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The urban groundwater system is complex and affected by the interaction of natural and
human factors. Groundwater scarcity can no longer reflect this complex situation, and the
concept of groundwater drought can better interpret this situation. The groundwater
drought cycle is the time interval in which groundwater droughts occur repeatedly and
twice in a row. The study of the groundwater drought cycle can more comprehensively
grasp the development characteristics of the groundwater drought, which is of great
importance for the development, utilization, and protection of groundwater. This study
used monthly observation data from seven groundwater wells in Xuchang, China, in the
period 1980–2018. We applied the Kolmogorov–Smirnov test to select the best fitting
distribution function and constructed a Standardized Groundwater Index (SGI). We
analyzed groundwater drought at different time scales and used Morlet’s continuous
complex wavelet transform to analyze the groundwater drought cycles. The following
results were obtained: 1) the maximum intensity of groundwater drought in the seven
observation wells ranged from 104.40 to 187.10. Well-3# has the most severe
groundwater drought; 2) the drought years of well-5# were concentrated in
1984–1987 and 2003–2012 and those in the other wells in 1994–1999 and
2014–2018; and 3) the groundwater drought cycles in the seven observation wells
were 97–120months, and the average period is about 110 months. The cycle length
had the following order: well-7# > well-4# > well-5# > well-2# > well-1# > well-3# > well-6.
Therefore, Morlet wavelet transform analysis can be used to study the groundwater
drought cycles and can be more intuitive in understanding the development of regional
groundwater droughts. In addition, through the study of the Xuchang groundwater
drought and its cycle, the groundwater drought in Xuchang city has been revealed,
which can help local relevant departments to provide technical support and a scientific
basis for the development, utilization, and protection of groundwater in the region.
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INTRODUCTION

Drought is an extreme and complex natural disaster that can cause great economic losses and has the
characteristics of long duration, wide impact, and high frequency. It seriously threatens the safety and
stability of human society and is called a “spreading disaster” (Mishra and Singh, 2010; Wilhite,
2000). Climate change has a huge impact on hydrological processes (Intergovernmental Panel on
Climate Change (IPCC), 2013; Wilhite, 2000; Oo et al., 2020), and its impact on groundwater
resources cannot be ignored (Zhou et al., 2010; Kavitha and Chandran, 2015; Dua et al., 2020).
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Groundwater drought, as a concept that links groundwater
resources with drought, is gradually separating from
hydrological drought and agricultural drought and has become
a separate research area in recent years, gaining the attention of
scholars from around the world. It is defined as a phenomenon in
which the groundwater level is lower than the normal or the flow
rate decreases in the spring (Van Loon and Anne, 2015; Marchant
and Bloomfield, 2018). Like other common droughts, it is a
natural disaster caused by the dual impact of social
development and climate change, impeding the development
and stability of society (Taylor et al., 2012; Medellín-Azuara
et al., 2015). Natural factors causing such droughts include
temperature and precipitation. Rising temperatures lead to an
increase in evapotranspiration, and insufficient precipitation
leads to a decrease in surface runoff and soil moisture, thus
affecting groundwater replenishment. In addition, a large amount
of groundwater is used for intensive farmland irrigation, and a
small amount of groundwater is used in households and
production. Overexploitation of groundwater makes it difficult
for groundwater to return to normal levels, leading to
groundwater drought. The pressure, state, and response of the
groundwater drought are shown in Figure 1.

Under the combined influence of natural factors and human
activities, groundwater drought may exhibit complex
characteristics. In addition, due to the lack of direct
observational data on groundwater resources, it is difficult to
quantitatively assess groundwater drought. However, since
groundwater drought has attracted the attention of scholars in
the fields of meteorology, hydrology, and geology, it has become
an important research topic. The Groundwater Resource Index
(GRI), as a reliable tool in a multi-analysis approach for
monitoring and forecasting drought conditions, was developed
by Mendicino et al. (2008). Macdonald et al. (2009) studied the
principles of groundwater drought using hydrogeological maps,
while Li and Rodell (2015) used the Groundwater Drought Index
(GWI) to assess groundwater drought in the central and
northeastern United States. After the launch of the Gravity
Recovery and Climate Experiment (GRACE) satellite, scholars
will be able to use remote sensing methods to assess changes in
groundwater reserves and use the results in response to drought
(Scanlon BR. et al., 2012; Scanlon B. R. et al., 2012). Until 2017,
Thomas et al. (2017) explicitly included and evaluated the
Groundwater Drought Index based on GRACE observations to
understand and identify groundwater drought and applied it in
the Central Valley of California, thus pioneering the direct

application of the GRACE satellite to assess groundwater
drought. Seo and Lee (2019) combined GRACE satellite data
and other remote sensing methods to build an artificial neural
network model to monitor the groundwater drought in South
Korea, thus providing a new idea for the use of satellite methods
to monitor groundwater drought. Wang et al. (2020) used the
GRACE Groundwater Drought Index (GGDI) as an indicator to
assess groundwater drought and comprehensively identified the
temporal evolution, spatial distribution, and trend characteristics
of the drought in the North China Plain from 2003 to 2015.
Afterwards, they used cross-wavelet transform technology to
clarify the difference between GGDI and teleconnection
factors. The relationship between relevant factors has achieved
good results and gained new insights for the application of
GRACE gravity satellites to monitor groundwater drought.
The Standardized Water-Level Index (SWI) was originally
developed by Bhuiyan (2004) to evaluate the hydrological
drought with the help of the groundwater level recharge deficit
and was later applied to the study of groundwater drought. Rahim
et al. (2015) used SWI to estimate the groundwater recharge
deficit in the pre-monsoon and post-monsoon seasons and then
performed a spatial interpolation to determine the degree of
groundwater drought in the study area. Nagarajan et al. (2015)
used SWI as a Ground Observation Index combined with satellite
information to evaluate the drought vulnerability of the
Peddavagu watershed in the sub-basin of the Krishna River
system on the Indian peninsula.

The Standardized Precipitation Index (SPI) is one of the most
widely used evaluation indicators in the field of drought.
Monitoring meteorological droughts can serve as a guide for
planning and implementing groundwater management policies
(CTGCD, 2011; Texas Water Code, 2016). Therefore, it is also
used in the assessment of groundwater drought (Fiorillo and
Guadagno, 2010; Fiorillo and Guadagno, 2012). Bhuiyan et al.
(2006) combined SWI with SPI, Normalized Difference
Vegetation Index (NDVI), Vegetation Condition Index (VCI),
Temperature Condition Index (TCI), and Vegetation Health
Index (VHI) to monitor drought dynamics in the Alawari
region (India). On the basis of SPI, Bloomfield Marchant
(2013) and Bloomfield et al. (2015) used monthly groundwater
level data to construct the Standardized Groundwater-Level
Index (SGI), which is specifically used to evaluate groundwater
drought, and analyzed the correlation between SGI and SPI on
multiple time scales. As a result, the use of SGI to assess
groundwater drought has grown. Pathak et al. (2016)

FIGURE 1 | Schematic diagram of groundwater drought pressure, state, and response.
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performed a cluster analysis of the long-term monthly
groundwater level in the Gataprabha River Basin in India.
This study classified observation wells which performed the
Mann-Kendall test in order to analyze annual and seasonal
groundwater level trends and used SGI to evaluate the area
groundwater drought. Motlagh et al. (2016) used stochastic
models to predict the groundwater level and then used SGI to
predict and warn the local groundwater drought. Liu et al. (2016)
used monthly groundwater level data from 40 observation wells
in Jiangsu Province, China, from 1989 to 2012, and used SGI to
conduct a spatio-temporal analysis of groundwater drought in the
province. However, the calculation method of SGI proposed by
Bloomfield Marchant (2013); Bloomfield et al. (2015) considered
both parametric and non-parametric cases. The monthly series of
groundwater level were fitted with the gamma function, without
considering whether the gamma function could be fitted with the
monthly series data of groundwater level in other regions, which
would have a certain impact on the final groundwater drought
assessment. Based on this, Lorenzo-Lacruz et al. (2017) modified
the SGI according to the Standardized Runoff Index (SSI)
(Vicente-Serrano et al., 2012) and established an index
according to different probability distributions of monthly
series of groundwater level, which can ensure adaptability of
calculated SGI to different climate and water conditions and can
more accurately reflect the conditions of groundwater drought.

Drought monitoring and identification of characteristics are
an important part of dealing with drought risks (Harisuseno,
2020; Kavianpour et al., 2020). Based on a quantitative
assessment of groundwater drought conditions, some scholars
have begun to identify the characteristics of groundwater
drought. Groundwater drought has characteristics similar to
traditional drought, which is a multivariate phenomenon.
There is a certain correlation and dependence between several
characteristic variables (e.g., drought duration, drought intensity,
and drought influence range), so traditional analysis with one
variable (e.g., drought frequency) may not be conducive to
comprehensively study groundwater drought events, leading to
insufficient and inaccurate drought risk assessment (Pathak and
Dodamani, 2021). The Copula function has been widely used in
drought field research (Zhou et al., 2012; Xu et al., 2015; Wu et al.,
2018). It can fit into the distribution functions of multiple
drought-characteristic variables and can effectively describe
the correlation between variables. Although groundwater
drought research started late, studies have shown that the
Copula function can also be used in research and analysis of
groundwater drought. For example, while Saghafian and
Sanginabadi (2020) proposed a framework for statistical
analysis of disturbed hydrological system, they carried out
multivariate groundwater drought analysis based on the
Copula function in an overexploited aquifer and used a
goodness-of-fit test to compare Copula and the empirical
groundwater drought frequency, which proved that the Copula
model had sufficient accuracy in multivariate drought analysis.
Pathak and Dodamani (2021) studied the response of
groundwater drought to meteorological drought and the local
aquifer characteristics using monthly groundwater level data in
the tropical river basin of India and the Copula function to

conduct a bivariate (drought intensity and drought duration)
frequency analysis of groundwater drought.

However, research on the characteristics of groundwater
drought is mainly concentrated in the return period
(frequency analysis), and there is little research on the
groundwater drought cycle. The return period is the frequency
of events in a certain period, which is random and uncertain, and
the drought return period is mainly used to evaluate the severity
of drought events. A cycle is a cyclic law that exists in the
development process of things, which is deterministic, and the
drought cycle is the time interval between two adjacent droughts.
Therefore, conducting research on the groundwater drought cycle
can provide a more comprehensive understanding of
groundwater drought characteristics, understand the law of
regional groundwater development, and strengthen the
groundwater drought early warning mechanism. Continuous
wavelet transform is a common method in wavelet analysis. It
can more effectively identify the non-monotonic trend of
hydrological sequences (Sang et al., 2018) and is widely used
in the field of hydrology. For example, Pathak et al. (2016) used
wavelet transform methods to analyze seasonal temperatures,
precipitation, and runoff trends in the Midwest of the
United States. Djordje et al. (2021) used wavelet transform
spectrum analysis (WTS) and other methods to study the
long-term characteristics of the Danube water level and the
flow and changes in natural cycles. Palizdan (2017) applied a
continuous wavelet transform to analyze the long-term
precipitation trend in the Langat River Basin (Malaysia), while
Li and Zhu (2021) further improved the wavelet transform
method to identify the runoff cycle of the Heihe River (China).

In this paper, we used the continuous wavelet transform
method to identify the period of groundwater drought and to
grasp the principles of groundwater drought in Xuchang city. The
objectives of this study are 1) to determine changes in
groundwater drought in different observation wells in
Xuchang city from 1980 to 2018 and 2) to evaluate the change
cycle of groundwater drought in Xuchang city.

DATA AND METHODS

Study Area
Xuchang city (34°16′–34°58′N, 112°42′–114°14′E) is located in
the central part of Henan Province (China) and covers an area of
4,996 km2. It is located in the transition zone between Funiu
Mountain and the Eastern Henan Plain. Plains dominate with
72.8%, while hills and mountains account for 16.8 and 10.4%,
respectively. The region has a temperate continental monsoon
climate with an average annual temperature from 14.3 to 14.6°C
and an average annual precipitation from 671 to 736 mm.
According to the lithological characteristics of aquifers and the
nature of groundwater storage in Xuchang area, regional
groundwater can be divided into four types: loose rock pore
water, clastic rock fissure water, carbonate rock fissure karst
water, and magmatic rock fissure water. Pore water is
distributed in vast plains and hilly areas, whereas fissure water
and karst water are distributed in the bedrocks of the mountains.
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The shallow loose rock-type pore is the most important water-
bearing rock group in the region and the analyzed groundwater
belongs to this group.

Data
Monthly groundwater level data were obtained from the local
Hydrographic Bureau. We used the monthly data from seven
observation wells with relatively complete datasets from 1980 to
2018. For some missing data, cubic spline function interpolation
was used to supplement the data (Peng-zhu et al., 2015). The
locations of the seven observation wells are shown in Figure 2.

Methods
Standardized Groundwater Index
The SGI is an indicator that measures the degree of groundwater
drought based on changes in groundwater level. It is currently a
more reliable tool for assessing groundwater drought. Bloomfield
et al. (2015) revised the Standardized Precipitation Index (SPI)

and proposed the SGI for groundwater drought analysis. In their
study, the SGI uses gamma distribution in SPI for fitting.
However, the monthly distribution of groundwater may not be
consistent with the gamma distribution (Liu et al., 2016), and
therefore the method proposed by Lorenzo-Lacruz et al., 2017 can
be used to calculate SGI for different fitting distribution functions
in this study. The SGI calculation formula (Lorenzo-Lacruz et al.,
2017) is as follows:

SGI � S(W − C0 + C1W + C2W2

1 + d1W + d2W2 + d3W3
), (1)

W � ������−2 lnP√
, (2)

where F(x) is the cumulative distribution probability for
determining the fitted distribution function, P is the
groundwater level distribution probability related to function
F(x), x is the monthly groundwater level sample, and S is the
positive and negative coefficient of probability density. If

FIGURE 2 | Location of the study area and the seven observation wells.
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F(x) ≥ 0.5, P � 1-F(x), S � 1; if not, P � F(x), S � −1. C0, C1, C2 and
d1, d2, d3 are the calculation parameters of the gamma distribution
function converted into cumulative frequency in order to simplify
the approximate solution formula. The constants are C0 �
2.515517, C1 � 0.802853, C2 � 0.010328, d1 � 1.432788, d2 �
0.189269, and d3 � 0.001308.

Based on this, the key to calculating the SGI is to find the
most suitable fitting distribution function. Here, we used
gamma distribution, beta distribution, log-normal
distribution (logN), Weibull distribution (Web), normal
distribution, and the generalized extreme value (GEV)
distribution to fit the data of the seven observation wells.
These distribution functions are not only more common
but also have strong adaptability, satisfying the cumulative
frequency calculation of monthly data series on groundwater
levels in different situations (Guttman, 1998).

Prior to calculating the SGI, we normalized the original data
column (x) and introduced the processed data column (x’) in
subsequent calculations. To facilitate subsequent distribution
function fitting, we replaced 0 and 1 in the new data column
with 0.001 and 0.999, respectively. The normalization formula
(Chen et al., 2019) is as follows:

x′ � max(x) − x

max(x) −min(x) . (3)

After obtaining a normalized data column, we began to fit the
distribution function. This step was performed with the help of
the MATLAB 2018b software platform.

After that, the Kolmogorov–Smirnov (KS) test was performed
on the fitting distribution results of the data of each observation
well, and the fitting distribution function with the lowest statistic
D was selected as the best fitting distribution function of the
observation well, introduced into Eq. 1. The KS test equation (Xi-
zhi and Wang, 1996) is as follows:

D � max(maxi

∣∣∣∣∣∣∣COF(xi) − r − 1
n

,
r

n
− CDF(xi)

∣∣∣∣∣∣∣), (4)

where r is the rank of the observation i in ascending order.

Wavelet Analysis
Wavelet analysis, known as the “mathematical microscope,” is
particularly suitable for processing non-stationary signals because
it can detect the characteristics of time-frequency detailed
information and can reveal the main distribution of oscillation
periods hidden in time series, which is useful for the future of the
system. The development trend has been qualitatively estimated
and is widely used in the research fields related to atmosphere,
hydrology, and geography, among others (Aussen et al., 1997;
Smith et al., 1998; Nason and Sapatinas, 2002).

When using wavelet to analyze practical problems, we have to
choose the suitable basis for the wavelet function. Morlet is a
harmonic smoothed by the Gaussian function and a complex
wavelet that is widely used in the field of hydrology (Kulkarni,
2000). Therefore, we chose Morlet’s continuous complex wavelet
transform to analyze the characteristics of groundwater time
series on multiple time scales. For a given wavelet function,

continuous wavelet transform of the hydrological time series
f(t) ∈ L2(R)(Wang et al., 2005) is expressed as follows:

Wf(a, b) � |a|−1
2 ∫∞

−∞
f(t)ψ(t − b

a
)dt, (5)

where a is the scaling scale (a≠ 0), which reflects the
characteristics of the frequency domain; b is the translation
parameter, which reflects the characteristics of the time

domain; ψ(t−b
a ) is the complex conjugate function of ψ(t); and

�ψ(t) is the basis wavelet function. Here, Wf(a, b) is the wavelet
transform coefficient, which is the inner product of the
continuous wavelet and the signal on the scale a and
displacement b, indicating the degree of similarity between the
signal and the wavelet represented by the point. When the value
of a is small, a higher time domain resolution can be obtained; the
opposite occurs for small value of a.

Because it is difficult to express a continuous sequence with
digital symbols in actual application, a continuous time sequence
is often discretized. This is also the case for hydrological time
series. Total, average, or extreme values of the process state are
often used as time series values, such as precipitation, water level,
and runoff (Wu, 2014).

The discrete form of wavelet transform (Hou andWang, 2011)
is expressed as follows:

Wf(a, b) � |a|−1
2Δt∑N

k�1f(kΔt)ψ(kΔt − b

a
), (6)

where Wf(a, b) is a function that varies depending on the
parameters a and b. Since the Morlet wavelet is a complex
number, the transformed coefficients are also complex
numbers. We took the real part of the wavelet coefficients,
namely,b as the abscissa and a as the ordinate, in order to
generate a two-dimensional contour map of Wf(a, b), i.e., the
contour plot of the real part of the wavelet coefficients.

When the scale a is the same, the process of changing the wavelet
transform coefficients over time reflects the characteristics of the
change of the hydrological time series on this scale: when the wavelet
transform coefficient is greater than 0, it is in the multi period; when
the wavelet transform coefficient is less than 0, it is in the minor
period. Similarly, when the wavelet transform coefficient is 0, it is in
the transition stage from minor to multi period or from multi to
minor period (Hou and Wang, 2011).

By integrating the square value of the wavelet coefficient in the
time translation domain (b), the wavelet variance Var (Cahill,
2002; Kang et al., 2009) can be obtained:

Var(a) � ∫∞

−∞

∣∣∣∣Wf(a, b)
∣∣∣∣2db. (7)

The discrete form is expressed as follows:

Var(a) � 1
N

∑N

t�1
∣∣∣∣Wf(a, xt)

∣∣∣∣2, (8)

where Var(a) is the wavelet variance; N is the length of the
groundwater level data column; andWf(a, xt) is the square of the
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wavelet coefficients on the scale a and time xt, and it is the square
of the coefficient modulus for complex coefficients.

The distribution diagram of the Var change during the period
a is called the “wavelet variance distribution diagram” and can
intuitively reflect the energy distribution of the signal fluctuation
with the period a, determining the relative intensity of the
different oscillation periods and the main oscillation period.

RESULTS

Selection of the Best Fit Function
As mentioned above, the key to SGI calculation is to select the
fitting function. We used six more common functions to fit
the data series from the seven observation wells and
performed the KS test (Eq. 4) on the fitting results; finally, we

TABLE 1 | Results of the Kolmogorov–Smirnov test for seven wells.

Observation well D

Log-normal Gamma Beta GEV Weibull Normal

1# 0.1261 0.0891 0.0567 0.0396 0.0609 0.0464
2# 0.1354 0.1275 0.0748 0.0721 0.1130 0.0992
3# 0.1258 0.0851 0.1188 0.1321 0.0879 0.1292
4# 0.1495 0.1380 0.0736 0.1046 0.1150 0.1033
5# 0.2697 0.1973 0.1301 0.1215 0.1875 0.1362
6# 0.0954 0.0892 0.0492 0.0696 0.0620 0.0744
7# 0.1878 0.1531 0.0826 0.0583 0.0859 0.1362

FIGURE 3 | SGI time series values.
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chose the function with the lowest test statistic D as the best fit
function for the SGI calculation (Cui et al., 2020).

Table 1 shows that the best fitting distribution function for the
well-1#, well-2#, well-5#, and well-7# is the GEV function, that
for the well-3# is the gamma function, and that for the well-4#
and well-6# is the beta function.

SGI Sequence Characteristics
We used Eq. 1 to calculate 3,276 Standardized Groundwater
Index values of monthly series of groundwater level from 1980 to
2018 for all observation wells. When SGI <0, drought occurs;
when SGI � 0, the well is in a critical state; and when SGI >0, the
conditions are normal. Here, we defined continuous drought
(i.e., drought duration t ≥ 2 months) as a drought event. The
results show (Figure 3) that drought and non-drought occurred
alternately in all observation wells, albeit at different intervals.
Except for well-5#, the alternating drought and non-drought
trends for the remaining six wells were similar, whereas those
for well-5# showed the opposite pattern. In addition, the overall
trend of the average SGI sequence curve was most similar to that
of well-4#.

The number of drought events in the seven observation wells
was from 3 to 11, the total drought duration was from 210 to

242 months, the maximum drought intensity was from 104.40 to
187.10, and the longest duration of drought events was from 67 to
146 months. Well-3# had the least drought events, which was
three times. However, due to the drought duration, drought
intensity, and drought severity characteristics, well-3# faced
the most severe drought. Short-term drought often occurs in
well-1# and well-6#. The drought intensity in well-7# is the
weakest and the duration of the maximum drought event is
the shortest. The total duration of drought is the shortest in well-
4#. Detailed characteristics of the SGI sequence of the seven
observation wells are shown in Table 2.

Interannual Variation of Groundwater
Drought
Because groundwater drought is a cumulative condition, we used
the SGI in December each year to represent the groundwater
drought in that year. Figure 4 shows the interannual variations of
groundwater drought in the seven observation wells of nearly 39a
(1980–2018) in Xuchang city (color represents SGI value).
Groundwater drought in well-1#, well-2#, and well-4#
occurred in 17 years. The strongest droughts occurred in 2014,
2015, and 1999. The coverage period of well-3# groundwater

TABLE 2 | Drought characteristics based on SGI values for seven observation wells.

Observation well No. of drought events Total duration (months) Maximum severity Maximum duration (months)

t = 2 months 2 months < t
≤ 12 months

t > 12 months Total

1# 2 6 3 11 223 104.90 85
2# 1 3 4 8 222 168.69 120
3# 0 0 3 3 242 187.10 146
4# 1 1 3 5 210 164.00 122
5# 1 4 4 9 225 133.25 103
6# 2 5 3 10 229 134.97 105
7# 1 2 4 7 223 104.40 67
Average 2 3 4 9 210 74.17 85

FIGURE 4 | Interannual variation of groundwater drought for all seven wells.
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drought was 20 years, and the strongest drought occurred in
2016. Well-5# groundwater had the longest drought coverage
period of 21 years, and the strongest drought occurred in 1985.
The drought coverage period of well-6# was 19 years, and the
strongest drought occurred in 1993. The well-7# groundwater
drought coverage period was 18 years, and the strongest drought
occurred in 1996.

Interestingly, the drought years of well-5# were basically
spaced apart from those other six. When excluding well-5#,
there were no groundwater droughts in the periods 1984–1987
and 2003–2008. In 1994, 1996–1999, and 2014–2018, droughts
were observed in other six wells, while no groundwater drought
was observed for well-5# during this period.

Characteristics of Groundwater Drought
Cycle
In this paper, the 39a regional groundwater SGI sequence was
used for wavelet transformation. In this step, we used the
MATLAB wavelet toolbox to complete the wavelet

transformation graph. We took the real part of the wavelet
coefficients, the number of months as the abscissa (e.g., the
abscissa 100 in Figure 5 represents the 100th month) and the
time scale as the ordinate, and drew the contour plot of the real
part of the wavelet coefficients (Figure 5). To more intuitively
understand the periodic changes of groundwater drought,
the depth of color in Figure 5 represents the size of the real
part of the wavelet coefficient. The darker the color, the smaller
the SGI value and the stronger the groundwater drought; the
lighter the color, the greater the SGI value and the less severe the
groundwater drought. Wavelet coefficients change characteristics
can be used to characterize SGI time series change characteristics:
when the real part of the wavelet coefficient is greater than 0,
i.e., the SGI is greater than 0, there is no groundwater drought;
when the real part of the wavelet coefficient is less than 0, i.e., the
SGI is less than 0, there is groundwater drought. When the real
part of the wavelet coefficient is 0, that is, SGI is equal to 0, it
represents a turning point in the groundwater transition from
drought to non-arid conditions or from non-arid conditions
to drought.

FIGURE 5 | Contour plot of the real part of the wavelet coefficients.
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The wavelet variance chart can reflect the distribution of the
SGI time series fluctuation amplitude with the scale a and can be
used to identify the intensity of disturbances and periodic changes
at various scales, thereby determining the main period in the
evolution of groundwater drought. We calculated the wavelet
variance of the SGI time series of all observation wells according
to Eq. 8 and drew a wavelet variance graph (Figure 6) with the
time scale a as the abscissa and the wavelet variance as the
ordinate.

According to the results of the wavelet variance calculation,
drawing a real part processing line diagram of the wavelet
coefficients in the first and second main periods (Figure 7)
can help understand the impact of the two main periods on
groundwater drought throughout the study period. Usually, in
the same period, the larger the amplitude of the wavelet
coefficient real part processing line, the greater the influence
in this period, that is, the period is dominated by the variation of
the main period.

According to the results of the wavelet analysis, the
characteristics of the groundwater drought oscillation

period in seven observation wells can be obtained (Table 3).
It can be seen from the table that there are 2–4 types of time
scale laws in all observation wells, and different types of time
scale laws correspond to different main periods. This paper
analyzes only the first and second main periods that can best
represent the characteristics of the groundwater drought
oscillation cycle in each well. The first major period of
groundwater drought in the seven observation wells was
concentrated between 97 and 120 months, i.e., between 8
and 10 years. Apart from the fact that the second main
period of well-3# and well-7# is longer than the first main
period, the second main period of other wells basically
fluctuates up and down half of the first main period. As can
be seen from Figure 6, small cycles are included in the large
cycles. As for the situation of well-3# and well-7#, it is very
likely that the length of data is not enough, which leads to a
larger main period not being found, but according to the size of
the first and second main periods of other observation wells,
we speculate that the actual first main period of the two wells is
twice as long as the existing first main period. However, due to

FIGURE 6 | Wavelet variance map.

Frontiers in Earth Science | www.frontiersin.org September 2021 | Volume 9 | Article 7363059

Huang et al. Groundwater Drought and Cycles

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


FIGURE 7 | Real part of the wavelet coefficient of groundwater drought time scale in the first two main periods.

TABLE 3 | Period characteristics of groundwater drought oscillation.

Observation well Number of types of
time scale laws

First
main period (months)

Second
main period (months)

1# 3 106 72
2# 4 114 67
3# 2 102 141
4# 2 118 53
5# 3 116 51
6# 3 97 65
7# 4 120 157
Average 1 90 —
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the influence of the data, we can only roughly conclude that the
first major periods of the two wells are 102 and 120 months,
respectively. There is one type of time scale rule of the average
SGI time series and it corresponds to a single main period
(90 months), which is 20 months away from the average first
main period (110 months) of each well.

DISCUSSION

Climate change and human activities are the main factors causing
changes in groundwater levels (Dua et al., 2020; Kavitha and
Chandran, 2015; Zhou et al., 2010), and in this study, the
Groundwater Drought Index SGI is based on groundwater
level data. So, the response of well-5# to changes in the
environment differs from those of the other observation wells,
most likely due to factors. Due the lack of data, we could not
investigate this basic mechanism in more depth. However, it is
now clear that conventional droughts can spread faster to
groundwater droughts in areas that respond faster to factors.

Drought periods in the seven observation wells differed up to
23 months. Since all these observation wells contain shallow loose
rock pore water, there is no difference in the lithology of the
aquifer. Therefore, we believe that this difference may be due to
regional climate change and human activities. In this sense, the
definition of the impact on groundwater drought requires further
analysis.

The second main periods of well-3# and well-7# were both
longer than the first main period, and in Figure 5, the contours on
the second main cycle time scale of these two wells are not closed.
However, the unclosed contour loop had a closed trend. It is
necessary to confirm whether the cycle of groundwater drought
change of the two wells will have a higher periodicity in a certain
period of time in the future.

Morlet wavelet transform analysis showed that the
groundwater drought period in Xuchang city is 110 months,
which is about 9 years. Previous studies have shown that
drought periods are closely related to solar activity, and a
small period of solar activity is 10 years (Li et al., 2015, Li
et al., 2019), which is basically consistent with the results of
this study (the subtle difference may be caused by human
activities). Therefore, Morlet’s continuous complex wavelet
transform can be used to study the groundwater drought
cycles. Our results provide a scientific basis for improved
groundwater management.

CONCLUSION

Drought events occurred in all seven observation wells, of
which the number of occurrences was the lowest in well-3#,
but the drought was the worst. Well-1# has the highest
number of drought events, but is dominated by short-lived
droughts. Well-4# has the shortest total drought duration, and
well-7# has the lowest drought intensity and the shortest
duration of the longest drought event. The maximum

drought intensity in the seven observation wells is between
104.40 and 187.10.

The drought years of all observation wells were 17–21 years,
and the drought years of well-5# were basically spaced apart from
other six. The drought years of well-5# are concentrated in
periods 1984–1987 and 2003–2012, while the drought years of
other observation wells were concentrated in periods 1994–1999
and 2014–2018.

The contour map of the real part of the wavelet coefficients of
each well showed a clear quasi-lateral, positive and negative
interlaced closed center, distributed from low frequency to high
frequency, which indicates an obvious period of oscillation for
groundwater drought in Xuchang city. Wavelet transform analysis
shows that the groundwater drought period of the seven
observation wells was concentrated between 97 and 120 months,
i.e., between 8 and 10 years. The groundwater drought period in
well-7# was the longest with 120 months, and that of well-6# was
the shortest with 97months. Moreover, each observation well had
a second main cycle of different sizes, indicating that the main
periods of groundwater drought oscillations are different in
different time periods. In addition, we infer that the time scale
difference between the first and secondmain period is basically half
of the first main period, and the change law of the small-time scale
is included in the large time scale.

Wavelet analysis of the average SGI time series of the seven
observation wells shows that the groundwater drought period
(90 months) differed considerably from the average period of
each well (approximately 110 months), indicating that the
average SGI time series of the seven wells is not available. The
results of the wavelet analysis can be used to determine the overall
groundwater drought cycle in the region.
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