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Regional humidity is important for terrestrial ecosystem development, while it differs from
region to region in inland Asia, knowledge of past moisture changes in the lower basin of
northern Xinjiang remains largely unclear. Based on a pollen record from Jili Lake, the
Artemisia/(Amaranthaceae + Ephedra) (Ar/(Am + E)) ratio, as an index of regional humidity,
has recorded four relatively dry phases: 1) 400 BCE to 1 CE, 2) the Roman Warm Period
(RWP; c. 1–400 CE), 3) the Medieval Warm Period (MWP; c. 850–1200 CE) and 4) the
CurrentWarm Period (CWP; since 1850 CE). In contrast, the Dark Age Cold Period (DACP;
c. 400–850 CE) and the Little Ice Age (LIA; c. 1200–1850 CE) were relatively wet. Lower
lake levels in a relatively humid climate background indicated by higher aquatic pollen
(Typha and Sparganium) after c. 1700 CE are likely the result of intensified irrigation for
agriculture in the catchment as documented in historical records. The pollen Ar/(Am + E)
ratio also recorded a millennial-scale wetting trend from 1 CE to 1550 CE which is
concomitant with a long-term cooling recorded in the Northern Hemisphere.

Keywords: moisture change, pollen records, the historical period, climate change, arid central asia

INTRODUCTION

During the Holocene, the “westerlies-dominated climatic regime” (WDCR) is characterized by
warm-dry and cold-wet phases in inland Asia on different timescales (Chen et al., 2016; Chen et al.,
2019). On millennial timescales, the moisture in the WDCR gradually increased, with the wettest
period occurring in the late Holocene, while in arid central Asia (ACA), the wettest phase occurred in
the mid-to late Holocene (Chen et al., 2016; Chen et al., 2019). At centennial timescales, the WDCR
was generally dry during the Medieval Warm Period (WMP) and relatively wet during the Little Ice
Age (LIA), but there were some exceptions in Xinjiang (Chen J. et al., 2015), an important part of the
WDCR. It has been suggested that the moisture balance has changed from warm-dry to warm-wet
over the last few decades (Shi et al., 2006; Wang et al., 2007). Paleoclimate records from the region
that span the late Holocene are mostly located at high altitudes (Huang et al., 2018; Lan et al., 2018;
Yang et al., 2019); the lack of paleoclimatic records from low altitude areas, where most people are
living, hampers understanding of regional climate change both in the past and into the future.

Recent global warming has resulted in the expansion of drylands around the world, and seriously
threatens freshwater resources (Huang et al., 2015; Fan et al., 2020). Many studies suggest a major
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impact of climate change on regional human activities, with
evidence that climate change plays an important role in the
abandonment of cities (e.g., Bhattacharya et al., 2015; An
et al., 2017; Yao Y.-F. et al., 2020; Jenny et al., 2020). In the
Xinjiang area, early cultivation of crops began around 3000 BCE
(Li Y., 2020), and an increase in population started at c. 2000 BCE.
There is evidence for a widespread prehistoric culture in Xinjiang
area, associated with a relatively wetter climate during the late
Holocene (An et al., 2019). However, abrupt climate and

environment changes might have led to the collapse of some
civilizations, such as Xiaohe Culture (Zhang et al., 2017) and
Loulan civilization (Fontana et al., 2019; Hao et al., 2019). A
diatom record from Bosten Lake indicated that changes in
hydro-climate was the main reason for the collapse of the
Loulan Kingdom (Fontana et al., 2019). The record of RIK37

index from Sayram Lake suggested that humid conditions
might have been conducive to the spread of the Mongol
Empire across the ACA area during 1206–1260 CE (Yao Y.

FIGURE 1 | Environmental setting of Jili Lake. (A) The study area; (B) Location of Jili Lake and other lake sites mentioned in this study: 1 Ulungur Lake; 2 Ebinur
Lake; 3 Sayram Lake; 4 Harnur Lake; 5 Bosten Lake; 6 Balikun Lake; 7 Sugan Lake; 8 Tian’E Lake; 9 Hurleg Lake; 10 Genggahai Lake; and 11 BYBS profile. The orange
line is the modern limit of the Summer Monsoon (Chen et al., 2008). (C) Google Earth image of Jili Lake and Ulungur Lake area, and (D) Monthly temperature and
precipitation from Fuhai meteorological station (elevation 500 m a.s.l.) for the years 1981–2010 CE.
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et al., 2020). Pollen records from Tian’E Lake in the Qilian
Mountains suggested that continuous droughts were an
important driving force of the abandonment of several
archaeological sites and ancient cities along the Silk Road
(Zhang J. et al., 2018). However, there are few humid
records from the Northern Xinjiang area that span the last
2,000 years, which can be used to understand the relationship
between human activities and climate change.

Lake sediments are an excellent archive of past climate
change (Birks et al., 2012), and pollen analysis from
lacustrine sediments can help to understand the regional
climatic changes through time (Bartlein et al., 1986; Wen
et al., 2010). Changes in the relative abundance of fossil
pollen preserved in lake sediment archives reflect changes in
vegetation in response to various driving force (e.g.,
precipitation, temperature, human impact), and pollen
assemblages from lakes with a larger catchment reflect
regional, not just local, changes in climate and vegetation
(Sugita, 1994; Nielsen and Sugita, 2005; Xu et al., 2016).
Here, we present the results of pollen analysis from Jili Lake
(174.0 km2) located in the northern Xinjiang area to infer
the history of climate and vegetation change over the last c.
2400 years. By combining these data with other evidence, for
example, charcoal and historical documents (e.g., regional
population and cultivation history), we explore the
relationship between environment and human activities in
this study area.

STUDY AREA

Jili lake (46°51′–47°00′ N, 87°20′–87°32′ E, 483 m a.s.l.) is a large
and shallow lake in the inland area of the Eurasian continent,
located in the Junggar Basin between the Tianshan Mountains
and the Altai Mountains (Figures 1A, B). The study area sits
within a mid-latitude temperate continental climate. As recorded
at the nearby Fuhai meteorological station (47°06′ N, 87°21′ E,
Figure 1C), the mean annual temperature in the region is 4.7°C
and the average annual precipitation is 131 mm (Figure 1D). Jili
Lake receives water mainly from the Ulungur River from the Altai
Mountains to the north, and it outflows to Ulungur Lake (Figures
1B,C). In 2015, the lake covered a surface area of c. 170 km2, and
had an average depth of c. 10 m (Wang and Dou, 1998; Liu et al.,
2018).

In recent decades the surface area of Jili Lake has expanded,
and its main water supply comes from the Ulungur river; the
water level in Jili Lake has been affected by dam construction and
intensified water exploitation (Li et al., 2015; Cheng et al., 2016).
Desert vegetation in the vicinity of Jili Lake comprises mostly
Amaranthaceae, but the northern part of the catchment mainly
has many shrub-coppice covered dunes. The Gobi Desert area lies
to the west, and a shrub-coppice dune chain to the south (Lang,
2020). In the Jili Lake area, Amaranthaceae and Artemisia
accounted for more than 60% of the surface pollen sum,
except for Ephedra, Tamarix, Jujube, Nitraria, Poaceae and
Allium (Yan and Xu, 1989). The aquatic plants mainly consist
of Phragmites, Myriophyllum spicatum and Potamogeton

pectinatus, which are distributed in shallow water areas along
the lake shore (Wang et al., 1981; Wang and Dou, 1998).

MATERIALS AND METHODS

Core Sampling and Age-Depth Model
In February 2018 a sediment core, 253 cm in length (JL18-02-A),
was collected from the southwestern area of Jili Lake using a
Piston corer. The core was frozen and transported to Lanzhou
University, sampled at a 1-cm intervals, and freeze-dried. The
lithology of the c. 120 cm of the core can be divided into three
intervals: 0–6 cm - cyan mud with loose sediments; 6–34 cm - the
color of sediments is brown; 34–123 cm - pale silty clay with
relatively compact sediments.

We focused on the upper 120 cm of the core because there
was a hiatus in the sediment below this depth based on 7
radiocarbon dates (Lang, 2020). For the age-depth model of
the upper 120 cm, three bulk organic samples from the core
were processed for accelerator mass spectrometry (AMS)
radiocarbon dating at the Beta Analytic Radiocarbon Dating
Laboratory in Miami, Florida, United States (Table 1) (Lang,
2020). The 14C specific activity values of the lake-water DIC
sample and the samples from the upper most layers of cores
largely approximate to the pMC (percent modern carbon)
values of the modern atmosphere (105.4 ± 1.0 pMC in 2007;
Fellner and Rechberger, 2009), indicating that the CO2 exchange
between the lake and atmosphere tends to be balanced,
reflecting that the “reservoir effect” of the lake water is low.
The age-depth model for Jili Lake (Figure 2) was calculated
using “Clam” version 2.2 (Blaauw, 2010) and the IntCal13
calibration curve (Reimer et al., 2013). The core depth-
chronology has a linear relationship and it provides a record
of sediment deposition over the last 2400 years.

Pollen and Charcoal Analyses
A total of 96 samples were taken from the core for pollen
analysis. Pollen grains were extracted from 1–3 g of dried
sample, and preparation used HCl (10%) and HF (40%) to
remove carbonates and silicates (Fægri and Iversen, 1989).
Samples were sieved through a 10-μm mesh to remove small
clay-sized particles, and clean samples were mounted in glycerin
on glass slides. Pollen grains and charcoal particles were
identified and counted using a Nikon ECLIPSE 80i optical
microscope at ×400 magnification. More than 500 pollen
grains and 300 charcoal particles were counted for each
sample, and charcoal particles were grouped by long axis
length: >100, 50–100, and <50 μm. To calculate pollen and
charcoal concentration, one Lycopodium tablet (27,637 grains)
was added to each sample prior to chemical pre-treatment
(Maher, 1981). The percentages of pollen were calculated
based on the sum of all counted terrestrial pollen grains, and
the aquatic pollen percentages were calculated based on the sum
of all counted pollen grains. The pollen diagrams were plotted
using Tilia software (Grimm, 2011), and the pollen zones were
divided by stratigraphically constrained cluster analysis using
CONISS (Grimm, 1987).
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Indicators of Climatic Humidity and Human
Activities
Based on the investigations of modern surface pollen in
northern Xinjiang, it has shown that Artemisia and
Amaranthaceae (old name is Chenopodiaceae) (APG, 1998),
are dominant species in desert-steppe and desert areas (Yu et al.,
1998; Luo et al., 2009; Li et al., 2017). A lot of modern pollen
investigations have shown that the Artemisia and
Chenopodiaceae ratio (A/C ratio) is a valid indicator/proxy
of humidity in desert and desert-steppe areas (e.g., El-
Moslimany, 1990; Sun et al., 1994; Huang et al., 2009; Zhao
et al., 2009; Li et al., 2010; Zhao et al., 2012; Zhang D. et al.,
2018). As Ephedra is also one of the main taxa in desert areas like
Amaranthaceae (Huang et al., 2009; Huang et al., 2018), here we
use the sum of Amaranthaceae and Ephedra (Am + E) to
indicate a relatively dry condition, and use the ratio of
Artemisia (Ar) and (Am + E) as a new indicator of climatic
humidity like A/C ratio.

The signal of regional human activity can be indicated by some
specific pollen types and charcoal abundance. For example,
Poaceae pollen grains among the 35–50 μm size range were

considered to be cereal-type Poaceae (mostly might be wheat
pollen), which can be used as an indicator of agricultural activity
(Li et al., 2008; Li et al., 2012). Charcoal is a particularly useful
proxy for recording the disturbance of vegetation by humans, in
which macro-charcoal (>100 μm) could indicate changes in local
fire occurrence in the past (Whitlock and Larsen, 2001; Li et al.,
2008).

RESULTS

A total of 62 pollen taxa and spore types were identified and
53477 pollen grains were counted, with an average of 557 pollen
grains per sample. The main herbaceous taxa were Artemisia,
Amaranthaceae, Poaceae and Asteraceae. Across the three zones
as identified by CONISS, the percentages of Artemisia and
Amaranthaceae exceeded 80% of the terrestrial pollen sum.
The arboreal taxa with lower percentages were mainly Betula
and Pinus. The percentage abundance of fern spores was very low,
and aquatic pollen types were mainly Sparganium and Typha.
The assemblage characteristics of each pollen zone are briefly
described as follows (Figure 3).

Zone Ⅰ (119–87cm, c. 380 BCE-400 CE)
The major pollen types included Asteraceae (0.2–3.6%, mean
2.3%), Ephedra (0.6–3.09%, mean 2%), Polygonaceae (0.2–3.6%,
mean 2.74%), Rosaceae (1.0–5.8%, mean 2.1%), and Typha
(1.0–2.8%, mean 1.60%). The sum of tree pollen types is c.
5.1% and including Pinus, Picea, Betula and Salix. The
abundance of Poaceae (0.3–2.5%, mean 1.4%) and Cyperaceae
(0–0.9%, mean 0.3%) was low, and the Ar/(Am + E) ratio
(0.2–0.7, mean 0.4) had the lowest value in the whole core
sequence. Overall, this zone had the lowest pollen
concentration (c. 18873 grains/g). The pollen assemblages in
this zone, can be further divided into two sub-zones. Sub-zone
Ⅰ-1 (119–106 cm, c. 380–70 BCE) can be readily distinguished
from sub-zone Ⅰ-2 (106–87 cm, c. 70 BCE-400 CE) by the
decreasing percentage of Poaceae pollen.

Zone Ⅱ (87–40cm, c. 400–1350 CE)
This zone was typified by an increase in Poaceae (0.5–13.2%,
mean 6.5%) and Cyperaceae (0.2–1.5%, mean 0.8%) at the
expense of Artemisia (mean 34%), Asteraceae (0.5–2.6%, mean
1.4%), and Rosaceae (0–2.4%, mean 0.5%) whose percentages
decreased. This zone also sees the first appearance of cereal-type
Poaceae (0–0.6%, mean 0.3%).

TABLE 1 | Results of AMC 14C dating of core JL18-02-A.

Samples No. Beta No. Depth (cm) Material δ13C (‰) 14C age (yr BP) Calendar age
(cal. yr BP, 2σ)

JL18-02A1-001 503015 1.24 BOM −27.7 101.63 ± 0.38 pMC -
JL18-02A1-048 503016 59.43 BOM −24.2 1050 ± 30 BP 1050–924
JL18-02A1-096 515954 118.86 BOM −25.3 2350 ± 30 BP 2464–2324
JL18-07 (20 cm) 509850 — DIC — 93.5 ± 0.30 pMC -

Note: BOM, Bulk organic matter; DIC, Dissolved inorganic carbon.

FIGURE 2 | Clam age-depth model for core JL18-02-A from Jili Lake.
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This zone can be further divided into two sub-zones. Sub-zone
Ⅱ-2 (52–40 cm, c. 1160–1350 CE) can be readily distinguished
from Sub-zone Ⅱ-1 (86–52 cm, c. 400–1160 CE) by the following
features: further increases in Artemisia (32.6–41.7%, mean
36.8%), Poaceae (5.6–13.2%, mean 9%) percentages and Ar/
(Am + E) ratio (0.6–1.1, mean 0.8) and the presence of cereal-
type Poaceae/Poaceae, Amaranthaceae (37.3–52.3%, mean 43%),
and a decrease in pollen concentration (now with a mean
82166 grains/g).

Zone Ⅲ (40–0 cm, c. 1350 CE to Present)
There were no obvious changes in the percentage of Poaceae
pollen (3.1–9.8%, mean 6.7%) but there was a higher abundance
of Cyperaceae pollen (0.4–2.2%, mean 1.1%) compared to the
previous zone. In Zone Ⅲ, there was an obvious increase in
aquatic pollen (Typha and Sporangium) percentages (0.4–6.5%,
mean 2.3%), tree pollen percentages (0.8–9.6%, mean 3.9%) and
Cereal-type Poaceae/Poaceae (0–33.3%, mean 10.6%). The Ar/
(Am + E) ratio was relatively higher (0.6–1.1, mean 0.8), but was
interrupted by a brief period (c. 1550–1700 CE) with lower values
(0.7–0.8, mean 0.7).

Sub-zone Ⅲ-2 (23–0 cm, c. 1650 CE to present) is
distinguished from sub-zone Ⅲ-1 (40–23 cm, c. 1350–1650
CE) by an apparent increase in Artemisia (30.7–42.3%, mean
32.3%), Salix (0.2–2.7%, mean 0.9%), Sparganium (1.8–6.5%,
mean 2.6%), Rosaceae (0–2.3%, mean 1.0%), and Cereal-type
Poaceae/Poaceae (0–33.3%, mean 12.1%) and a slight decrease in
Poaceae (3.1–9.8%, mean 6.1%).

DISCUSSION

Pollen Source Area and a Test of Pollen
Humidity Indicator of Jili Lake
The size of pollen source area depends on the size of the
depositional basin, characteristics of pollen types and spatial
distribution of the plant species (Jackson, 1990; Sugita, 1994).
Sugita (1994) suggests that pollen assemblages of sedimentary
basins with a radius larger than 750 m is mainly influenced by
regional pollen rather than local pollen, and hence we
considered the pollen assemblages in Jili Lake (∼174 km2)
can reflect regional vegetation variations. Because of strong
aeolian activity in Northern Xinjiang, we suggested pollen
assemblages are a mixed signal to the regional vegetation in
the basin. As modern vegetation types show there are less
forest around Jili Lake except some specific planted poplar
trees to protect farmlands (Xinjiang Comprehensive
Investigation Team, Chinese Academy of Sciences, 1978),
the tree pollen types in the lake could have been
transported by wind and/or river from the southern slopes
of the Altai Mountains.

The Sparganium is adapted to growing in wet conditions, and
the high content of Sparganium might indicate a low lake level
(Davis, 1999). The aquatic plants in JL18-02-A core from Jili Lake
were mainly Typha and Sparganium, both of which are emergent
plants. A previous study showed the higher content of aquatic
pollen and lower total pollen concentration may indicate a
shallower lake environment (Huang et al., 2010).

FIGURE 3 | Pollen percentage diagram for core JL18-02-A spanning the last 2400 years.
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To verify the reliability of Ar/(Am + E) ratio as an indicator of
climatic humidity, we compared it to the relative humidity
records from meteorological stations (Figure 4). It was
demonstrated that the Ar/(Am + E) ratio fluctuations of JL18-
02-A generally follow the relative humidity records from the
Fuhai station, both showing an increasing trend in humidity
during the 1950–2018 CE (Figure 4).Therefore, the Ar/(Am + E)
ratio was a reliable indicator of humidity in this region, which is
similar to A/C ratio used by many other previous studies (e.g.,
Huang et al., 2009; Zhang J. et al., 2018).

Comparison of Regional Moisture Changes
in the Late Holocene
The moisture variations inferred from the Ar/(Am + E) ratio from
Jili Lake (Figure 5A) over the last 2400 years is consistent with other
regional records (e.g., Sayram Lake (Figure 5C) and Ebinur Lake
(Figure 5D), and suggested that an increase in regional moisture,
which is consistent with an increase in the average moisture index
of Xinjiang towards the present (Wang et al., 2013). The nearby Lake
Ulungur (Figure 5B) also showed an increase in moisture prior to
1450 CE, but then decreased sharply (Liu et al., 2008).

From 400 BCE-400 CE, there is lower water level and lower
effective moisture recorded in Jili Lake, which is also seen in other
records. For instance, climate conditions were drier at Sayram
Lake (Figure 5C) and Ebinur Lake (Figure 5D) during this period
(as interpreted from a low A/C ratio). This period of drying is
coincident with strong solar activity (Figure 5J), and the known
warming associated with the Roman Warm Period (RWP, 0–400
CE) (Biintgen et al., 2011). In low-elevation areas in northern
Xinjiang, there are many sites that suggest a dry climate during
the RWP (Feng et al., 2017). In the Aral Sea area, there was a
period of low lake level from 1 CE to 425 CE (Sorrel et al., 2006),
and at Bosten Lake, a period of high salinity and lower lake level
occurred from 280 to 480 CE (Fontana et al., 2019; Li et al., 2021).

Historical documents show that in the 4th Century, the city of the
Loulan Kingdom experienced a severe drought (Li et al., 1991),
which might also have been recorded in Jili Lake, as indicated by a
lower pollen humidity index (PHI) at 300–400 CE. The results of
lithological and grain-size analyses from Jili Lake suggest the lake
was shallower before 400 CE, hence the hydrodynamics caused by
wave action on the lake was relatively strong (Lang, 2020). We
interpret the low pollen concentration as evidence of strong
hydrodynamics and/or drier conditions. There are also
differences in the records of humidity at different altitudes in
the Xinjiang region. From 400 BCE to 400 CE, a decrease in
moisture occurred in high altitude areas [e.g., Tielishahan Peat
(Zhang et al., 2016) and Narenxia Peat (Zhang D. et al., 2018),
Yushenkule Peat (Yang et al., 2019), and Sayram Lake (Lan et al.,
2020)], while a slight increase in moisture occurred in low altitude
areas [e.g., Jili Lake (Figure 5A), Ulungur Lake (Figure 5B) and
Ebinur Lake (Figure 5D)]. In addition, during this period
moisture records from Bosten Lake in the southern Tienshan
Mountains (Figure 5H; Huang et al., 2009) showed a slight
decreasing in moisture during this period, which is
inconsistent with low latitude lakes in northern Xinjiang.

From 400 CE to 850 CE [Dark Ages Cold Period (DACP)], the
PHI indicates an increase in regional moisture, overlain by
fluctuations in wet and dry phases at a centennial scale. The
water level in Jili Lake began to increase, likely reaching its
present-day level after c. 400 CE (Lang, 2020). Similarly, the
moisture record from Ebinur Lake (Figure 5D) shows an increase
in regional moisture, and pollen records from Kanas Lake
suggests an increase in effective humidity from 550–1050 CE
(Huang et al., 2018).

During the MWP (850–1200 CE), the climate was warm and dry.
Although warm climatic conditions prevailed in the Northern
Hemisphere (Figures 5I, J), the PHI suggests relatively dry
conditions in the Jili Lake region. These drier conditions may be
related to a period of higher evaporation at Bosten Lake, and also
coincided with a glacial retreat event recorded at Karakuli Lake (Liu
et al., 2014). During this period, there is a higher content of coarse
grain sizes (40–200 μm) from Jili Lake suggests an intensification of
storm activity at Jili Lake (Lang, 2020). Likewise, the increased coarse
fraction in the record from Harnur Lake (Figure 5E) and decreased
A/C ratios at Ebinur Lake (Figure 5D) corroborate this interpretation.

During the Little Ice Age (LIA: 1200–1850 CE), there was an
increase in moisture from 1200 CE (Figure 5A), consistent with
the A/C ratios of Sayram Lake (Figure 5C), Ebinur Lake
(Figure 5D) and Harnur Lake (Figure 5E). Cold climate also
recorded in Manas Lake (Song et al., 2015) and Bosten Lake
(Figure 5G) during this period. This period is not characterized
by uniform wet conditions. For example, the period 1560–1700
CE was relatively dry with a lower PHI, though the regional
climate was still wetter than the period prior to 1200 CE
(Figure 5A). At Jili Lake the abundance of aquatic pollen
(Typha and Sparganium) peaked at 1665 CE, with a brief
interval of lower water level at 1600–1855 CE. Other regional
records also attest to relatively dry conditions during 1560–1700
CE: Sichanghu peatland, Hutubi River Basin, Manas Lake, Kesang
Cave and Dalong Pond (Chen F. et al., 2015; Song et al., 2015; Cai
et al., 2017; Lan et al., 2019; Ren et al., 2019). At Bosten Lake, the

FIGURE 4 | Comparison of Ar/(Am + E) for the core JL18-02-A with
various Relative Humidity records from the Fuhai station (data from https://psl.
noaa.gov/data/index.html): grey line: relative humidity; red line: relative
humidity result of 25-point smoothing; blue dot line: Ar/(Am + E) ratio.
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carbonate content (Figure 5G) suggests an interval of high
evaporation during 1550–1700 CE; higher temperatures are
recorded at the same times [e.g., at Manas Lake (Song et al.,
2015) and Belukha glacier (Eichler et al., 2011)], suggesting that
temperature was the main driving force of decreased moisture

during this period. After 1850 CE, the PHI derived from the Jili
Lake record suggests a drier climate, which is consistent with
the records of other lakes in northern Xinjiang (Huang et al.,
2009; Feng et al., 2016; Li et al., 2017; Yang et al., 2019; Yang et al.,
2020).

FIGURE 5 | Comparison of Ar/(Am + E) for the core JL18-02-A with various paleoclimatic records: (A) Ar/(Am + E) ratio from Jili Lake (this study); (B) A/E ratio from
Ulungur Lake (Liu et al., 2008); (C) A/C ratio from Sayram Lake (Jiang et al., 2013); (D) A/C ratio from Ebinur Lake (Wang et al., 2013); (E) Coarse fraction from Harnur
Lake (Lan et al., 2018); (F) A/C ratio from Balikun Lake (Tao et al., 2010); (G) CaCO3 content from Bosten Lake (Fontana et al., 2019); (H) A/C ratio from Bosten Lake
(Huang et al., 2009); (I) Temperature in the Northern Hemisphere (Ljungqvist, 2016); (J) Reconstructed Total Solar Irradiance (TSI) (Steinhilber et al., 2012).
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Previous studies from northern Xinjiang showed that the
region alternated between “cold-wet” and “warm-dry” during
the late Holocene (Feng et al., 2006). Combining the Northern
Hemisphere temperature (Figure 5I) with the PHI derived from
the Jili Lake record, there is support for the climate model of
“warm-dry” and “cold-wet” (Chen et al., 2019), overlain by a
millennial timescale wetting trend from 1 CE to 1550 CE.

By comparison of regional moisture changes with records in
monsoon marginal region (Figure 6), it was found that there was
an increasing trend in moisture at Jili Lake (Figure 6A) during
400 BCE-2000 CE, which is in contrast to records from Hurleg
Lake (Figure 6E) and Genggahai Lake (Figure 6F). The reason
for these differences may be the climate of Hurleg Lake and
Genggahai Lake being mainly driven by the Asia Summer
Monsoon (Liu et al., 2016; Zhao et al., 2010). Records from
Tian’E Lake (in the Qilian Mountains) and BYBS profile (in the
western part of the Badain Jaran Desert) show a decrease in
moisture during 400 BCE-1100 CE and an increase in moisture
from 1100 BCE to 1800 CE, which was in antiphase to the
moisture record at Sugan Lake (Figures 6B–D). An increase
in moisture during 1100–1800 CE at Tian’E Lake and BYBS
profile may be due to the weakening of the Asian Summer
Monsoon caused by the reducing solar radiation (Steinhilber

et al., 2012; Gao et al., 2020). In general, a wetting record from Jili
Lake over 2400 years (Figure 6A) is obviously different from that
in the monsoon marginal region.

The water vapor in ACA originates from the North Atlantic
Ocean, the Mediterranean Sea, Caspian Sea, and regional water
recycling within inland Asia, and is transported from west to east
by the westerlies (Aizen et al., 2006; Chen et al., 2008). The
southward shift of the westerly jet stream facilitates the
infiltration of water vapor from the Indian Ocean to ACA and
leads to more rainfall over northern Xinjiang (Yang and Zhang.,
2008; Zhao et al., 2014). Solar activity plays an important role in
atmospheric circulation (Reid, 1991; Steinhilber et al., 2012). Yan
et al. (2019) suggesting that changes in solar activity and the
intensity and location of the westerly jet stream are the dominant
control on hydroclimatic variations in ACA. The stronger
westerly and the southern migration of the westerly jet stream,
which corresponds to lower total solar irradiance (TSI) and colder

FIGURE 7 | Comparison of Ar/(Am + E) ratio for the core JL18-02-A with
population in Xinjiang: (A) Ar/(Am + E) ratio from Jili Lake (this study); (B) The
percentage of Typha and Sparganium from Jili Lake (this study); (C) Macro-
charcoal (>100 μm) concentration from Jili Lake (this study); (D) Pollen
concentration form Jili Lake (this study, Y-axis is a log scale); (E) Cereal-type
Poaceae/Poaceae (Ce/Po) from Jili Lake (this study); (F) Population in Xinjiang,
Y-axis is a log scale (Zhao and Xie, 1988). The orange area indicates a
population growth period.

FIGURE 6 | Comparison of Ar/(Am + E) ratio for the core JL18-02-A with
various paleoclimatic records in the monsoon marginal region: (A) Ar/(Am + E)
ratio from Jili Lake (this study); (B) A/C ratio from Sugan Lake (Li, 2020); (C) A/
C ratio from Tian’E Lake (Zhang J. et al, 2018); (D) Recharge rate from
BYBS profile (Ma et al., 2009); (E) A/C ratio from Hurleg Lake (Zhao et al.,
2010); (F) A/C ratio from Genggahai Lake (Liu et al., 2016).
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conditions, could favor more water vapor transport to ACA, and
vice versa (Yan et al., 2019). During 400 BCE-400 CE and the
MWP, the Jili Lake region had a warm-dry climate when the solar
activity was higher (Figures 5A, J). During the LIA, there was a
period of higher evaporation (1560–1700 CE) and an associated
low moisture index.

Human Activity in the Region and Its Impact
on the Lake Level of Jili Lake
Since 1700 CE, there were higher concentrations of macro-
charcoal (>100 μm) (Figure 7C), accompanied by an increase
in the Ce/Po ratio (Figure 7E). These indicators suggest that a
period of intensified human activity played an important role in
influencing the vegetation in the region, and this can be matched
with local and state historical documents. The population of
Xinjiang gradually increased during 1626–1760 CE (Figure 7F).
Irrigation for agriculture in northern Xinjiang began in the early
Qing Dynasty (from 1716 CE) (Zhao and Xie, 1988) with a rapid
phase of development during 1749–1840 CE (Fang, 1989). After
1755 CE, there was an upsurge in urban construction in northern
Xinjiang, driven by political, economic and military factors, as
well as expended cultivation and trade development (Yang, 2018).
Likewise, during the 1600–1850 CE, Jili Lake had a lower lake
level as indicated by the higher percentage of aquatic pollen
(Typha and Sparganium) (Figure 7B) and the lower pollen
concentration (Figure 7D). Notably, the PHI derived from the
Jili Lake sediments was relatively higher during 1700–1850 CE
and indicated relatively wet conditions (Figure 7A), which is in
contrast to the lower lake level. Therefore, the wetter climate
during 1700–1850 can’t explain the lower lake level and we infer
that the lower water level in Jili Lake during 1600–1850 CE may
have been caused by human activities or the more extensive
exploitation of water resources. Similarly, the decline of water level
in Ulungur Lake was likely caused by the greatly increased regional
population and the associated development of oasis irrigation
agriculture along the rivers in the lower basin during the Ming
and Qing Dynasties (Liu et al., 2008; Tuerhong, 2011; Ni et al.,
2021). Consequently, lower lake level may be mainly influenced by
stronger irrigation agricultural activities during 1700–1850 CE.

CONCLUSION

The high-resolution pollen record from core JL18-02-A reveals
the evolution of vegetation in Jili Lake and its surrounding area
over the last 2400 years in response to climate drivers and human
impact. The comparison of moisture availability, as inferred by

the Ar/(Am + E) ratios to other regional records suggest that the
moisture in the northern Xinjiang region study area shows an
increase of humidity from 1 CE to 1550 CE, corresponding to a
long-term cooling in the Northern Hemisphere. Pollen
assemblages indicated that regional vegetation dominated by
desert gradually shifted into a desert steppe. The moisture was
characterized by the “warm-dry” periods of RWP (c. 1 to c. 400
CE), MWP (c. 850 to c. 1200 CE) and CWP (since 1850 CE), and
the “cold-wet” periods of DACP (c. 400 to c. 850 CE) and LIA
(c. 1200 to c. 1850 CE). Over the last 2400 years, the monsoon had
little influence onmoisture changes in the Jili Lake basin. Notably,
during 1700–1850 CE, the increase of the percentages in aquatic
pollen (Typha and Sparganium) and cereal-type Poaceae pollen
reflecting anthropogonic impacts, and the rise of macro-charcoal
and population may result from the intensified irrigation for
agriculture in the catchment.
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