
Description of Fracture Network of
Hydraulic Fracturing Vertical Wells in
Unconventional Reservoirs
Jinghua Liu1, Mingjing Lu2,3 and Guanglong Sheng1*

1School of Petroleum Engineering, Yangtze University, Wuhan, China, 2Petroleum Engineering Technology Research Institute of
Shengli Oilfield, Dongying, China, 3Postdoctoral Scientific Research Working Station of Shengli Oilfield, Dongying, China

Based on the distribution of complex fractures after volume fracturing in unconventional
reservoirs, the fractal theory is used to describe the distribution of volume fracture network
in unconventional reservoirs. The method for calculating the fractal parameters of the
fracture network is given. The box dimension method is used to analyze a fracturing core,
and the fractal dimension is calculated. The fractal index of fracture network in fracturing
vertical wells are also firstly calculated by introducing an analysis method. On this basis, the
conventional dual-media model and the fractal dual-media model are compared, and the
distribution of reservoir permeability and porosity are analyzed. The results show that the
fractal porosity/permeability can be used to describe the reservoir physical properties more
accurately. At the same time, the flow rate calculating by conventional dual-media model
and the fractal dual-media model were calculated and compared. The comparative
analysis found that the flow rate calculated by the conventional dual-media model was
relatively high in the early stage, but the flow rate was not much different in the later stage.
The research results provide certain guiding significance for the description of fracture
network of volume fracturing vertical well in unconventional reservoirs.
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INTRODUCTION

Unconventional reservoirs in the world are rich in resources, and have poorly reservoir porosity/
permeability (Song et al., 2018; Wang et al., 2019; Chen et al., 2020). It is necessary to adopt
stimulation enhancement measures to improve the physical properties in order to achieve economic
development (Li et al., 2015). Considering the distribution of natural fractures in unconventional
reservoirs, through technologies such as optimized displacement and low liquid viscosity, the net
pressure in the fracture during volume fracturing is achieved, and the fracture opening conditions are
achieved (Zhang et al., 2021). So as to extend along the wall of the main fracture and communicate
with multi-scale secondary fractures, then the complex fracture network is finally formed in the
formation (Manchanda et al., 2020; Qi et al., 2020; Sheng et al., 2020).

Scholars have studied the distribution of fracture network of volume fracturing from many
aspects. Cheng et al. used the discrete fracture network model and line network model to
characterize the complex fracture network of volume fracturing in shale reservoirs, and obtained
the fracture network geometry parameter (Cheng et al., 2013). Wang et al. used numerical
simulation to study the factors affecting the productivity of volume fracturing vertical wells, and
the results showed that the complex fracture network formed after volume fracturing in tight
reservoirs can greatly increase the productivity (Wang et al., 2013). Li et al. used dual-media
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numerical simulation to simulate the fracture network from
volume fracturing and optimize the parameters of fracture
network (Li, 2020). They believed that the dual-media
simulation method can accurately describe the complex
fracture network composed of native natural fractures and
artificial hydraulic fractures. The dual-media simulation
method can also reflect the flow characteristics within
fracture network and matrix after volume fracturing. Based
on the characteristics of complex fracture network and flow
mechanism of volume fracturing in tight reservoirs, Su et al.
proposed a coupled dual-media composite flow model
considering the limited stimulated reservoir volume, and
optimized the parameters of fracture network (Su et al., 2014).

The previous research fully demonstrated the influence of the
fracture network on reservoir flow and made a preliminary
description of fracture network (Li, 2020). However, the
distribution of fracture network cannot describe by a simple
approach, such as analytical equations (Meng et al., 2020). The
complex fracture network was formed based on communicating
and extending natural fractures (Li et al., 2020), so the fracture
network structure is consistent with the distribution of natural
fractures in the reservoir. Pfeiferper and Avnir (1983), Katz and
Thompson (1985), Krohn (1988) used adsorption method,
electron microscope observation and mercury intrusion
method to study the microscopic pore and natural fracture
structure of unconventional reservoirs. A large number of
research results show that the microstructure of
unconventional reservoirs has fractal characteristics (Song
et al., 2019), which can be studied by fractal theory. Yortsos
et al. used the fractal reservoirs for the first time to describe
natural fractured reservoirs (Chang and Yortsos, 1990). Aprilian
et al. (1993) and Acuna et al. (1995) respectively used fractal
reservoir-based well testing analysis methods to explain the well
test results of complex reservoirs that were difficult to explain by
conventional methods, and obtained results consistent with the
actual data. Wang et al. introduced the fractal theory into
trilinear flow model, and proposed a mathematical model
considering complex fractures and fractal flow for pressure
transient analysis of fractured horizontal wells in
unconventional reservoirs. In the work, the fractal dimension
and fractal index were used directly to describe the fractal
fracture network (Wang et al., 2015). To tell the truth, the
calculation of fractal dimension and fractal index is more
important for fracture network description. The fractal
dimension is usually calculated by box counting method,
which is based on the specific fracture geometry. Combined
with the inversion method of fracture network, the fractal
dimension can be easier calculated. However, the fractal index
is hardly to obtain. The fractal index is usually obtained by
random walker method (O Shaughnessy and Procaccia, 1985),
which is not easier in the calculation of fractal index of fracture
network. Sheng et al. further gave the calculation method of the
heterogeneity fractal index based on the fractal dimension, and
obtained the fracture porosity and permeability distribution with
the fractal fracture morphology (Sheng et al., 2019). This work
presents an effective method to determine the fractal index, and
make the fractal theory more reasonable to apply to the

description of fracture network. However, there is no work
combine the fractal index calculation method with flow
simulation.

Therefore, considering the fracture network morphology in
unconventional reservoirs, this paper uses fractal theory to describe
the distribution of induced fracture network in unconventional
reservoirs. The calculation method of fractal parameters is given,
and the distribution of physical properties and the production rate
from conventional dual-media flow model and the fractal dual-
media flow model are compared and analyzed.

DESCRIPTION OF FRACTURE NETWORK
IN UNCONVENTIONAL RESERVOIRS

Researches show that the microstructure of natural fractures in
unconventional reservoirs has fractal characteristics. Based on the
characteristics of natural fractures in unconventional reservoirs,
Hydraulic fracturing communicate with multiple induced
fractures and micro-fractures, and finally generates a complex
fracture network in the reservoir. Therefore, the resulting fracture
network presents a multi-scale distribution and shows a certain
degree of self-similarity in a statistical sense (Figure 1). In the
conventional model, the fracture density is used to characterize
the number of induced fractures, but the fracture density cannot
accurately describe the tortuosity and self-similarity of the
fracture network. Fractal geometry breaks through the
traditional integer dimension thinking and has superiority in
describing extremely complex geometric forms. When using
fractal theory to characterize the structural characteristics of
the fracture network, two parameters, fractal dimension and
fractal index, are generally used.

FIGURE 1 | Fracture network morphology in unconventional reservoirs
(Guo et al., 2015).
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Fractal Dimension
The fractal dimension is often used in fractal geometry to reflect
the density and complexity of fracture network. The experimental
method to calculate the fractal dimension have the disadvantages
of cumbersome operation when determining the fracture network
parameters. The box dimension method based on the
microseismic data is used to obtain the fractal dimension of
the fracture network, which has a good effect. The specific process
is: 1) divide the geometry into a grid with a square of length R, 2)
count the number of grids with fractures in the grid N(R), 3)
repeat the above process continuously by changing the size of R,
and 4) the fractal dimension can be obtained by drawing the curve
of ln (R) and ln (N(R))

d � −d(ln(N(R)))
d(ln(R)) (1)

Where R is the length of the square; N(R) is the number of grids
with fractures in the square of length R.

Assuming that the fractures are distributed inside a square
with side length L after hydraulic fracturing (the fractal
dimension has nothing to do with the value of L, this work
assumes L � 1), as shown in Figure 2, the fracture distribution
area is continuously divided.

Calculate the number of grids with fractures at different grid
sizes (R), and draw the curve of ln(R) and ln (N(R)), as shown in
Figure 3. It can be seen from the figure that the ln(R) and ln
(N(R)) have a strong linear relationship, and the fractal
dimension of the fracture network shown in Figure 3 is 1.086.

Fractal Index
Since there are many branch and bifurcations in fractal fractures,
the longer the fluid flow in the fractures, the slower the flow rate
will be. This characteristic in the fractal fracture network is called
fractal anomalous diffusion. The fractal index is used to
characterize the fractal anomalous diffusion. The value is
usually estimated by random walking method, and its absolute
value is between 0 and 1. In reservoir simulation, the abnormal
diffusion mainly affects the permeability.

Sheng et al. (2019) obtained the fractal index of fractal network
distribution, which can be expressed as

θ � ln⎛⎝1 + sfw
rw

|2 − d|( r

rw
)1−d⎞⎠/ln( r

rw
) (2)

Where rw represents a reference length, cm; r is the length from
the reference point, cm; d is the fractal dimension; θ is the fractal
index; sfw is the fracture width at the reference point, cm.

Fractal Porosity/Permeability Equation
Based on the fractal dimension and fractal index, the fractal
permeability and porosity equation of the reservoir with complex
fracture network can be obtained

kf(x) � kw( r

rw
)−d(ln(N(R)))

d(ln(R)) −ln(1+sfw
rw

|2−d|( r
rw
)1−d)/ln( r

rw
)−2

(3)

FIGURE 2 | Fracture distribution in different squares.

FIGURE 3 | The fractal dimension from box dimension method.
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ϕf � ϕw( r

rw
)−d(ln(N(R)))

d(ln(R)) −2
(4)

Where kf is the equivalent permeability of fracture network in the
dual media model, mD; ϕf is the equivalent porosity of fracture
network in the dual media model.

PHYSICAL PROPERTIES AND
PRODUCTION OF RESERVOIRS WITH
FRACTAL FRACTURE NETWORK
Physical Properties Distribution
The fractal theory is used to accurately describe the physical
parameters of fracture network in unconventional reservoirs.
Assuming that a well is in the center of a circular reservoir, the
wellbore radius is 12.4 cm, the permeability at the wellbore is
2.3 mD, the porosity at the wellbore is 0.6, the radius of
stimulated reservoir is 10 m, the reservoir permeability is
0.23 mD, the reservoir porosity is 0.108, and the reservoir
radius is 1000 m, the fractal dimension is 1.8 and fractal index
is 0.1. Plotting the distribution of porosity and permeability in
the reservoir is shown in Figure 4A. When the conventional
dual-media flow model is used to describe the reservoir
physical properties, the reservoir permeability and porosity
will undergo abrupt changes at the boundary of the stimulated
area. While when the fractal theory is adopted to describe the
physical properties of the stimulated area, the permeability and
porosity of the reservoir can smoothly transition between the
stimulated boundary and the unstimulated boundary, which is
more consistent with the actual geological characteristics.
Therefore, the dual-media flow model can more accurately
characterize the fluid flow in the stimulated unconventional
reservoirs.

Dynamic Production of Reservoirs With
Fractal Fracture Network
Assuming that there is a vertical well in the middle of a circular
reservoir, producing at constant pressure. The initial reservoir
pressure is 20 MPa, and the bottom hole pressure is 8 MPa. Using
the above parameters and the calculated fractal dimension, daily
production rate from the conventional dual-media flow model
and fractal dual-media flow model are calculated, as shown in
Figure 4B. It can be seen from the figure that the difference
between the production calculated by the two models occurs in
the early stage. When considering the distribution of the fractal
fracture network, the early stage of production is smaller than the
calculation result of the conventional dual-media flow model.
However, it is close to the actual production data of the stimulated
unconventional reservoirs. The results calculated by the two
models are relatively similar in the middle and late stages of
production.

CONCLUSION

1) Based on the complex fracture distribution of unconventional
reservoirs after hydraulic fracturing, this paper uses fractal
theory to describe the distribution of fracture networks, and
proposes a calculation method of fractal parameters for
hydraulic fracturing vertical wells in unconventional
reservoirs.

2) The fractal theory are used to describe the distribution of
fracture network, it can be seen from the physical property
distribution that using fractal theory to describe the physical
properties of stimulated area can make the reservoir
permeability and porosity smoothly transition between the
stimulated boundary and unstimulated boundary, which is
different from the conventional methods.

FIGURE 4 | Physical properties distribution and production in stimulated unconventional reservoirs. (A) is the physical properties distribution, (B) is the production
curve.
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3) The production changes from the conventional dual-media flow
model and the fractal dual-media flow model were calculated
respectively. The comparative analysis showed that the difference
mainly occurred in the early stage of production, and the production
considering the fractal fracture network is relatively small.
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