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Operational forecasting of volcanic ash and SO2 clouds is challenging due to the large
uncertainties that typically exist on the eruption source term and the mass removal
mechanisms occurring downwind. Current operational forecast systems build on
single-run deterministic scenarios that do not account for model input uncertainties
and their propagation in time during transport. An ensemble-based forecast strategy
has been implemented in the FALL3D-8.1 atmospheric dispersal model to configure,
execute, and post-process an arbitrary number of ensemble members in a parallel
workflow. In addition to intra-member model domain decomposition, a set of inter-
member communicators defines a higher level of code parallelism to enable future
incorporation of model data assimilation cycles. Two types of standard products are
automatically generated by the ensemble post-process task. On one hand,
deterministic forecast products result from some combination of the ensemble
members (e.g., ensemble mean, ensemble median, etc.) with an associated
quantification of forecast uncertainty given by the ensemble spread. On the other
hand, probabilistic products can also be built based on the percentage of members
that verify a certain threshold condition. The novel aspect of FALL3D-8.1 is the
automatisation of the ensemble-based workflow, including an eventual model
validation. To this purpose, novel categorical forecast diagnostic metrics, originally
defined in deterministic forecast contexts, are generalised here to probabilistic
forecasts in order to have a unique set of skill scores valid to both deterministic
and probabilistic forecast contexts. Ensemble-based deterministic and probabilistic
approaches are compared using different types of observation datasets (satellite cloud
detection and retrieval and deposit thickness observations) for the July 2018 Ambae
eruption in the Vanuatu archipelago and the April 2015 Calbuco eruption in Chile. Both
ensemble-based approaches outperform single-run simulations in all categorical
metrics but no clear conclusion can be extracted on which is the best option
between these two.
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1 INTRODUCTION

Numerical modelling of volcanic plumes, including the
atmospheric dispersal of volcanic particles and aerosols and its
ultimate fallout on the ground, is challenging due to a number of
reasons that include, among others, the multiplicity of scales
involved, the complex underlying physical phenomena, the
characterisation of the emitted particles and aerosols, and the
quantification of the strength, vertical distribution, and evolution
in time of the source term (volcanic plume) and related
uncertainties (Folch, 2012). The latter two aspects are
particularly critical in operational forecast scenarios where, in
addition to larger source term uncertainties, requirements exist
also on the forecast time-to-solution that constrain the space-
time resolutions of operational model setups depending on the
computational resources available.

Ensemble-based modelling is well recognised as the proper
strategy to characterise uncertainties in model inputs, in model
physics and its parameterisations, and in the underlying model-
driving meteorological data. In the fields of meteorology and
atmospheric dispersal, the use of ensemble-based approaches to
improve predictions and quantify model-related uncertainties has
long been considered, first in the context of numerical weather
forecast (e.g., Mureau et al., 1993; Bauer et al., 2015), and
afterwards for toxic dispersal (e.g., Dabberdt and Miller, 2000;
Maurer et al., 2021), air quality (e.g., Galmarini et al., 2004;
Galmarini et al., 2010), or volcanic clouds (e.g., Bonadonna et al.,
2012; Madankan et al., 2014; Stefanescu et al., 2014) among
others. Ensemble-based approaches can give a deterministic
product based on some combination of the single ensemble
members (e.g., the ensemble mean) and, as opposed to single
deterministic runs, attach to it an objective quantification of the
forecast uncertainty. On the other hand, ensemble runs can also
furnish probabilistic products based on the fraction of ensemble
members that verify a certain (threshold) condition, e.g., the
probability of cloud being detected by satellite-based
instrumentation, the probability that the cloud mass
concentration compromises the safety of air navigation, the
probability of particle fallout or of aerosol concentration at
surface to exceed regulatory values for impacts on
infrastructures or on air quality, etc. Added to these,
ensembles can also be used as multiple trial simulations, e.g.,
in optimal source term inversions by calculating correlations
between the different members and observations (e.g., Zidikheri
et al., 2017; Zidikheri et al., 2018; Harvey et al., 2020) or to make
more robust in flight-planning decisions (Prata et al., 2019).
Finally, ensembles are also the backbone of most modern data
assimilation techniques, which require estimates of forecast
uncertainty to merge a priori forecasts with observations
during data assimilation cycles (e.g., Fu et al., 2015; Fu et al.,
2017; Osores et al., 2020; Pardini et al., 2020).

At a research level, forecasting of volcanic clouds using
ensemble-based approaches has been considered in several
models including, for example, ASH3D (Denlinger et al.,
2012a; Denlinger et al., 2012b), COSMO-ART (Vogel et al.,
2014), HYSPLIT (Dare et al., 2016; Zidikheri et al., 2018;
Pardini et al., 2020), NAME (Dacre and Harvey, 2018;

Beckett et al., 2020), FALL3D (Osores et al., 2020) or, more
recently, even tackling multi-model ensemble approaches (Plu
et al., 2021). Despite promising results, implementations at
operational level are still limited to a few cases, e.g. the
Dispersion Ensemble Prediction System (DEPS) of the
Australian Bureau of Meteorology (Dare et al., 2016). Such
a slow progress can be explained by the inertia of operational
frameworks to go beyond single-run scenarios, the limited
pool of validation studies supporting this approach, the
computational overhead of ensemble-based forecast
methodologies, the reluctance of some end-users to
incorporate probabilistic scenarios in their decision-making
operations, or even the difficulties to interpret and
communicate ensemble-based products. Here we present
FALL3D-8.1, the last version release of this atmospheric
transport model that includes the option of ensemble-based
simulations. Developments are being done in the frame of the
EU Center of Excellence for Exascale in Solid Earth (ChEESE)
and, more precisely, within the Pilot Demonstrator (PD)
number 12 (PD12) that considers an ensemble-based data
assimilation workflow combining the FALL3D dispersal
model with high-resolution latest-generation geostationary
satellite retrievals. The ultimate goal of this pilot is to have
a km-resolution short and long-range automated forecast
system with edge-to-end latencies compatible with early-
warning and crisis management requirements. We limit our
discussion here to the ensemble modelling module, leaving the
data assimilation component to another publication linked to
the upcoming v8.2 model release (Mingari et al., 2021). In this
scenario, the objectives of this manuscript are three-fold:

1. To introduce FALL3D-8.1, including the novel model tasks to
generate ensemble members from an unperturbed reference
member, merge and post-process the single-member
simulations, and validate model forecasts against satellite-
based and ground deposit observations (Section 2). The
ensemble generation in FALL3D-8.1 can consider
uncertainties in the emissions (i.e., the so-called Eruption
Source Parameters for volcanic species), particle properties,
and meteorological fields (wind velocity).

2. To define quantitative forecast-skill metrics applicable to both
ensemble-based deterministic and ensemble-based
probabilistic forecasts simultaneously. Note that, typically,
only ensemble-based deterministic outputs are compared
against observations, e.g., by means of categorical metrics.
However, the question on whether a probabilistic approach is
more (or less) skilled than a deterministic one is rarely tackled.
Generalised categorical metrics are proposed in Section 3 of
this paper in order to explicitly address this question.

3. To validate the ensemble-based deterministic and probabilistic
approaches using different types of observation datasets for
ash/SO2 clouds (satellite detection and satellite retrieval) and
ground deposits (scattered points and isopach contours). This
is done in two different contexts, the July 2018 Ambae
eruption for SO2 clouds, and the April 2015 Calbuco
eruption for ash clouds and tephra fallout (Section 4). In
both cases, computational capacity requirements are
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considered in the context of urgent (super)-computing,
including constraints in the forecast time-to-solution.

2 FALL3D-8.1

During its latest major version release (v8.0), the FALL3D
model (Costa et al., 2006; Folch et al., 2009) was rewritten and
refactored in order to incorporate dramatic improvements in
model physics, spectrum of applications, numerics, code
scalability, and overall code performance on large
supercomputers (for details see Folch et al., 2020; Prata
et al., 2021). This included also the parallelisation and
embedding of former pre-process auxiliary programmes to
run either as independent model tasks (specified by a call
argument) or concatenated in a single execution workflow. In
FALL3D-8.1, three new model tasks have been added to
automatically generate an ensemble of members (task
SetEns), post-process ensemble-based simulations (task
PosEns) and, finally, validate the model against different
types of observation datasets (task PosVal). Ensemble
members in FALL3D-8.1 run concurrently in parallel, with
a dedicated MPI communicator for the master ranks of each
ensemble member. However, because this code version does
not handle data assimilation cycles yet (something planned for
the next version release v8.2), the individual ensemble
members run actually as an embarrassingly parallel
workload (e.g., Herlihy et al., 2020), i.e., with no
dependency among parallel tasks.

2.1 Ensemble Generation Task
The task SetEns, which must be run first in the case of ensemble
runs, generates and sets the ensemble members from a unique
input file by perturbing a reference case (the so-called central or
reference member). This task also creates a structure of sub-
folders, one for each ensemble member, where successive model
tasks will be pointed to locate the necessary input and dump the
output files generated by the execution of each member. In case of
ensemble-based simulations, a new block in the FALL3D-8.1

input file allows to set which model input parameters will be
perturbed, its perturbation amplitude (given as a percentage of
the reference value or in absolute terms), and the perturbation
sampling strategy, which in FALL3D-8.1 can follow either a
constant or a Gaussian Probability Density Function (PDF).
Note that this block in the input file is simply ignored if the
ensemble option is not activated, ensuring backwards
compatibility with previous versions of the code. Table 1
shows which model input parameters can be perturbed and to
which category and related sub-category of species each
perturbation can be applied. Note that this manuscript
pertains to volcanic particles and aerosols but, nonetheless, the
ensemble-based approach is also possible for other types of
species available in FALL3D-8. x (for details on the species
category types see Table 3 in Folch et al., 2020).

The ensemble generation starts with an unperturbed central
member, which typically is set with the observed or “best-guess”
input values and that, by construction, coincides with the
“standard” single-run. For each parameter to be perturbed, the
ensemble spread is then generated by sampling on the
corresponding PDF around the unperturbed central value and
within a range (amplitude) that spans the parameter uncertainty.
For example, a perturbation of the source duration Sd by ± 1 h
samples using either a linear or a Gaussian (centred at Sd) PDF
within the interval [Sd − 1, Sd + 1]. For n ensemble members and
m parameters (dimensions) perturbations result on a
combination of n × m possible values that are then sub-
sampled to define the n ensemble members using a classical
Latin hypercube sampling algorithm (e.g., Husslage et al., 2006).
This strategy guarantees that the spread across each of the m
dimensions is maintained in the final member’s sub-sample. It is
clear that the a priori generation of an ensemble requires expert
judgement and involves some degree of subjectivity. The question
on how an ensemble can be optimally generated is complex and
falls beyond the scope of this manuscript. Nonetheless, a good
practice if forecast observations exist is to check (a posteriori) that
the ensemble-based forecast is statistically indistinguishable from
observations by looking at the shape of the ensemble rank
histogram.

TABLE 1 | List of model input parameters that can be perturbed in FALL3D-8.1 to generate ensemble runs. The related task and the species category affected are also
indicated (see Folch et al. (2020), for details).

Parameter Related task Specties category Comments

Fi-mean Φm SetTgsd Particles and radionuclides Mean of the Gaussian particle Grain Size Distribution (GSD)
Column height H SetSrc All species Maximum source term injection height (1)

Mass flow rate _M SetSrc All species Source term strength. Applies to configurations in which
_M is explicitly given and not derived from height H(1)

Source start SetSrc All species Source start time (1)

Source duration SetSrc All species Source duration time (1)

Top-hat thickness SetSrc All species Source thickness in the HAT source type option(1)

Suzuki A SetSrc Tephra and aerosols Parameter A in the SUZUKI source type option(1)

Suzuki λ SetSrc Tephra and aerosols Parameter λ in the SUZUKI source type option(1)

Aggregate size SetSrc Tephra Size of the aggregate bins
Aggregate density SetSrc Tephra Density of the aggregate bins
Wind speed FALL3D All species Horizontal wind components
Insertion height FALL3D Tephra and aerosols Cloud height if the model initial condition is given from data insertion
Insertion thickness FALL3D Tephra and aerosols Cloud thickness if the model initial condition is given from data insertion

(1) In case of time-dependent parameters the same perturbation is applied to all phases of the source term.
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2.2 Ensemble Postprocess Task
Once the model has run, the task PosEns merges all outputs
from individual ensemble members in a single netCDF file
containing ensemble-based deterministic and/or probabilistic
outputs for all variables of interest (e.g., concentration at
native model levels or at flight levels, cloud column mass,
ground deposit load, etc). Options for ensemble-based
deterministic outputs include the ensemble mean, the
ensemble median, and values of user-defined percentiles.
The standard deviation can be attached to any variable as a
measure of the uncertainty of the deterministic outputs. On
the other hand, ensemble-based probabilistic outputs can also
be built by counting, at each grid point and time step, the
fraction of ensemble members that verify a given condition,
typically the exeedance of some threshold. For example, a
probabilistic output for airborne volcanic ash can be defined
based on the 2 mg/m3 concentration threshold in case of
aviation-targeted products and counting, at each grid cell
and time step, the fraction of members that overcome
this value.

2.3 Model Validation Task
FALL3D-8.1 includes a third new task PosVal to validate both
single-run (compatible with previous code versions) and
ensemble-based deterministic and/or probabilistic outputs
against various types of gridded and scattered observation
datasets (see Table 2). Observation datasets include satellite-
based observations and quantitative retrievals (to validate
against cloud column mass), deposit isopach/isopleth maps,
and point-wise deposit observations (to validate against
deposit thickness or mass load). In all cases, this model
task reads the required files, interpolates model and
observations into the same grid and computes a series of
categorical and quantitative validation metrics that are
detailed in the following section. This model validation
task inherits the model domain decomposition structure
and, consequently, all metrics are first computed (in
parallel) over each spatial sub-domain and then gathered
and added to get global results over the whole
computational domain.

3 ENSEMBLE FORECAST DIAGNOSTIC
METRICS

This section defines the different types of metrics computed by
task PosVal, summarised in Table 3. These include: i) generalised
categorical metrics, ii) quantitative metrics for deterministic
forecasts and, iii) the ensemble rank histogram for ensemble-
based probabilistic scenarios.

3.1 Generalised Categorical Metrics
Categorical metrics (e.g., Jolliffe and Stephenson, 2012) apply
to variables that take a limited number of values or
“categories”. For example, in a deterministic forecast
context it is common to define dichotomic categories (yes/
no) for model and observations based on the occurrence (or
not) of a given condition. At each observation point, this
results on a 2 × 2 model-observations “contingency table”
(true positives, true negatives, false positives, false negatives),
from which a series of “geometric-based” or “contour-based”
categorical metrics can be constructed, e.g., the probability of
detection, the false alarm rate, etc. (Marti and Folch, 2018;
Pardini et al., 2020). In this section, several classical categorical
metrics widely used in deterministic forecast contexts are
generalised to probabilistic forecasts with the objective of
having a same set of forecast skill scores usable in both
contexts.

Consider an ensemble-based model realisation with n
ensemble members in a computational domain Ω. At each
point and time instant, the forecasts of the n ensemble
members can be ranked and the discrete probability of
occurrence of a certain condition or threshold can be
computed by simply counting how many ensemble members
verify the condition (note that this results on n + 1 categories or
probability bins). Let’s denote by Pm (x, t) the resulting discrete
probability function defined in the domainΩ, where the subscript
m stands for model and 0 ≤ Pm (x, t) ≤ 1. Clearly, Pm (x, t) � 0
implies that no ensemble member satisfies the condition at (x, t),
whereas Pm(x, t) � 1 implies that all members do. In general, Pm
(x, t) will be a function with finite support, that is, it will take non-
zero values only over a sub-domain Ωm(t) � {x ∈ Ω | Pm(x, t) > 0}

TABLE 2 | Four types of observation datasets that can be used for model validation by task PosVal. The satellite detection and the satellite retrieval observation types stand,
respectively, for detection (i.e. “yes/no” categorical observation) and quantitative column mass retrievals. The deposit contours observation type refers to isopach/
isopleth deposit contours (e.g. from shape files or griddedmaps). Finally, the deposit points stands for deposit thickness/load observations at scattered points. For each type
of forecast, deterministic (D) or probabilistic (P), the Table indicates which validation metrics apply to each combination of observation-forecast types. The different
generalised categorical and quantitative scores are defined in Section 3.

Observation
dataset

Satellite
Detection

Satellite Retrieval Deposit Contours Deposit Points

Observation
type

Categorical Quantitative Categorical Quantitative

Forecast
type

D P D P D P D P

Generalised categorical metrics ✓ ✓ ✓ ✓ ✓ ✓ — —

Brier Score (BS) — ✓ — ✓ — ✓ — ✓
Quantitative scores — — ✓ — — — ✓ —

Rank histogram — — - ✓ — — — ✓
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where at least one ensemble member satisfies the condition. Let’s
denote by δm(x, t) the step function defined from the support of
Pm(x, t), that is:

δm x, t( ) � 1 if x ∈ Ωm t( )
0 if x ∉ Ωm t( ){ (1)

Note that the definitions of Pm(x, t) and δm(x, t) are also
valid in a deterministic context. In fact, the deterministic
forecast scenario represents the limit in which Pm(x, t) can
take only two discrete values (0 or 1) and one simply has that
Ωm(t) � {x ∈ Ω | Pm(x, t) � 1} and Pm(x, t) � δm(x, t). From a
geometrical point of view, δm(x, t) can be interpreted as
the union of the n probability contours that define the
discrete probability function Pm (x, t). In the deterministic
limit, only one contour exists and, consequently, one has
Pm(x, t) � δm(x, t).

Similar arguments can be followed regarding observations.
In general, one could consider m different sources of
observations and apply the same condition (threshold) to
obtain a discrete probability function of observations Po(x,
t), define the subdomain Ωo(t) � {x ∈ Ω | Po(x, t) > 0} as the
subset of Ω where at least one observation verifies the
condition and, finally, define the resulting observations step
function δox, t) analogous to Eq. 1 but using Ωo(t). Following
with the analogy, this would result on a (n + 1) × (m + 1)
model-observations “contingency table” for the most general
case. In what follows, generalised categorical metrics will be
defined for an arbitrary number of members/observations and
grid projection. However, and for the sake of simplicity, only
cases in which observations come from a single source (m � 1)
will be considered here. As a result, it will be implicitly
assumed that Ωo(t) � {x ∈ Ω | Po(x, t) � 1} and Po(x, t) �
δo (x, t). The following generalised categorical metrics are
introduced:

3.1.1 Generalised Figure Merit of Space
The Generalised Figure Merit of Space (GFMS) is defined as:

GFMS t( ) � ∫ΩδoδmPoPmdΩ∫Ω 1 − δo( )Pm + 1 − δm( )Po + δoδmPoPm[ ]dΩ (2)

which, for the single-observation case considered here (Po � δo)
and using that δ2o � δo, simplifies to:

GFMS t( ) � ∫ΩδoδmPmdΩ∫Ω 1 − δo( )Pm + 1 − δm( )δo + δoδmPm[ ]dΩ (3)

Note that in the deterministic forecast limit (i.e., Pm � δm), the
GFMS reduces to:

GFMS t( ) � ∫ΩδoδmdΩ∫Ω δm + δo − δmδo[ ]dΩ � Ωo ∩ Ωm

Ωm + Ωo −Ωo ∩ Ωm

� Ωo ∩ Ωm

Ωo ∪ Ωm
� FMS t( ) (4)

which is the classical definition of the Figure Merit of Space (FMS),
also known as the Jaccard coefficient (e.g., Levandowsky and
Winter 1971; Galmarini et al., 2010). From a geometric point of
view, the FMS is interpreted as the ratio between the intersection of
model-observations contours and its union. The GFMS introduced
here has the same interpretation but using a weight-average with
model/observations probability contours. The GFMS ranges from
0 (worst) to 1 (optimal). The continuous integrals over Ω in the
expressions above are in practice computed by projecting
observations into the model grid and summing the discrete
probability bins over all grid cells. For example, in the case of
Eq. 3, the discrete computation would be as:

GFMS t( ) � ∑jHjδojδmjPmj∑jHj 1 − δoj( )Pmj +∑jHj 1 − δmj( )δoj +∑jHjδojδmjPmj

(5)

where Hj � m1jm2jm3jVj is the grid mapping factor of the j grid
cell, Vj is the cell volume, and mxj are the mapping factors
depending on the coordinate system (see Tables 8 and 9 in
Folch et al., 2020). Note that in the deterministic limit and for
the particular case of a regular Cartesian grid (i.e., all cells equal,
unit map factors) this further simplifies to:

FMS t( ) � ∑jδojδmj∑j 1 − δoj( )δmj +∑j 1 − δmj( )δoj +∑jδojδmj

� TP
FP + FN + TP

(6)

and coincides with the number of True Positives (TP) divided by
the number of False Positives (PF) + False Negatives (FN) + True
Positives (TP), which is also the classical non-geometric
interpretation of the FMS (e.g., Pardini et al., 2020). However,
in general, the computation of the GFMS in non-regular

TABLE 3 | Summary of metrics. GMFS: Generalised Figure Merit of Space, GFAR: Generalised False Alarm Rate, GPPV: Generalised Positive Predictive Value, GPOD:
Generalised Probability of Detection, GCCM: Generalised Composite Categorical Metric, BS: Brier Score, NRMSE: Normalised Root Mean Square Error.

Metric Metrics type Metrics definition Optimal value Worst Value Comment

GFMS Categorical (3) or (5) 1 0 Gives FMS in the deterministic limit (4)
GFAR Categorical (8) or (10) 0 1 Gives FAR in the deterministic limit (9)
GPPV Categorical (13) or (14) 1 0 Gives PPV in the deterministic limit (15)
GPOD Categorical (18) or (20) 1 0 Gives POD in the deterministic limit (19)
GCCM Categorical (22) 1 0
BS Categorical (24) or (25) 0 1 Only for probabilistic forecasts
NRMSE Quantitative (27) 0 ∞ Only for deterministic forecasts
Histogram Rank Flat — Only for probabilistic forecasts
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coordinate systems (5) takes into account a cell-dependent weight
proportional to the cell volume (area) through the grid mapping
factors Hj.

3.1.2 Generalised False Alarm Rate
The Generalised False Alarm Rate (GFAR) is defined as:

GFAR t( ) � ∫Ω 1 − δo( )δmPmdΩ∫Ω 1 − δo( )δmPm + δoδmPoPm[ ]dΩ (7)

which, for the case of single set of observations (Po � δo),
reduces to:

GFAR t( ) � ∫Ω 1 − δo( )δmPmdΩ∫Ω 1 − δo( )δmPm + δoδmPm[ ]dΩ (8)

In the deterministic forecast limit (Pm � δm), the definition of
the GFAR further simplifies to:

GFAR t( ) � ∫Ω 1 − δo( )δmdΩ∫ΩδmdΩ
� Ωm − Ωo ∩ Ωm

Ωm
� 1 − Ωo ∩ Ωm

Ωm

� FAR t( )
(9)

which is the classical definition of the False Alarm Rate (FAR)
(e.g., Kioutsioukis et al., 2016). In the geometric interpretation,
the GFAR can be viewed as the fraction ofΩm with false positives
but generalised to probabilistic contours, and it ranges from 0
(optimal) to 1 (worst). Again, the continuous integrals in Eq. 8
are computed in practice over the model grid as:

GFAR t( ) � ∑jHj 1 − δoj( )δmjPmj∑jHj 1 − δoj( )δmjPmj +∑jHjδojδmjPmj

(10)

which, in the deterministic limit and for a regular grid (Hj � 1),
further simplifies to:

FAR t( ) � ∑j 1 − δoj( )δmj∑j 1 − δoj( )δmj + ∑jδojδmj

� FP
FP + TP

(11)

and therefore coincides, in a non-geometric interpretation, with
the number of False Positives (FP) divided by the number of False
Positives (FP) + True Positives (TP).

3.1.3 Generalised Positive Predictive Value
The Generalised Positive Predictive Value (GPPV) is defined as
the complement of the GFAR:

GPPV t( ) � 1 − GFAR t( ) � ∫ΩδoδmPoPmdΩ∫Ω 1 − δo( )δmPm + δoδmPoPm[ ]dΩ
(12)

Analogously, for the single-observation case (Po � δo):

GPPV t( ) � ∫ΩδoδmPmdΩ∫Ω 1 − δo( )δmPm + δoδmPm[ ]dΩ (13)

or

GPPV t( ) � ∑jHjδojδmjPmj∑jHj 1 − δoj( )δmjPmj +∑jHjδojδmjPmj

(14)

In the deterministic limit Eq. 13 yields to the classical Positive
Predictive Value (PPV), also known as the model precision
(Pardini et al., 2020):

GPPV t( ) � ∫ΩδoδmdΩ∫ΩδmdΩ
� Ωo ∩ Ωm

Ωm
� PPV t( ) (15)

The GPPV ranges from 0 (worst) to 1 (optimal) and
geometrically can be interpreted as the fraction of Ωm with
true positives (model hits) but for probabilistic contours.
Again, in a regular Cartesian grid the discrete version of Eq.
15 coincides with the number of True Positives (TP) divided by
the number of False Positives (FP) + True Positives (TP):

PPV t( ) � ∑jδojδmj∑j 1 − δoj( )δmj + ∑jδojδmj

� TP
FP + TP

(16)

3.1.4 Generalised Probability of Detection
The Generalised Probability of Detection (GPOD) is defined as:

GPOD t( ) � ∫ΩδoδmPoPmdΩ∫Ω 1 − δm( )δoPo + δoδmPoPm[ ]dΩ (17)

which, for the single-observation case (Po � δo), reduces to:

GPOD t( ) � ∫ΩδoδmPmdΩ∫Ω 1 − δm( )δo + δoδmPm[ ]dΩ (18)

As with the other metrics, in the deterministic limit (Pm � δm)
the GPOD simplifies to:

GPOD t( ) � ∫ΩδoδmdΩ∫ΩδodΩ
� Ωo ∩ Ωm

Ωo
� POD t( ) (19)

and coincides with the Probability of Detection (POD), also
known as the model sensitivity (Pardini et al., 2020). The
GPOD ranges from 0 (worst) to 1 (optimal) and,
geometrically, is interpreted as the fraction of Ωo with true
positives. Again, in the discrete space (18) yields to:

GPOD t( ) � ∑jHjδojδmjPmj∑jHj 1 − δmj( )δoj +∑jHjδojδmjPmj

(20)

that in a regular grid and deterministic limit coincides with the
number of True Positives (TP) divided by the number of False
Negatives (FN) + True Positives (TP):

POD t( ) � ∑jδojδmj∑j 1 − δmj( )δoj + ∑jδojδmj

� TP
FN + TP

(21)

3.1.5 Generalised Composite Categorical Metric
It can be anticipated that some generalised categorical metrics can
vary oppositely when comparing single-run and ensemble-based
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simulations. For example, one may expect that a large ensemble
spread yields to a larger GPOD but, simultaneously, also to larger
GFAR. In order to see how different metrics counterbalance we
introduce the Generalised Composite Categorical Metric
(GCCM) as:

GCCM � GFMS + GPPV + GPOD
3

� GFMS + 1 − GFAR( ) + GPOD
3

(22)

where the factor 3 is introduced to normalise GCCM in the
range 0 (worst) to 1 (optimal). This multi-composite definition
is analogous to what is done for the SAL, defined as the sum of
Structure, Amplitude and Location (e.g., Marti and Folch,
2018).

3.1.6 Brier Score
The Brier Score (BS) is defined as:

BS � ∫Ωo
Pm − Po( )2dΩ
∫Ωo

dΩ
(23)

which, for the single-observation case, reduces to:

BS � ∫Ωo
Pm − δo( )2dΩ
∫Ωo

dΩ
(24)

Note that the above integrals are constrained to the subdomain
Ωo where observations exist. The Brier score is the averaged
squared error of a probabilistic forecast and ranges from 0
(optimal) to 1 (worst). In the discrete space, Eq. 24 is
computed as:

BS � ∑jHjδoj Pmj − 1( )2∑jHjδoj
(25)

which, in a regular Cartesian grid, reduces to the more standard
definition of the Brier score (Brier, 1950):

BS � 1
no

∑no
j�1

Pmj − 1( )2 (26)

where no is the total number of observation points.

3.2 Quantitative Scores
As a quantitative metric for deterministic forecasts we
consider the Normalised Root Mean Square Error
(NRMSE), defined as:

NRMSE �
������������
1
no
∑ Mi − Oi( )2

√
Omax − Omin

(27)

where Oi are the no observation values, Mi is the model value at
the ith observation point, andOmax andOmin are, respectively, the
maximum and minimum of the observations (at the considered
time step). Note that, as opposed to the previous categorical
metrics, this quantitative score is valid only for deterministic
forecasts (single-run or ensemble-based).

3.3 Ensemble Rank Metrics
The observations rank histogram or Talagrand diagram
(Talagrand et al., 1997) is commonly used a posteriori to
measure the consistency of an ensemble forecast and to
assess whether observations are statistically indistinguishable
from the ensemble members. The histogram can be used to
recalibrate ensemble forecasts and it is constructed as follows.
For each observation (grid point and time), the n ensemble
members are ranked from lowest to highest using the variable of
interest (column mass, deposit thickness, etc.) and the rank of
the observation with respect to the forecast is identified and
added to the corresponding bin (points with zero observation
values are not counted). Flat histograms indicate a consistent
forecast, with an observed probability distribution well
represented by the ensemble. Asymmetric histograms
indicate positive/negative forecast bias, as most observations
often rank below/above the extremes respectively. Finally,
dome-shaped/U-shaped histograms indicate over/under
forecast dispersion and reflect too large/small ensemble
spread respectively. Other common metrics to evaluate
ensembles, e.g., the spread-skill relationship (e.g., Scherrer
et al., 2004), are not considered at this stage but will be
incorporated in future code versions.

4 APPLICATION CASES

4.1 The July 2018 Ambae SO2 Cloud
In April and July 2018 the Ambae volcano (Vanuatu archipelago)
produced two paroxysm eruptions that injected large amounts of
SO2 reaching the tropopause (Moussallam et al., 2019). According
to Himawari-8 satellite observations, the July 26, 2018 phase
started before 12 UTC (23:00 LT) and lasted for about 4 h. Kloss
et al. (2020) estimated an atmospheric SO2 injection height of
either 18 or 14 km a.s.l. by co-locating ERA5 temperature profiles
and Brightness Temperature observations. To generate our SO2

validation dataset we apply the 3-band interpolation procedure
proposed by Prata et al. (2004) to measurements made by the
Advanced Himawari Imager (AHI) aboard Himawari-8. Details
of the method can be found in Appendix B of Prata et al. (2021).
To estimate the total mass we only considered pixels containing
more than 20 DU within a spatial domain from 160–200°E to
5–25°S. We also applied a Gaussian filter to generate smoothed
contours around the SO2 clouds to filter out pixels greater than 20
DU that were far from source (i.e., false detections). Our results
show that, during our satellite analysis period (from 26 July at 09:
00 UTC to 31 July at 09:00 UTC), maximum total mass of
323005E;86_90 kt was injected into the upper atmosphere,
where 86 and 90 kt are asymmetric errors around the best
estimate (323 kt). The first significant injection of SO2

occurred at around 10:00 UTC on 26 July and reached its
maximum (253 kt) at 23:00 UTC. A second eruption occurred
at around on 27 July at 01:00 UTC, and added a further 70 kt of
SO2. These SO2 mass estimates are in broad agreement with
independent TROPOMI SO2 standard product mass retrievals
(360 ± 40 kt), that assume a 15 km high SO2 layer with 1 km
thickness (Malinina et al., 2020).
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Based on the observations available during or shortly after the
eruption, a single-run FALL3D-8.1 simulation was configured
considering one SO2 (aerosol) bin and an emission starting on
26 July at 10:00 UTC (21:00 LT) lasting for 4 h, assuming a top-hat
plume vertical profile with the top at 16 km a.s.l. and a total emitted
mass of 290 kt (emission rate 2 × 104 kg/s). This reference run
represents a typical operational procedure during or shortly after
an eruption, whenmodel inputs are set with the uncertain available
information. From this “best-guess” central member, an ensemble
with 64members was defined by perturbing the eruption start time
(perturbation range of ±1 h), the eruption duration (±1 h), the
cloud injection height H (±2 km), the thickness T of the top-hat
emission profile (±2 km), the eruption rate (±30%), and the driving
ERA-5 wind field as shown in Table 4. For both single-run and
ensemble-based forecasts, the model grid resolution is 0.05o in the
horizontal and 250 m in the vertical, with the top of the
computational domain placed at 22 km a.s.l.

Model runs generate hourly outputs concurrent with the AHI
cloud mass retrievals over the forecast period. Figure 1 compares
AHI SO2 column mass retrievals with different deterministic
forecast outputs, namely the single-run, the ensemble mean,
and the ensemble median at one particular instant (July 28,
2018 at 00:00 UTC). The ensemble mean and median produce
a more diffused cloud, partly due to wind shear effects. Time series
of quantitative scores, e.g., using the NRMSE (Eq. 27), are
automatically generated by the FALL3D-8.1 model task PosVal.
Figure 2 shows time series of NRMSE for different deterministic
forecast options (single run, ensemble mean, and ensemble
median). As observed, this metric follows a similar trend in all
cases but the gain from the ensemble-based approaches is very
clear: the deterministic ensemble-based options reduce the forecast
NRMSE by a factor between two and three in most time instants.
For comparative purposes, Figure 2 also shows what happens if the
data insertion mechanism is used to initialise the model runs
instead of the source option. Data insertion consists of initialising a
model run with an effective virtual source inserted away from the
source, and FALL3D admits this initialisation option from column
load satellite retrievals (Prata et al., 2021). This represents a case

with better constrained input data (initial conditions) and, as
expected, the data insertion option yields lower values of the
NRMSE and shows little differences among the single-run and
ensemble-based approaches.

As discussed in Section 2.2, probabilistic outputs can be
generated from a given condition by counting the fraction of
ensemble members that exceed a threshold value. For example,
Figure 3 shows 20 Dobson Units (DU) contours of SO2 column
mass for deterministic and probabilistic forecasts, where the value
of 20 is assumed as representative of the SO2 detection threshold
in the AHI retrievals. These contours can be used for forecast
validation using generalized categorical metrics that allow, on one
side, to quantify the gain in the ensemble-based cases with respect
to the reference single-run and, on the other side, to compare
objectively the different ensemble-based approaches. To these
purposes, Figure 4 plots the time series of different generalised
categorical metrics, GFMS (Eq. 5), GPOD (Eq. 20), and GCCM
(Eq. 22) together with the BS (Eq. 25), the latter for the
probabilistic case only. As expected, the ensemble mean
outperforms the reference run in all the metrics, with
substantial gain in GFMS and GPOD, yielding to better
generalised composite metric GCCM. This is not true for the
ensemble median, which presents similar forecast skills than
those of the single run. On the other hand, the probabilistic
approach behaves similarly to the ensemble mean in terms of
GCCM because the larger false alarm rate is counterbalanced by a
higher probability of detection. No conclusion can be extracted
from this example on whether the probabilistic forecast option
outperforms the deterministic ensemble mean or not. Finally, the
observations rank histogram over the considered period (see
Figure 5A) shows an acceptably flat histogram (reflecting
good ensemble spread) although with a slight bias towards
members having larger SO2 mass. This skewing can be due to
errors in cloud location, errors in amplitude, or to a combination
of both. However, an inspection to the time series of AHI total
retrieved mass (Figure 5B) suggests that the ensemble spread in
cloud mass is adequate, indicating co-location as the reason for
skewing. In fact, we performed successive ensemble redefinition

TABLE 4 | Model setup for the July 26, 2018 single-run and ensemble-based (64 members) Ambae SO2 simulations.

Single-run (1 member) Ensemble-run (64 members)

Source term (plume) Start time 26 July 10:00 UCT perturbation range ±1 h
Duration 4 h perturbation range ±1 h
Plume height H 16 km a.s.l perturbation range ±2 km
Top-hat thickness T 1.5 km perturbation range ±1 km
SO2 emission rate _M

(1)
2 × 104 kg/s perturbation range ±30%

Source term (insertion) Insertion time 26 July 16:00 UCT same
Cloud height H 16 km a.s.l perturbation range ±1 km
Cloud thickness T 1.5 km perturbation range ±0.5 km

Model grid Horizontal resolution 0.05o same
Vertical resolution 250 m same
Domain top 22 km same
Grid size 600 × 400 × 84 cells same

Meteorology ERA5 (137 model levels) winds (2) perturbed by ± 20%

(1) For the reference member, the total SO2 emitted mass is 290 kt. For the other members it varies due to perturbations in _M and duration.
(2) Horizontal wind components are perturbed globally (same perturbation in all grid cells).
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runs (increasing mass in the reference run) and observed that the
ensemble histogram flattened but, at the same time, this did not
imply better values of the generalized metrics.

4.2 The April 2015 Calbuco Ash Cloud and
Deposit
The Calbuco volcano (Chile) reawakened in 2015 with two major
eruptive pulses on 22 April at 21:08 UTC and 23 April at about 04:
00 UTC respectively, followed by a third minor event on the
following day (e.g., Reckziegel et al., 2016). According to C-band
dual-polarisation radar observations, the maximum ash plume
heights exceeded 20 km above sea level in the surrounding area of
the Calbuco volcano (Vidal et al., 2017). Subsequent plume
modelling and field studies on the tephra fallout deposits

indicated that the sub-Plinian phases, with similar column
heights exceeding 15 km a.s.l. blanked the region with a total
erupted volume ranging between 0.28 and 0.58 km3 and a deposit
mass in the range 2–7 × 1011 kg depending on different
estimations (Romero et al., 2016; Van Eaton et al., 2016). On
the other hand, ash cloud mass estimations from Moderate
Resolution Imaging Spectroradiometer (MODIS) and Visible
Infrared Imaging Radiometer Suite (VIIRS) indicated 1–3 ×
109 kg of distal airborne material (e.g., Marzano et al., 2018),
suggesting < 1% of remaining fine ash in the distal cloud. The
comparison with field-based reconstructed particle grain size
distributions, entailing a much larger fraction of mass in the
fine tail (Reckziegel et al., 2016), point at the occurrence of
substantial fine ash aggregation, as corroborated also by in-situ
deposit observations. The Calbuco eruptions also entailed

FIGURE 1 | Comparison between: (A) Ambae AHI SO2 column mass retrievals, (B) single-run (unperturbed central member), (C) ensemble mean deterministic
forecast, (D) ensemble median deterministic forecast. All snapshots correspond to July 28, 2018 at 00:00 UTC. Contours in Dobson Units (DU). Red circle shows the
location of Ambae volcano.
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substantial co-located emissions of SO2 at 15 km a. v.l. in the
range of 300 kt for the two phases according to GOME-2 satellite
images (Pardini et al., 2017).

To show how ensemble ash simulations can be validated at
high temporal resolution with qualitative ash cloud observations,
we use satellite data collected from the SEVIRI instrument aboard
Meteosat-10. Following the ash detection method presented in
Appendix A of Prata et al. (2021), we generated binary (ash/no
ash) fields at 1 h time-steps from 22 April at 23:00 UTC to 26
April at 23:00 UTCwithin a domain from 0–75°W to 15–55°S.We
did not consider quantitative retrievals for this eruption as
Calbuco is located outside of the SEVIRI field of view, which
meant that many of the pixels detected as ash at the beginning of
the eruption were associated with high satellite zenith angles
(> 75°) where retrievals can be unreliable. On the other hand,
thickness measurements of fallout deposits from the 22–23 April
2015 eruption of Calbuco volcano were reported at 163 sites by Van
Eaton et al. (2016) within a radius of 500 km. Romero et al. (2016)
used thickness measurements to reconstruct the fallout deposit
distribution by hand-drawing the corresponding isopach maps. A
remarkable feature of the distal deposit is the presence of a secondary
thickness maximum in the region around Junín de los Andes and
Piedra del Aguila (Argentina, around 300 km downwind), indicating
the occurrence of a complex plume dynamics involved during the
eruption. Here, two independent deposit datasets are used to validate
the Calbuco simulations: i) the deposit contours (isopachs)
generated by Romero et al. (2016) for 0.1, 0.5, 1 and 2mm (Van
Eaton, personal communication) and, ii) the deposit point thickness
at 159 sites reported byVan Eaton et al. (2016). Note that ambiguous
data from 4 sites were removed from the original dataset.

For the Calbuco case, the ensemble reference run was
configured with 20 tephra bins ranging in size from Φ � − 2
(4 mm) to Φ � 7 (8 μm) and including one bin of aggregates. The
plume source term consists of 2 phases lasting 1.5 and 6 h
respectively, with a Suzuki vertical profile (A � 5, λ � 3)

reaching 16 km a.s.l. and a total emitted mass of 6 × 1011 kg.
The 64-member ensemble was built by perturbing the most
relevant source, granulometry and wind parameters as shown
in Table 5. As for the previous Ambae case, the model grid
resolution is 0.05o in the horizontal and 250 m in the vertical, with
the top of the computational domain placed at 20 km a.s.l. An
ensemble with 64members was defined by perturbing the starting
time of the phases (±1 h), its duration (±1 h), the plume height H
(±2 km), the dimensionless Suzuki parameters A (±3) and λ (±2),
the mean of the particle size distribution Φm (±1), and the size
(±100 μm) and density (±100 kg/m3) of the aggregates.

Figure 6 compares single-run and ensemble-based
deterministic runs at 159 deposit observation points that span
almost 4 orders of magnitude in tephra thickness. On a point-by-
point basis, the ensemble mean run reduces the differences with
observations in 107 out of 159 points (67%), whereas the single-
run reference still gives a closer fit in 52 points (33%). In contrast,
the ensemble median can only improve on 64 points (40%),
outperforming the reference run values only in the proximal
(Figure 6B). In terms of overall NRMSE, the ensemble mean
gives 0.11 as opposed to a 0.13 for the other two deterministic
options, i.e. a 16% of overall improvement (Table 6).

In addition to the deposit points, the deposit isopach contours
provide a second dataset for deposit validation based on
generalised categorical metrics (see Table 2). Figure 7 shows
the different deterministic forecast contours compared with the
0.1, 0.5, 1, and 2 mm isopachs reported by Romero et al. (2016),
characteristic of intermediate (few hundreds of km) to more
proximal (up to around 100 km) distances to source. On the other
hand, Figure 8 shows the probabilistic counterpart, with the
ensemble probability contours giving the probability to exceed
each corresponding isopach value. The resulting values for
generalised metrics and Brier score are reported in Table 7,
which includes also an additional more proximal contour of
4 mm (not shown in the previous Figures). For deterministic

FIGURE 2 | (A) Time series of Normalised Root Mean Square Error (NRMSE) for the Ambae single-run (black line), ensemble mean (red line), and ensemble median
(blue line). The vertical dashed line marks the instant of the snapshot shown in Figure 1. Symbols indicate the hourly AHI retrievals. (B) Same but with the source term
given by a data insertion mechanism. In this case, the ensemble is defined by perturbing only the height and thickness of the injected cloud as indicated in Table 4. Plots
on the same vertical scale.
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FIGURE 3 | Contours of 20 DU SO2 column mass for deterministic (left) and probabilistic (right) Ambae forecasts at three different instants; 26 July at 18:00UTC
(top), 27 July at 12:00 UTC (middle) and 28 July at 00:00UTC (bottom). In the probabilistic approach, contours give the probability (in%) to exceed 20 DU. The outer
red contour indicates the 1.56% (1/64) probability. The grey shaded area shows the corresponding 20 DU from AHI retrievals. Red circle shows the location of Ambae
volcano.
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FIGURE 4 | Time series of generalised categorical metrics for deterministic (single run and ensemble-based) and probabilistic Ambae forecasts using the 20 DU
SO2 column mass contours. Plots show GFMS (top left), GPOD (top right), GCCM (bottom left) and BS (bottom right). Symbols indicate the instants of the AHI
retrievals. The three vertical dashed lines mark the instants of the snapshots shown in Figure 3. Note that for the BS only the probabilistic option applies.

FIGURE 5 | (A)Observations rank histogram (Talagrand diagram) for the 64-member Ambae ensemble run. The horizontal dashed line at 1/64 � 1.56% indicates a
perfectly consistent forecast, with all its members being equally represented against observations. (B) time series of SO2 AHI retrieved cloud mass. The solid horizontal
line at 290 kt shows the reference run and the dashed lines indicate the ±30% ensemble spread in emission rate.
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approaches, the ensemble mean clearly outperforms the reference
run and the ensemble median (with the only exception of GFAR)
across all distances. However, best overall results are obtained by
probabilistic forecasts, particularly forGFMS andGPOD. In terms of
the composite metric (GCCM), the ensemble mean is slightly better
in the distal and the probabilistic in the proximal but, again, it is not
clear which of these two options performs better.

Finally, the Calbuco ash cloud can also be validated with
satellite imagery. Given the limitations of the dataset (as

TABLE 5 | Model setup for the April 22, 2015 single-run and ensemble-based (64 members) Calbuco tephra simulations.

Single-run (1 member) Ensemble-run (64 members)

Source term Phase 1 start time 22 April 21:00 UCT perturbation range ±1 h
Phase 1 duration 1.5 h perturbation range ±1 h
Phase 2 start time 23 April 04:00 UCT perturbation range ±1 h
Phase 2 duration 6.0 h perturbation range ±1 h
column height H 16 km a.s.l. (both phases) perturbation range ±2 km
Suzuki parameter A 5 perturbation range ±3
Suzuki parameter λ 3 perturbation range ±2
eruption rate _M estimated from height (1) perturbed through H
erupted mass 6 × 1011kg (2 phases) perturbed through _M and duration

Granulometry Gaussian Φm Φm � 4 perturbation range ±1
Gaussian σΦ σΦ � 1.5 same
upper bin size Φ � − 2 (4 mm) same
lower bin size Φ � 7 (8 μm) same
bin interval 0.5Φ same

Aggregates size 300 μm perturbation range ±100 μm
density 400 kg/m3 perturbation range ±100 kg/m3

fraction 25% same

Model grid horizontal resolution 0.05o same
vertical resolution 250 m same
domain top 20 km same
Meteorological data ERA5 (137 model levels) winds (2) perturbed by ± 20%

(1) Parameterisation as in Degruyter and Bonadonna (2012).
(2) Horizontal wind components are perturbed globally (same perturbation in all grid cells).

FIGURE 6 | Validation of Calbuco runs in 159 deposit points. Deposit thicknesses are converted to deposit loads (kg/m2) assuming an averaged density of
1,000 kg/m3. Left: single-run (black points) versus ensemble mean (red points). Right: single-run (black points) versus ensemble median (blue points). For reference, the
three dashed lines show the perfect fit and the 10 model over and under-estimation bounds. The resulting global values of the NRMSE are reported in Table 6.

TABLE 6 | Validation of the April 22, 2015 Calbuco simulations with deposit

thickness at scattered deposit points. Percentagemeans the fraction of points

that reduce differences with observations with respect to the reference single-run.

Best values highlighted in green.

Metric Deterministic Deterministic Deterministic

single-run ensemble-mean ensemble-median

NRMSE 0.13 0.11 0.13
Percentage — 67% 40%
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explained above) we do not consider ash retrievals as reliable and
use the SEVIRI ash detection option instead. Figures 9, 10 show,
respectively, snapshots of deterministic and probabilistic cloud
mass contours (0.1 g/m2 is assumed as a detection threshold) and
time series of generalised categorical metrics. Model to
observations miss-matches are more evident than for the
Ambae case, partly due to the aforementioned reasons.
However, similar conclusions can be extracted about the
improvements in the ensemble mean and probabilistic cases.

Again, the ensemble median (blue curves) worsens the single-run
forecast skills.

5 SUMMARY AND DISCUSSION

The last version release (v8.1) of FALL3D allows configuring,
running, post-processing and eventually validating ensemble-
based forecasts in a single embarrassingly parallel workflow.

FIGURE 7 | Validation of Calbuco deterministic forecasts using deposit isopach contours of 0.1, 0.5, 1, and 2 mm. Model results for single-run (black line),
ensemble mean (red line) and ensemble median (blue line). Grey-filled areas show the corresponding isopachs estimated by Romero et al. (2016) from
extrapolation of deposit point measurements. Red circle shows the location of Calbuco volcano. The resulting values of generalised categorical metrics are
reported in Table 7.
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The ensemble runs, built from perturbing the most uncertain
input parameters of a reference ensemble member, can furnish an
array of deterministic forecasts with an associated uncertainty
and/or probabilistic products based on the occurrence (or not) of
certain exeedance or threshold conditions. Different types of
metrics can be considered in FALL3D-8.1 for model validation
(see Table 2), including novel categorical metrics resulting from
the generalisation to probabilistic scenarios of classic geometric-
based indicators (FMS, POD, FAR, etc). The skills of the

ensemble-based modelling approaches have been compared
against single-runs (and among them) using different types of
observations. On one hand, satellite retrievals of cloud mass have
been considered for validation of the July 2018 Ambae SO2 clouds
(Table 4). On the other, tephra deposit thickness observations at
159 locations and resulting deposit isopach contours have been
used, together with satellite ash cloud detection, i.e. yes/no ash
flagged pixels, for the April 2015 Calbuco eruption (Table 5). An
ensemble of 64 members with a model spatial resolution of 0.05o

FIGURE 8 | Validation of Calbuco probabilistic forecasts with deposit isopach contours. Color contours give the model probability (in %) for deposit thickness to
exceed 0.1, 0.5, 1, and 2 mm. Grey-filled areas show the corresponding isopachs estimated by Romero et al. (2016) from extrapolation of deposit point measurements.
The outer red contour indicates the 1.56% (1/64) probability. Red circle shows the location of Calbuco volcano. The resulting values of generalised categorical metrics
and Brier Score (BS) are reported in Table 7.
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was considered in both cases. Main findings from these two
applications can be summarised as follows:

• For ensemble-based deterministic forecasts, the ensemble
mean gives the overall best scores for all typologies of
datasets considered. However, the probabilistic approach
also gives very similar results in terms of generalised
categorical metrics. No conclusion can be extracted about
which is “the best” option among these two but, clearly, both
outperform the single-run reference run. Note that, in
general, a gain in the ensemble-based approaches can be
expected when some single-run inputs are uncertain.
However, a consistent outperform cannot be guaranteed
a priori as a well-chosen single-value run set with accurate
“true” values is expected to outperform the ensemble mean.

• For the Ambae case, ensemble-based deterministic approaches
improved the single-run time series of the quantitativeNRMSE
metric by a factor of 2-3 in most time instants (Figure 2). In
terms of categorical metrics based on the 20 DU column mass
contours, the ensemble-mean and the probabilistic approach
also outperform substantially the single-run forecasts
(Figure 4). This is not true for the ensemble median, which
worsens all metrics, and most notably the probability of
detection (GPOD).

• For the Calbuco case, the ensemble mean improves the
averaged NRMSE of the deposit points by a 16%, with

better skills in 67% of the single points (Figure 6 and
Table 6). Considering the validation with deposit
isopach contours from Romero et al. (2016) (Table 7),
the ensemble mean also outperforms the reference run
and the ensemble median (with the only exception of
GFAR) across all range of distances. However, best
overall results are obtained by probabilistic forecasts,
particularly for the GFMS. Finally, validation of the
Calbuco ash cloud with satellite detection data
(Figure 7) compared against 0.1 g/m2 column mass
model contours yields similar conclusions to the
Ambae case.

A relevant aspect in operational forecast contexts is to consider
the computational overhead of ensemble-based runs and, linked
to this, its feasibility in the context of urgent (super)-computing.
The simulations shown here were run at the Skylake-Irene
partition of the Joliot-Curie supercomputer using only 24
processors per ensemble member (i.e., 1536 processors for the
whole ensemble run in this particular machine). The total
computing times were of 460 s (7.6 min) and 2,650 s (44 min)
for the Ambae (1 bin, 48 h forecast window) and the Calbuco (20
bins, 72 h forecast window) cases respectively. In terms of time-
to-solution and due to the embarrassingly parallel workflow, the
ensemble runs only add a little penalty if computational capacity
is provided. In fact, this is actually a good example of capacity

TABLE 7 | Validation of the April 22, 2015 Calbuco simulations with deposit isopach contours from Romero et al (2016). Five deposit isopach values of 0.1, 0.5, 1, 2, and
4 mm are considered. Best values for each metric and contour are highlighted in green. The Brier Score (BS) applies only to the probabilistic approach.

Metric Contour
thickness

(mm)

Deterministic
single-run

Deterministic
ensemble-

mean

Deterministic
ensemble-
median

Probabilistic

GFMS 0.1 0.41 0.47 0.47 0.40
0.5 0.58 0.70 0.54 0.67
1 0.56 0.60 0.45 0.62
2 0.48 0.50 0.40 0.56
4 0.26 0.24 0.21 0.40

GFAR 0.1 0.49 0.49 0.38 0.59
0.5 0.18 0.07 0.02 0.30
1 0.23 0.18 0.12 0.35
2 0.34 0.36 0.33 0.43
4 0.57 0.64 0.60 0.58

GPOD 0.1 0.69 0.86 0.67 0.96
0.5 0.67 0.72 0.55 0.96
1 0.68 0.68 0.48 0.95
2 0.64 0.70 0.51 0.98
4 0.41 0.41 0.32 0.96

GCCM 0.1 0.53 0.61 0.58 0.59
0.5 0.69 0.78 0.69 0.77
1 0.67 0.70 0.60 0.74
2 0.59 0.61 0.52 0.70
4 0.36 0.33 0.31 0.59

BS 0.1 — — — 0.46
0.5 — — — 0.30
1 — — — 0.30
2 — — — 0.33
4 — — — 0.46
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computing, in which High Performance Computing (HPC) is
needed to solve problems with uncertain inputs (entailing
multiple model realisations) and constrains in computing
time. On the other hand, FALL3D has been proved to have
strong scalability (above 90% of parallel efficiency) up to

several thousands of processors. Given that each ensemble
member was run on only half computing node, times-to-
solution could easily be lowered by at least one order of
magnitude if enough computational capability is provided.
Finally, it is worth mentioning that further study is needed on

FIGURE 9 | Validation of Calbuco ash cloud with the satellite detection (SEVIRI ash flag) observation dataset. Model column mass contours of 0.1 g/m2 for
deterministic (left) and probabilistic (right) forecasts at three different instants; 23 April at 18:00UTC (top), 24 April at 06:00 UTC (middle) and 24 April at 18:00UTC
(bottom). In the probabilistic plots, the outer red contour indicates the 1.56% (1/64) probability. The shaded areas show the contours encompassing SEVIRI ash flagged
pixels. Red circle shows the location of Calbuco volcano.
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some aspects of the ensemble-based forecasts not explicitly
addressed in this paper. Future work needs to consider:

• Optimal a priori configuration of the ensemble, including
the number of members.

• Ensemble-based deterministic forecasts have been considered
only for ensemble mean, ensemble median, and other
percentiles. Future works will show how, in practice, it is
possible to determine the best linear estimator compatible
with the observational data. This optimal state should
outperform the deterministic forecast presented here, which
pertains to specific cases of linear combinations (single member
or ensemble mean) or showed a poor performance when
compared to linear estimators (ensemble median).

• Efforts to implement ensemble capabilities on FALL3D not
only allow the improvement of forecast quality and to
quantify model uncertainties, but also set the foundations
for the incorporation of data assimilation techniques in the
next release of FALL3D (v8.2). The use of ensemble Kalman
filter methods, such as the Local Ensemble Transform
Kalman filter (LETKF), will provide a further
improvements in the quality of volcanic aerosol forecasts.
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