study area in the Santanghu Basin.

detection range of pore size was 0.4-200 nm in the tests. CRMI
tests were performed wusing an ASPE-730 constant-rate
porosimeter. In detail, liquid mercury was injected into the
samples at a low constant velocity, and the information on
pore structure can be reflected by the mercury injection
pressure. The temperature and relative humidity of the
environment 25°C  and  34-48%,
respectively, in the tests. HPMI tests were conducted using an
AutoPore IV 9505 mercury porosimeter. During the test, the
samples were first processed, liquid mercury was then injected
into the samples, and afterward, pores were detected under a
high-pressure condition. The temperature and relative humidity
of the measurement environment were 21.3-21.5°C and 40-44%,
respectively. Meanwhile, the maximum mercury injection
pressure was 200 MPa, which corresponded to the minimum
pore throat size of 3.68 nm.

measurement were

RESULT ANALYSIS

Comparison of Basic Characteristics of

Volcanic Reservoirs
1) Lithology and lithofacies

The volcanic rocks in the Malang Sag have complex and
diverse lithology, with volcanic lava, pyroclastic rocks, and
transition rocks developing. The lithology of the volcanic
rocks in the target layers was determined based on multiple
means such as core observation, thin section identification, and
logging identification (Dong et al., 2012; Chen et al., 2013a; Chen

etal,, 2013b; Chen et al., 2018). The Kalagang Formation is a set of
extrusive rocks erupting from volcanoes interbedded with the
transitional facies sedimentary tuff and volcanic breccia formed
during the intermission between volcanic eruptions. Meanwhile,
lacustrine volcanic depression deposits have developed in local
areas of the formation. The Kalagang Formation is gray and dark
gray overall and is in light colors such as brown and dark brown
in the eruption discontinuities or regions with weathering crust
developing. The lithology of the formation is dominated by basic
basalts, followed by andesite, tuff, and volcanic breccia. The
volcanic rocks of the Haerjiawu Formation are dominated by
dotted central volcanic eruptions, with thick laminated basalt
facies, basalt facies interbedded with source rocks, and tuff facies
mainly developing, and tuff and mudstones widely distributed in
the vertical direction. The formation is mostly grayish-brown and
brownish-green. The lithology of the Haerjiawu Formation is also
dominated by basic basalts. However, unlike the Kalagang
Formation, the basalts in the Haerjlawu Formation are
distributed among carbonaceous or tuffaceous mudstones.
According to the analyses of geochemical indicators, previous
researchers unanimously agreed that the carbonaceous
mudstones the Haerjiawu Formation feature high
abundance and favorable types and reach the standard of
source rocks. Therefore, the basalts in the Haerjiawu
Formation are called “basalts interbedded with source rocks,”
which denote the interbeds consisting of basalts and source rocks
(Figure 2).

In terms of lithofacies distribution, the Kalagang Formation is
dominated by thick laminated basalt facies and the facies of tuff
interbedded with source rocks, with source rock development

in
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FIGURE 2 | Comprehensive histogram of Carboniferous sedimentary reservoirs in the Malang Sag, Santanghu Basin.

areas locally distributed (Figure 3). Among them, the facies of
tuff interbedded with source rocks has mainly developed in blocks
of Ma71, Ma73, Ma33, and Ma39 wells, in which the source rocks
are more than 80'm thick, indicating a shallow lake zone. The
thick laminated basalt facies in the Kalagang Formation feature
abundantly developed basalts. Furthermore, dense pore or
amygdala belts are common at the top of volcanic rocks owing
to gas volatilization, with amygdaloidal pores visible and the

amygdala mostly filled with chlorites and zeolites. The way of
volcanic eruptions is obviously different between the Haerjiawu
and Kalagang formations. The Haerjiawu Formation is
dominated by dotted central volcanic eruptions, with thick
laminated basalt facies, the facies of basalts interbedded with
source rocks, and tuff facies primarily developing. The obvious
difference between the two formations is that the tuff and
mudstones in the Haerjiawu Formation have widely developed
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in various vertical depths, indicating that the basalts in the
Haerjiawu Formation are deposited underwater. Pores are not
fully developed in the Haerjiawu Formation since the water
pressure hinders the escape of gas in magma, which affects the
physical properties of the formation to a certain extent.

2) Physical characteristics of reservoirs

The physical properties of reservoirs serve as the direct
indicators of pore development and storage capacity of
volcanic reservoirs (Pang et al, 2007; Qin, 2011). The
analytical results of the porosity and permeability of the
samples from the Kalagang and Haerjiawu formations are as
follows (Figure 4). For the Kalagang Formation, the maximum
and average porosity were 12.78 and 8.31%, respectively, and the
maximum and average permeability were 11.15 x 10™>"um? and
2.67 x 107>"um?, respectively. For the Haerjiawu Formation, the
maximum and average porosity were 14.07 and 4.46%,
respectively, and the maximum and average permeability were
8.04 x 10 um?* and 1.12 x 10~ *um?, respectively. Therefore, the
porosity of the Kalagang Formation is notably higher than that of
the Haerjiawu Formation (Figures 4C,D), while the permeability
of the two formations is slightly different. The microscopic pore
structure of reservoirs is composed of pores and pore throats. The
pore size affects the porosity, while the pore throat size affects the
permeability. Therefore, the results of above analysis indirectly
prove that the pores greatly differ, but the pore throats slightly
differ between the two formations and that the pore/throat ratio
of the Kalagang Formation must be higher than that of the
Haerjiawu Formation.

3) Comparison of reservoir space characteristics

Volcanic reservoirs have various types of storage space and
complex pore structures and are strongly affected by secondary
diagenism. Pores, joints, and cavities are intertwined in volcanic
reservoirs, showing strong heterogeneity both microscopically
and macroscopically.

Weathered and leached volcanic reservoirs have developed in
the Kalagang Formation, with various types of storage space
developing inside the reservoirs, such as corroded pores, pores
inside amygdala, residual pores, intercrystalline micropores,
contraction joints of amygdala, and tectonic fractures.
Among them, the corroded pores, residual pores, and pores
inside the amygdala are the most developed, followed by
tectonic fractures. Furthermore, the corroded pores are large
in scale, with a pore size of up to several hundred microns and
above (Figure 5). The basalt reservoirs interbedded with source
rocks have developed in the Haerjiawu Formation. The reservoir
space inside the reservoirs is dominated by tectonic fractures
and corroded micropores, followed by the pores inside
amygdala and the contraction joints of amygdala. Moreover,
dual media consisting of corroded micropores and tectonic
fractures are visible, and a large number of corroded
nanopores can be observed under a scanning electron
microscope (Figure 6).

Carboniferous basalts have the lowest porosity since they have
been filled with magmatic-hydrothermal fluids. Therefore, burial-
induced compaction has minor effects on their porosity. The
overflow facies, vesicular andesites, and basalts at the top of the
Kalagang Formation bear large numbers of contraction pores as a
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FIGURE 4 | Physical property statistics of Carboniferous reservoirs in the Malang Sag, Santanghu Basin.

result of condensation and shrinkage. Owing to later weathering
and leaching, the contraction pores feature large porosity but
small pore throats. In contrast, the reservoirs in the Haerjiawu
Formation feature improved physical properties since soluble
silicates have been corroded by rich organic acids formed from
the coal-bearing carbonaceous mudstones in the early stage and
the organic acids generated from the maturation of organic
matter. Therefore, the combination of small pores and small
pore throats in the Haerjiawu Formation is superior to the
combination of large pores and small pore throats of the
Kalagang Formation.

4) Mineral composition characteristics

Table 1 shows the whole-rock X-ray diffraction analysis
results of the Kalagang and Haerjiawu formations in the
Malang Sag. According to the analysis results, the minerals
in the two formations are dominated by feldspars, quartz, and
zeolites, followed by pyroxenes and carbonate minerals, as well
as low content of clay minerals. The two formations notably

differ in quartz and heulandite content. In detail, the quartz
content of the Kalagang Formation is relatively low, which is
generally less than 10%, while the quartz content of the
Haerjiawu Formation is relatively high, which is greater
than 10%. Meanwhile, the zeolite content of the Kalagang
Formation is relatively high, which is higher than 50% mostly,
while the zeolite content of the Haerjlawu Formation is
relatively low, which is less than 50% mostly. Given that
quartz has strong weathering resistance and heulandite is
liable to dissolve, it can be inferred that the volcanic
reservoirs in the Kalagang Formation are more liable to
suffer weathering and leaching. As a result, corrosion-
induced large pores have been formed. Furthermore, the
minerals newly formed after corrosion are liable to block
the pore throats, which makes the microscopic pore
structures more complicated, increases the tortuosity of the
pore-throat system, and contributes to the formation of high-
porosity and low-permeability reservoirs. This conclusion is
not in contradiction to the comparison results of the physical
properties of the two formations. Instead, it is consistent with

Frontiers in Earth Science | www.frontiersin.org

September 2021 | Volume 9 | Article 735703


https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles

Wang et al.

Microscopic Characteristics of Volcanic Reservoirs

'

Mmond shape :
shrink seam-

1" .
Almond-shaped
internal holes

g, o
MaftrixidisSelyed
pores~, "\

visible.

FIGURE 5 | Reservoir space types of weathered and leached volcanic reservoirs in the Kalagang Formation. Note: (A) Well Ma 38, 1,523.7 m deep, altered

amygdaloidal andesite and basalts, with pores inside amygdala visible; (B) Well Ma 38, 1,684.61 m deep, clastic altered amygdaloidal basalts, with contraction joints of
amygdala visible; (C) Well Niudong110, 1769.77-1769.9 m deep, altered amygdaloidal andesitic basalts, with pores inside amygdala visible; (D) Well Ma 19, 1,559 m
deep, andesite, with zeolite dissolved pores and matrix dissolved pores filled with amygdala visible; (E) Well Ma 38, 1,684.61 m deep, clastic altered amygdaloidal

basalts, with tectonic fractures visible; (F) Well Niudong110, 1776.32-1776.5 m deep, altered and brecciated clastic amygdaloidal basalts, with intercrystalline pores
visible; (G) Well Ma 19, 1,5635.015 m deep, grayish-green fluorescent andesite, with dissolved pores visible; (H) Well Ma 19, 1,539.24 m deep, grayish-green andesite
bearing oil spots, with intragranular dissolved pores visible; (I) WellMa 19, 1,554.23 m deep, grayish-green andesite bearing oil traces, with intragranular dissolved pores

the discovery of weathered and leached reservoirs in the
Kalagang Formation during practical exploration.

Comparison of Microscopic Pore
Structures of Volcanic Rocks

1) Characteristics of capillary pressure curves

The morphology of capillary pressure curves can reflect the
development of microscopic pores in reservoirs. However, owing
to extremely strong heterogeneity, the capillary pressure curves
have greatly different characteristics at different structural
positions of even the same horizon in the volcanic reservoirs.
Nearly 20 samples from the Kalagang and Haerjiawu formations
were selected for the HPMI test and analysis in this study. Given
the heterogeneity of the volcanic reservoir plane and to make a
representative comparison of longitudinal microscopic pore
structures, this article only exhibits three samples of the same

lithology (basalts) at different depths (A, B, and C) of the same
well (Well Niudong 110). Among them, samples A and B were
collected from the Kalagang Formation and sample C was taken
from the Haerjiawu Formation. In terms of curve morphology
(Figure 7), the mercury injection curves become increasingly
gentle with an increase in depth, indicating that the pores are
better sorted as depth increases. In terms of mercury injection
and mercury ejection efficiency, the maximum mercury
saturation and mercury ejection efficiency increased as depth
increased, although the porosity decreased with an increase in
depth. In detail, the maximum mercury saturation increased from
87.795 to 96.228%, and the mercury ejection efficiency increased
from 24.256 to 37.789%. In terms of the structure coefficient
(Figure 8), the structure coefficient gradually decreased with an
increase in depth, indicating that the pore-throat system of the
Haerjiawu Formation has small tortuosity and favorable pore
throat structures. As indicated by the comparison of the three
microscopic parameters, the volcanic rocks in the Haerjiawu
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FIGURE 6 | Reservoir space types of basalt reservoirs in the Haerjiawu Formation. Note: (A) Well Niudong 201, 3,172.255 m deep, brecciated clastic basalts, with
tectonic fractures visible; (B) Well Niudong 201, 3,141.835 m deep, slightly clastic basalts, with tectonic fractures visible; (C)- Well Ma67H, 2,969.53-2,696.71 m, slag-
like basalts, with pores inside amygdala visible; (D) Well Ma67H, 2,562.78-2,562.97 m deep, (altered) amygdaloidal basalts, with contraction joints of amygdala visible;
(E) Well Ma67H, 2,562.78-2,562.97 m deep, (altered) amygdaloidal basalts, with matrix micropores visible; (F) Well Ma361, 3,161.665 m deep, basaltic crystal

lithic fine-grained tuff, with pores inside the amygdala in basaltic breccias, phenocryst dissolved pores inside breccias, and intragranular fractures visible; (G) Well
Niudong 201, 3,172.255 m deep, basaltic crystal basalts, with mixed layers consisting of illite and montmorillonite and dissolved micropores visible; (H) Well Ma68,
3,483.945 m deep, grayish-green fluorescent basalts, with feldspar dissolved pores visible; (I)- Well Ma68, 3,486.275 m deep, grayish-green fluorescent basalts, with

Dissolution \p%

Formation pores are well sorted, despite their poor physical
properties, which is more conducive to fluid flow.

2) Characteristics of LTNA curves

Nitrogen isothermal adsorption at a low temperature and low
pressure can be used to effectively reflect the pore size distribution
of micropores and mesopores in rock samples. Furthermore, the
specific surface area can be calculated using the BET equation, the
pore volume distribution can be calculated using the BJH
equation, and the pore shapes can be predicted according to
the isothermal adsorption curves (Yang et al., 2013b; Yang et al,,
2013c).

The distribution curves of pore volume increments—pore
sizes of the 17 samples—were plotted using the parameters of
microscopic pore structures obtained from the LTNA tests
(Figure 9). According to Figure 9, the volcanic reservoirs of

the Kalagang and Haerjiawu formations show roughly similar
pore size distribution curves, with peaks basically occurring in the
range of 30-100 nm. However, the pore volume increments
corresponding to pore sizes are different. The weathered and
leached volcanic reservoirs of the Kalagang Formation are
relatively dispersed and show relatively high pore volume
increments, indicating a wide distribution range of pore sizes.
In contrast, the basalt volcanic reservoirs in the Haerjiawu
Formation show relatively low pore volume increments and
small but more concentrated pore size distribution. Once
again as indicated by the above analytical results, the Kalagang
Formation features complicated microscopic configuration of
pores and pore throats and a wide pore size distribution
range, while the reservoirs in the Haerjiawu Formation feature
relatively small pore sizes and high homogeneity.

3) Characteristic of CRMI curves
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TABLE 1 | X-ray diffraction analysis results of the Kalagang and Haerjiawu formations in the Malang Sag.

Well

Well
Niudong 110
Well
Niudong 110
Well Ma 38
Well Ma 38
Well Ma 25
Well Ma 19

Well Ma 19

Well Ma 67H
Well
Niudong 201
Well
Niudong 201
Well
Niudong 201
Well
Niudong 201
Well
Niudong 201
Well Ma 704
Well
Niudong 110
Well Ma 68
Well Ma 43
Well Ma 26

Well Ma 25
Well Ma 20

Depth
(m)
1748.925
1781.58
1,684.77
1775.155
2,217.915
1,637.215

1,640.53

3,083.06
3,143.985

3,151.345
3,155.82
3,162.875
3,184.74

3,470.865
2,599.525

3,486.275
1,319.95
3,811.945

3,336.12
2,141.875

Formation

Czk
Cok
Cok
Cok
Cok
Cok
Cok

Coh
Csh

Csh
Coh
Coh
Coh

Csh
Csh

Coh
Csh
Coh

Csh
Csh

Lithology
description

Grayish-green fluorescent basalt
Gray oil trace-bearing basalts

Gray oil spotted basalts

Gray oil trace-bearing andesite
Gray oil trace-bearing basalts
Grayish-green fluorescent
andesite

Grayish-green oil trace-bearing
basalts

Gray fluorescent basalt

Gray oil trace-bearing basalts

Dark gray fluorescent basalts
Gray oil trace-bearing basalts
Dark gray basalts

Dark gray fluorescent andesite

Gray fluorescent basalt
Dark gray fluorescent basalts

Grayish-green fluorescent basalts
Brown basalts

Grayish-green fluorescent
andesite

Taupe fluorescent basalts

Gray basalts

Quartz
(%)
3.7
1.2
74
1.1

9.8
0.8

2.3
5.3

5.9

19

10.4

14.8
2.9

10.4

6.8
27.9

Feldspar
(%)
83.3
53.6
12.2
18.4
64.2
27.8

15.3

13.2
26.3

53.3
32
50.7
69.8

50.8
62.9

63.5
51.2
50.7

42.9
43.9

Calcite
(%)

2.7

18.2

1.9
2.2

5.8

7.3

2.2

2.3

0.3

6.3

Dolomite
(%)

1.7
25

0.6

5.8

5.6

5.4

Siderite
(%)

1.1

0.5
1.2

0.6
1.2

1.7

Pyrite
(%)

1.6

0.7

1.9

1.9
2.6

1.5

Laumontite
(%)

34.7

14.3

Heulandite
(%)

6.1

49.3
70.2

54.1

5.1

10.6

52
3.1

2.8
3.5

Pyroxene
(%)
3.7
15.8
9.2
55

156.5
7.2

4.8
16.4

18.4
6.4

7.6

71
25.7
4.7

15.1
4.4

Clay
minerals
(%)
6.5
3.6
18.3
4.8
8.1
74
18.4

5.7

4.
8.3
6.7
4.7

11.6
3.4

13.3
12.2
6.6
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CRMI is a high-precision technique used to characterize
pore-throat structures. Different from conventional HPMI
tests, CRMI is to inject mercury into the throat and pores in
rocks at a very low quasi-static constant rate (5 x 107> ml/min)
and then to determine the microscopic pore structure according
to the natural pressure fluctuation occurring when the meniscus
of mercury front passes through different microscopic pore
shapes (Igathinathane et al, 2008; Shan et al, 2019). It
possesses the technical advantage that it can distinguish the
pore throats from the pores and thus can determine pore sizes
and pore throat size separately.

Four samples from the Kalagang and Haerjiawu formations
were selected for the CRMI tests. According to Figure 10, the
morphology of the total mercury saturation curves roughly
approximates to that of the throat mercury saturation curves.
The volume of mercury injected into pores was low, with the
maximum pore mercury saturation of lower than 20% generally,
indicating that the pores in the samples from the study area are
undeveloped overall. Different samples showed slightly different
pore size distribution but significantly different pore throat sizes
and pore/throat ratios. In detail, the pore throat sizes of the
Kalagang Formation were 0.696 and 1.807, while those of the
Haerjiawu Formation were 22.5 and 35.684. Meanwhile, the pore/
throat ratios of the Kalagang Formation were 192.329 and
173.775, while those of the Haerjiawu Formation were 13.125
and 23.611. This intuitively indicates that the Haerjiawu
Formation has larger throat sizes, lower pore/throat ratios, and
high uniformity of pores and pore throats than the Kalagang
Formation.

DISCUSSION

According to the systematic comparison of the lithology, lithofacies,
physical properties, reservoir space, mineral constituents, and
microscopic pore structures between the Kalagang and Haerjiawu
formations (Table 2), the reservoirs in the two formations notably
differ in porosity, permeability, the configuration of pores and pore

throats, mineral constituents, and reservoir space. The differences in
lithology and lithofacies are that the basalts in the Haerjiawu
Formation are interbedded with carbonaceous mudstones—a type
of source rocks. In terms of physical properties, the two formations
show similar permeability, even though the Haerjiawu Formation has
low porosity. In terms of reservoir space, the Kalagang Formation is
dominated by large-scale weathered and leached pores, while the
Haerjiawu Formation is dominated by small-scale corroded
micropores. In terms of mineral constituents, heulandites
conducive to the formation of weathered corroded pores have
developed in the Kalagang Formation, while quartz conducive to
the formation of fractures have developed in the Haerjiawu
Formation. According to the comparison of HPMI tests, the
Kalagang Formation has low maximum mercury saturation, low
mercury ejection efficiency, and high pore structure tortuosity,
while the Haerjiawu Formation has high maximum mercury
saturation, high mercury ejection efficiency, and low pore structure
tortuosity despite low porosity. The LTNA tests show that the
Kalagang Formation features a wide distribution range of
nanopore sizes, while the Haerjiawu Formation has a relatively
concentrated distribution range of pore sizes. Meanwhile, CRMI
tests indicate that the pore/throat ratio of the Kalagang Formation
is significantly higher than that of the Haerjiawu Formation.
According to the comparison of the above various geological
characteristics (whether the comparison of lithologic associations
and pore morphology or the quantitative comparison of
microscopic pores), the volcanic rocks of the Kalagang Formation
have the microscopic pore structure of large pores and small pore
throats compared with those of the Haerjiawu Formation. The
geological reason is that the volcanic rocks in the two formations
were formed in different geological environments. The Kalagang
Formation is of thick laminated basalt facies, with large numbers
of basalts developing. Furthermore, dense pore or amygdala belts are
common at the top of the formation owing to gas volatilization, with
amygdaloidal pores visible and amygdala mostly filled with chlorites
and zeolites, indicating notable weathering and leaching. In contrast,
the basalts in the Haerjiawu Formation are in a multistage eruption
pattern. The volcanic activities weakened in the later stage. As a result,
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TABLE 2 | Comparison of microscopic characteristics of Carboniferous volcanic reservoirs in the Malang Sag, Santanghu Basin.

Supporting data

Lithology section (Figure 2)

Lithography (Figure 3)

X-ray diffraction analysis (Table 1)
Observation of cast thin sections (Figure 9

and Figure 10)

Physical property analysis (Figure 4)
Physical property analysis (Figure 4)
HPMI and CRMI analysis (Figure 5-Figure 8)

CRMI analysis (Figure 8)
Comprehensive test analysis

Exploration facts of self-jetting oil flow in the

Serial Parameter Kalagang Formation Haerjiawu Formation
number
1 Lithology Basalt Basalt
2 Lithofacies Thick laminated basalt facies Basalts interbedded with source rocks formed
formed from the volcanic rock from underwater eruptions of the volcanic
eruptions above water rocks
3 Mineral constituents Low content of quartz and high High content of quartz and low content of
content of zeolite zeolite
4 Reservoir space Corroded pores, gas pores, and  Corroded pores (joints), tectonic fractures,
pores inside amygdala contraction joints of amygdala, pores inside
amygdala, intercrystalline pores of zeolites,
and matrix micropores
5 Porosity High Low
6 Permeability Similar Similar
7 Configuration of pores  Pores connecting small pore Pores connecting large pore throats
and pore throats throats
8 Pore/throat ratio > 1560 <30
9 Schematic diagram
Large difference between a pore Small differences between a pore and a pore
and a pore throat throat
10 Favorable conditions Far from provenance, low mobility ~ Near to provenance and high mobility
for tight oil
accumulation

volcanic explosions failed to occur due to insufficient eruption power,
and the energy of the volcanic activities was released in the form of
relatively gentle overflow (i.e., underwater eruptions of volcanic rocks).
Furthermore, the Haerjiawu Formation features a special lithologic
association—interbeds consisting of basalts and source rocks, and the
organic acids generated during the evolution of the source rocks
promoted the corrosion of the reservoirs. All these not only open the
channels for oil and gas charging but also provide the oil and gas
occurrence space.

CONCLUSION

1) The volcanic rocks of the Kalagang and Haerjiawu formations are
similar in lithology and are both dominated by basalts. However,
their formation environments are notably different. The Kalagang
Formation is of thick laminated basalt facies formed from volcanic
rock eruptions above water, while the Haerjiawu Formation is of
basalt interbed facies formed from underwater volcanic eruptions.
Furthermore, the Kalagang Formation has relatively high porosity
and high zeolite content, with large-scale corroded pores and pores
inside amygdala developing. In contrast, the Haerjiawu Formation
has relatively low porosity and permeability and low zeolite
content, with corroded pores and tectonic fractures developing.

The volcanic reservoirs in the Kalagang and Haerjiawu formations
have notably different microscopic characteristics. Although
nanopores and micropores have developed in the reservoirs of
both the formations, the volcanic rocks in the Kalagang Formation
have more complex microscopic pore structures and a larger
distribution range of pore sizes, while the volcanic rocks of the
Haerjiawu Formation have more homogeneous microscopic pores
and concentrated pore size distribution. Moreover, in terms of the

2)

volcanic rocks of the Haerjiawu Formation in
wells Ma 67 and Ma 36

configuration of pores and pore throats, large pores connect small
pore throats in the Kalagang Formation, while small pores connect
large pore throats in the Haerjiawu Formation.

Tight reservoirs should not be assessed only using physical
properties (porosity and permeability) as direct indicators. A
systematic assessment of microscopic pore structures should be
performed based on microscopic experiments. In particular, it
should be noted that it is the pore-throat configuration that serves
as the key parameter determining reservoir quality.

3)
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