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Physics-based algorithms estimating large-scale forest above-ground biomass (AGB)
from synthetic aperture radar (SAR) data generally use airborne laser scanning (ALS) or grid
of national forest inventory (NFI) to reduce uncertainties in the model calibration. This study
assesses the potential of multitemporal L-band ALOS-2/PALSAR-2 data to improve forest
AGB estimation using the three-parameter water cloud model (WCM) trained with field
data from relatively small (0.1 ha) plots. The major objective is to assess the impact of the
high uncertainties in field inventory data due to relatively smaller plot size and temporal gap
between acquisitions and ground truth on the AGB estimation. This study analyzes a time
series of twenty-three ALOS-2 dual-polarized images spanning 5 years acquired under
different weather and soil moisture conditions over a subtropical forest test site in India. The
WCM model is trained and validated on individual acquisitions to retrieve forest AGB. The
accuracy of the generated AGB products is quantified using the root mean square error
(RMSE). Further, we use a multitemporal AGB retrieval approach to improve the accuracy
of the estimated AGB. Changes in precipitation and soil moisture affect the AGB retrieval
accuracy from individual acquisitions; however, using multitemporal data, these effects are
mitigated. Using a multitemporal AGB retrieval strategy, the accuracy improves by 15%
(55 Mg/ha RMSE) for all field plots and by 21% (39 Mg/ha RMSE) for forests with AGB less
than 100Mg/ha. The analysis shows that any ten multitemporal acquisitions spanning
5 years are sufficient for improving AGB retrieval accuracy over the considered test site.
Furthermore, we use allometry from colocated field plots and Global Ecosystem Dynamics
Investigation (GEDI) L2A height metrics to produce GEDI-derived AGB estimates. Despite
the limited co-location of GEDI and field data over our study area, within the period of
interest, the preliminary analysis shows the potential of jointly using the GEDI-derived AGB
and multi-temporal ALOS-2 data for large-scale AGB retrieval.

Keywords: ALOS-2, NISAR, GEDI, L-band, biomass, AGB, time-series, WCM

1 INTRODUCTION

Synthetic aperture radar (SAR) remote sensing has been extensively used for forest above-ground
biomass (AGB) estimation due to its sensitivity to forest structure and ability to penetrate through
clouds. This is important, especially for tropical regions where cloud cover can limit optical remote
sensing for up to 6 months in a year. SAR backscatter has been extensively utilized for forest AGB
estimation using a wide variety of SAR data acquired at different frequencies (Le Toan et al., 1992,
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2011; Luckman et al., 1998; Santoro et al., 2011; Englhart et al.,
2012; Kumar et al., 2012; Schlund et al., 2018; Khati et al., 2020).
Depending on the wavelength, SAR signals interact with different
components of the forest such as stem, branch, leaves, trunk, and
ground (Dobson et al., 1992; Ningthoujam et al., 2016, 2018;
Singh and Yamaguchi, 2018; Singh et al., 2019, 2020). The SAR
backscatter signal strength increases with AGB up to a saturation
level (Yu and Saatchi, 2016; Joshi et al., 2017; Schlund et al., 2019),
which depends on the sensor properties such as wavelength and
polarization, as well as site conditions including stand structure,
ground conditions, and moisture (Dobson et al., 1992; Le Toan
et al., 1992; Ghasemi et al., 2011; Huang et al., 2015; Ningthoujam
et al., 2018; Khati et al., 2020). The longer wavelength (P- and
L-band) SAR backscatter thus saturates at higher forest AGB and
is more suitable for forest AGB mapping. In the last decade,
space-borne L-band SAR data are available from the JAXA’s
Advanced Land Observation Satellite (ALOS) Phased Array type
L-band Synthetic Aperture Radar (PALSAR) and its successor
ALOS-2/PALSAR-2 satellite missions.

L-band SAR data have been extensively used for forest AGB
retrieval in various studies (Cartus et al., 2012; Tanase et al.,
2014; Santoro et al., 2015; Thiel and Schmullius, 2016; Santoro
and Cartus, 2018). SAR backscatter is related to forest AGB
using empirical (Kasischke et al., 1997; Lucas et al., 2006;
Watanabe et al., 2006), semiempirical (Kurvonen et al., 1999),
and numerical models (Lucas et al., 2004; Burgin et al., 2011)
and machine learning algorithms (Santi et al., 2015, 2020;
Vafaei et al., 2018). The sensitivity of SAR backscatter to AGB
decreases for denser canopies where the SAR signal no longer
penetrates through the entire canopy. The AGB range at which
the SAR backscatter is no longer sensitive to changes in AGB is
called the saturation level, and it depends on the frequency,
polarization mode, incidence angle, type of forest, foliage
structure, and moisture conditions (Hall et al., 2011). For
L-band SAR, the saturation level varies widely between
80 Mg/ha and 250 Mg/ha depending on the forest type and
structure (Yu and Saatchi, 2016).

The SAR backscatter-AGB relationship can be calibrated using
field inventory plots, airborne laser scanning- (ALS-) derived
AGB maps, or a dense grid of national forest inventory (NFI)
data. The accuracy of the developed SAR backscatter-AGB model
depends on these field plots (Santoro et al., 2002), which might
have inherent uncertainties due to allometry, geolocation, and
inadequate representation of the spatial variability of forests
(Chave et al., 2004; Khati et al., 2020). Furthermore, the field
plots can vary in size from 0.05 ha (hectare) (e.g., (Luckman et al.,
1997, 1998; Kurvonen et al., 1999)) to 50 ha (e.g., the 50 ha Barro
Colorado Island plot (Hubbell et al., 1999)) or more (Houghton
et al., 2001), and are laid in different configurations (circular,
rectangular, or square) depending on the field campaign strategy.
To reduce the uncertainties associated with smaller plots, most of
the large-scale SAR-based AGB mapping efforts use either larger
(1 ha) field plots (Bouvet et al., 2018), ALS derived AGB maps
(Sandberg et al., 2011; Antropov et al., 2013; Askne et al., 2013;
Soja et al., 2015; Santoro et al., 2019), or NFI data (Santoro et al.,
2011; Cartus et al., 2012; Peregon and Yamagata, 2013) to train
the SAR backscatter-AGB models. With the availability of space-

borne LiDAR data from ICESat-2/Advanced Topographic Laser
Altimeter System (ATLAS) and Global Ecosystem Dynamics
Investigation (GEDI) (Dubayah et al., 2020a), the discrete
LiDAR footprint points can also be used to train the SAR
backscatter-AGB models (Silva et al., 2021).

However, NFI or ALS data are not publicly available over
most of the tropical forests, due to geographic or regulatory
restrictions. Further, the SAR backscatter-AGB relationship is
influenced by soil and canopy moisture variations, seasonal
changes in canopy structure (leaf-fall), and weather (Harrell
et al., 1997; Pulliainen et al., 1999; Rauste, 2005; Lucas et al.,
2010; Khati et al., 2020). These variations translate into
uncertainties in derived AGB estimates, with Bouvet et al.
(2018) reporting up to 300% error in AGB estimates when
L-band backscatter was trained and validated on regions with
nonhomogeneous environmental conditions. These
uncertainties in AGB estimation can be reduced by
integrating multitemporal SAR measurements (Kurvonen
et al., 1999; Pulliainen et al., 1999; Rauste, 2005; Englhart
et al., 2012; Tanase et al., 2014; Cartus and Santoro, 2019; Khati
et al., 2020). The contribution of this study is to elucidate the
feasibility of using relatively small inventory plots (0.1 ha) for
forest AGB estimation using L-band SAR data, in contrast to
previous works which use ALS or NFI data for model
calibration. The main objective is to quantify the
improvement in AGB with L-band time-series data, along
with the impact of the higher uncertainties in field
inventory data due to relatively smaller plot size. Multiple
L-band ALOS-2/PALSAR-2 (referred to in this paper as ALOS-
2 for brevity) acquisitions over 5 years are processed to analyze
the potential of L-band time series for improving the AGB
estimates. Additionally, this study performs a preliminary
analysis of combining GEDI and ALOS-2 for large-scale
forest AGB mapping. The presented findings would be of
interest in the context of the upcoming NASA-ISRO SAR
(NISAR) mission (scheduled to be launched in 2023), which
will provide unprecedented dense time series of dual-
polarimetric L-band SAR data globally, with a repeat
interval of 12 days and an open data policy.

The paper is organized as follows. Section 2 describes
the study area, field inventory, and data sets used in this
work. The model training and validation strategy is
detailed in Section 3 along with the multitemporal AGB
estimation process. Results are presented and discussed in
Section 4 and the conclusions of this study are drawn in
Section 5.

2 STUDY AREA AND DATA SETS

2.1 Study Site and Field Survey
The Haldwani forest range test site (29.16 N and 79.08 E) is a
managed forest spread over 496 sq. km along the foothills of the
Himalayas in Uttarakhand, India. Haldwani forest range is
characterized by flat topography with ground slopes at plot
level < 5o and a mean ground slope of 2.39o (measured from
12 m × 12 m TanDEM-X DEM). This forest range has been
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studied for forest height (Khati et al., 2017), logging detection
(Khati et al., 2018; Musthafa et al., 2020), and tomography (Khati
et al., 2019) in our previous investigations. The forest is divided
into compartments that have one of the following plantation
species: Teak (Tectona grandis), Eucalyptus sp., Poplar (Populus
sp.), Gutel (Trema orientalis), Kanju (Holoptelea Integrifolia), and
mixed plantations. Teak, Poplar, and Gutel are deciduous species
while Eucalyptus is an evergreen species. The forest department
office maintains a record of all the forest management activities
such as logging and clear-cuts as well as plantation and maturity
age of each compartment. Figure 1 shows the Sentinel-2 false
color composite image acquired over the Haldwani forest range
on May 12, 2018, along with the location of the field plots.

The field campaign was carried out to collect parameters such
as tree dbh (diameter at breast height or 1.3 m above ground),
species, and tree height. A total of 93 field plots measuring 31.6 m
× 31.6 m (0.1 ha) have been surveyed in November 2015 (N � 36),
March 2017 (N � 13), and October-November 2018 (N � 44). The
plots were generally established in homogeneous forest regions in
either the uni-species compartments or mixed plantation
compartments. We aimed to establish plots such that all the
species and tree-age groups in the uni-species and mixed
compartments are represented. However, certain
compartments were not surveyed due to inaccessible forests or
presence of wildlife. For each square field plot, the geolocation
was tagged using a dual-frequency hand-held GPS receiver. The
GPS receiver had a horizontal PDOP (position dilution of
precision) between 5 m and 8 m and vertical PDOP between
1 m and 2 m. The tree height was measured using a combination
of TruPulse 200 L rangefinder (±0.5 m range accuracy) and an
LTI Criterion RD1000 distometer (1% height accuracy). Using
the site- and species-specific volumetric equations given by the

Forest Survey of India (1996), the volume of each tree was
computed. Next, the tree and plot biomass is calculated using
the species-specific wood density information available from the
State Forest Department. The field measured AGB varies from
3.76 Mg/ha to 310 Mg/ha with a mean of 123 Mg/ha. Table 1
provides a summary of the minimum, maximum, arithmetic
mean, and standard deviation of the parameters collected
during the field campaigns.

The yield data available with the Uttarakhand State Forest
Department showed that the average growth for a relatively
mature forest compartment (age more than 15 years) was
between 1 Mg/ha to 5 Mg/ha depending on the species and
other factors (spacing between trees, soil and moisture
conditions, etc.). However, the growth in AGB for new
plantations is much higher, and reliable yield data is not
available. As part of our field campaigns, three compartments
were surveyed twice: once in 2015 and in 2018. These plots are in
the same compartment, but not colocated as these are not
permanent plots. The three compartments have relatively
mature forests of Gutel, Teak, and Eucalyptus. Across those
3 years, the AGB increased by around 3–5 Mg/ha. Due to the
relatively low growth in AGB, we assume a constant AGB over the

FIGURE 1 | The Haldwani forest range as seen in a Sentinel-2 false color composite image acquired on May 12, 2018. Locations of the field plots and weather
station are also shown.

TABLE 1 | Summary statistics of the various parameters collected during the field
campaigns (Std. dev represents standard deviation).

Parameter Minimum Maximum Mean Std. dev

Height (m) 3.54 28.72 15.6 6.02
Stem volume (m3) 0.2 417 153.9 122.1
AGB (Mg/ha) 3.76 310 123 69.5
Trees per plot 8 247 93 52
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time series for the relatively mature forests. For the plots in
younger plantations, the AGB would increase across the time
series. We have not considered these plots in this study and this is
discussed further in Section 2.2.

The 4,390 trees surveyed in these plots are grouped into
deciduous species (65%), evergreen species (20%), and mixed
forests (15%). The 2013 National Forest Cover Map (FCM)
generated by the Forest Survey of India classifies the forests
broadly into four classes depending on canopy density. The
Haldwani forest test site has 49% moderately dense forest
(>70% canopy cover), 26% low-density forest (40–70% canopy
cover), 23% open forest (10–40% canopy cover), and 2%
nonforest regions.

Figure 2 shows the study area as imaged by the ALOS-2 data.
The various forest compartments are clearly identified in this
forest range due to silviculture practices. The GEDI observations
over the study area are shown by the white dots. The field
photographs show the different species and forest conditions
across the test site. The weather station shown in Figure 1 and
Figure 2 is located at the Pantnagar airport on the southern
border of the Haldwani forest range. This weather station
measures the temperature, precipitation, and wind speed at
3 h intervals. Figure 3 plots the precipitation on each day
through the ALOS-2 acquisition timeline and the mean cross-

polarized (HV) backscatter over the forest. The Indian monsoon
season is clearly identified in this plot.

2.2 ALOS-2/PALSAR-2 SAR Data
A time series of 23 dual-polarized (HH, HV), ascending pass,
L-band ALOS-2 SAR data sets are acquired over the forest range.

FIGURE 2 | Haldwani forest range imaged by ALOS-2/PALSAR-2 (R:G:B � HH; HV; HH/HV). The location of the GEDI Level 2A observations over the test site is
illustrated by the dense gray dots. The field photographs show (A) teak plantation, (B) high-AGB teak-dominated forest, (C)mixed forest, (D) Eucalyptus plantation, and
(E) top of the canopy of the forest at a height of 25 m. All the field photographs are from the field campaign in October-November 2018.

FIGURE 3 | The daily precipitation is plotted over the acquisition timeline.
Also shown in the mean cross-polarized (HV) backscatter of the 23 ALOS-2/
PALSAR-2 acquisitions over the field plots shown in Figure 1.
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The time-series SAR data are acquired between September 2014
and March 2020. Table 2 shows the months of acquisition of the
ALOS-2 data sets. The data are acquired in fine resolution dual-
polarized strip-map mode and are provided in the SLC (single
look complex) format. The incidence angle varies between 28.5°

and 34.2°. The data are provided with azimuth spacing of 3.4 m
and ground range spacing of 8.23 m. Here, we examine the cross-
polarized (HV) channel relevant for forest biomass estimation
using L-band SAR data.

Over the 5-year ALOS-2 time series, the forest compartments
in the managed forests of the Haldwani range had clear-cuts as
well as new plantations. The Uttarakhand State Forest
Department provides a detailed report of the forest
management practices in these compartments. Figure 4
shows examples of HV-polarization backscatter time series
plotted for stable forest plots (Figures 4A,B), harvested
forest plots (Figures 4C,D), and forests with growth (Figures
4E,F). The date of the field campaign for each plot are shown by

a red dotted line and the AGB measured during the field
campaign is also provided. The backscatter for plots in
mature forest compartments has variations due to moisture
and phenology changes, represented by the plots in Figures
4A,B. Plots in forest compartments which were clear-cut are
shown in Figures 4C,D. For plot in Figure 4C, the
compartment was replanted resulting in an increase in HV
backscatter after harvest. Both growth plots (Figures 4E,F)
exhibit an increase in HV backscatter up to 10 dB between
2015 and 2019. A total of 16 plots were excluded from this study
which had new plantations or clear-cut of the forest. The
remaining 77 plots are used to train and validate the forest
AGB model.

2.3 GEDI Data
The GEDI Level 2A Elevation and Height Metrics data are
available from the NASA/USGS Land Processes Distributed
Active Archive Center (Dubayah et al., 2020b). The data over
Haldwani was collected between April 2019 and April 2020.
The data represents height return metrics for each of the 25 m
diameter GEDI footprints. Figure 2 shows the GEDI footprints
over the Haldwani forest range. The geolocated footprint data
have 1-sigma positional errors of 10.3 m (Dubaya, 2021). For
each footprint, we extracted height metrics from RH50 to
RH100 corresponding to 50th to 100th percentile of energy
return height relative to the ground. Each GEDI observation
has six different versions of individual RH metric
corresponding to the algorithm used (Potapov et al., 2021).
We calculate the central mean (excluding minimum and
maximum values) to obtain the RH metric value for each
footprint.

TABLE 2 | Summary of available ALOS-2/PALSAR-2 dual-polarized (HH/HV)
ascending pass acquisitions over Haldwani forest test site. There are 23
acquisitions spanning from September 2014 till March 2020.

Year/month J F M A M J J A S O N D

2014 — — — — — — — — 1 — 1 —

2015 — — — — — — 1 — 1 — 1 —

2016 — 1 — — — — 1 — 1 — — —

2017 — 1 — — — — — — 1 — 1 —

2018 1 — — 1 1 — 1 1 1 1 — 1
2019 1 — 1 — — — — — — — — —

2020 1 — 1 — — — — — — — — —

FIGURE 4 |HV-pol backscatter time series of field plots representing stable forests (A) and (B); clear-cut forests (C) and (D); and growth in forests (E) and (F). The
red dashed line represents the date of field campaign for each plot. The plot ID and the AGB measured during the field campaign are annotated.
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2.4 Filtering GEDI Calibration Data
There are 32,710 GEDI observations covering the forest range
delineated by the white border in Figure 2. To select the
highest quality GEDI training and validation data, we use a
filtering strategy which Potapov et al. (2021) applied to
generate a global GEDI-derived forest height map. Only the
power beams were selected, with observations collected during
the night (to limit background noise), with beam sensitivity ≥
0.9 and where the range of predicted ground elevation among
the six algorithms was less than 2 m. The filtering resulted in
2200 GEDI samples.

2.5 Relating GEDI Height to Field
Measured AGB
Many studies compare the GEDI percentile heights with a
reference small footprint ALS-based heights to select the best
GEDI metric for training models (e.g., see (Qi et al., 2019;
Potapov et al., 2021)). However, in our case, airborne LiDAR
data are not available over the study area. To calibrate GEDI
height metrics, we collate the GEDI height with field measured
plot height from the 0.1 ha field plots. As GEDI is a sampling

mission, GEDI observations and the field plots are not always
colocated. Among the 93 field plots, 32 field plots had
overlapping GEDI observations. Three field plots were not
considered as the forest had been harvested in the
intervening years between the field campaign and GEDI
observations. The remaining 29 field plots were all surveyed
in 2015 and 2017, with no GEDI shots colocated with the field
plots from the 2018 field campaign.

The field measured forest height was compared with RH
metrics from RH50 to RH100. Figures 5A–C show the
relation of the RH90, RH95, and RH100 height metrics with
field height. The RH95 height metric performed the best with a
correlation coefficient, R2 of 0.67, and a root mean square error
(RMSE) of 4.8 m. The RH95 height metric is related to field AGB
using a power-law function as shown in Figure 5D. The GEDI
AGB thus generated has an RMSE of 32 Mg/ha. This generates
2200 AGB sample points from GEDI to train and validate the
forest AGB retrieval model. However, with the limited training
samples used in relating GEDI height to field AGB, we use this
data cautiously with the aim of getting a preliminary assessment
of the advantages of combining L-band SAR and GEDI height
metrics for improved forest AGB estimates.

FIGURE 5 | The GEDI RH heights correlated with field-measured height for the plots with overlapping GEDI observations. The RH95 height (B) shows the best
performance. The RH95 height is further related to field measured AGB with a power-law relation to generate a GEDI-field AGB allometry.

Frontiers in Earth Science | www.frontiersin.org October 2021 | Volume 9 | Article 7522546

Khati et al. AGB from SAR and GEDI

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


3 METHODOLOGY

This section details the SAR and GEDI data processing
workflows, the WCM model calibration process, and strategies
used for forest AGB generation using the time-series SAR data.
Figure 6 shows the overall methodological flow diagram, with the
subsections detailing each step in further detail.

3.1 ALOS-2/PALSAR-2 Data Processing
The ALOS-2/PALSAR-2 data acquired are in fine resolution dual-
polarized strip-map SLC format. The data are radiometrically
calibrated (Shimada et al., 2009) and coregistered using the orbit
parameters and the 1-arc second NASADEM. Dense offsets are
estimated and the SLCs are resampled to a reference acquisition,
ensuring coregistration at the subpixel level. The ALOS-2 data are
stored as radar backscatter σ0 (referenced to the flat ellipsoid),
which is modulated by topography. An improved radiometric
terrain correction (RTC) algorithm (Shiroma et al., 2020) is
applied to flatten the backscatter and generate c0. Our
approach for RTC includes compensation of backscatter
variation due to changing radar look angle across the imaged
swath. The algorithm generates a flattened backscatter image
ideally free of radiometric modulations caused by topography and
incidence angle variations. In the RTC process, the field plot
corners are projected to radar geometry, and subpixel aggregation
of backscatter is carried out. Further, this aggregation approach
ensures that there is no mismatch between pixel size and plot size,
as even partially covered pixels are weighted according to their
areal coverage. The number of spatial looks for calculating the
average backscatter within the field plots is 42 ± 3 with minimum
and maximum values of 34 and 53, respectively

3.2 Relating SAR Backscatter to AGB
The L-band backscatter is related to forest AGB using the three-
parameter water cloud model (WCM) (Attema and Ulaby, 1978).
The WCM model describes the forest as a volume of randomly
oriented scatterers over an impermeable ground layer. At L-band,
the modified version of WCM is used which accounts for vertical
and horizontal discontinuities or gaps in the forest (Askne et al.,
1997; Santoro et al., 2002). The WCM model has been used to

relate L-band SAR backscatter to forest AGB in a number of
studies (Santoro et al., 2011; Cartus et al., 2012; Kumar et al.,
2012; Thiel and Schmullius, 2016; Khati et al., 2020) due to its
strong physical foundations (Attema and Ulaby, 1978; Askne
et al., 1997; Santoro et al., 2002) and computational simplicity.

The WCM model can be mathematically described as

c0 � a e−c β + b 1 − e−c β( ) (1)

where the model parameters a, b, and c describe the scattering
contribution from the ground through the canopy gaps,
scattering contribution from the vegetation, and extinction of
the wave through forest canopy, respectively. The term β is the
AGB measured in Mg/ha. The derivation of Eq. (1) is not
discussed here as it has been extensively discussed by Askne
et al. (1997) and Santoro et al. (2002).

3.3 Model Training and Validation
The L-band cross-polarized (HV) backscatter measured over the
seventy-seven 0.1 ha field plots is used for training and validation
of the WCM model. For each of the 23 ALOS-2 acquisitions, the
model parameters a, b, and c are estimated using the HV-pol
backscatter and the field-derived AGB after applying a χ-squared
minimization approach. The field plots are split randomly into
60% training and 40% test samples. The WCM model is
calibrated using the training plots and validated on the test
plots. The calibration and validation are iterated 30 times to
capture the uncertainties and allow robust estimation of error.
This generates the estimated AGB for each acquisition (Bi). It
should be noted that we use all the 77 field plots across the ALOS-
2 acquisitions spanning 5 years. For each acquisition, the
performance of the WCM model derived AGB is assessed
using the RMSE, coefficient of determination (R2), and the
backscatter saturation level (βsat). The RMSE and R2 are
calculated between the field measured AGB and WCM derived
AGB. The backscatter saturation level for a given WCM model is
defined as the value of biomass for which the biomass estimation
error due to speckle equals the required modeled biomass
estimation accuracy (Hensley et al., 2014). For our case, we
considered the desired WCM model estimation accuracy of

FIGURE 6 | The flow diagram showing the overall methodology followed in this study.
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20 Mg/ha in accordance with NISAR requirements. Solving the
WCMmodels characterized by parameters a, b, and c for β � βsat,
we obtain the backscatter (csat) at which the WCM curve
saturates.

3.4 Time-Series AGB Estimation
The process detailed in Section 3.3 is applied to each of the
23 ALOS-2 acquisitions to obtain individual AGB estimates
(Bi). These acquisitions asynchronously span 5 years (seen in
Table 2) leading to uneven annual and seasonal coverage. The
AGB estimates obtained from individual acquisitions can be
impacted by nonhomogeneous environmental conditions
(precipitation, soil, and canopy moisture) (Harrell et al.,
1997; Pulliainen et al., 1999; Rauste, 2005; Cartus et al.,
2012; Khati et al., 2020) or even ionospheric scintillation
(Shimada et al., 2008; Belcher and Cannon, 2014). In our
case, we do not observe any ionospheric scintillation. To
improve the AGB estimation accuracy, we average the
individual AGB estimates (Bi) to generate a multitemporal
averaged AGB (Bmt) adopting an approach similar to
Santoro et al. (2011).

Bmt � ∑N
i�1Bi

N
(2)

We modify this approach to capture the uncertainties
associated with multitemporal AGB estimates. To estimate
multitemporal AGB retrieval accuracy using N acquisitions,
the N acquisition dates are chosen at random and the process
is iterated 100 times. For example, with N � 5, the selected
acquisitions might be all within 1 year (year 2018 has eight
acquisitions) or might span the entire 5-year time span. Here,
N ranges from 1 (single acquisition) to 23 (all acquisitions). For
each N, the multitemporal AGB obtained is characterized by
RMSE error and its standard deviation.

3.5 Relating GEDI Data to AGB
The GEDI height metrics are converted to AGB using the
process detailed in Section 2.5. This results in 2,200 samples
of AGB derived from GEDI height-field AGB allometry. The
ALOS-2 backscatter for each of these GEDI shots is calculated.
To reduce the noise within the data, we binned the GEDI data at
1 Mg/ha AGB intervals resulting in 227 samples. Larger binning
intervals resulted in very few samples for low-AGB regions. For
example, at 5 Mg/ha bins, there are only 49 samples of which 20
samples have AGB under 100 Mg/ha. The binned GEDI data are
iteratively and randomly split into training and testing samples
for calibration and validation of the WCM model. The GEDI-
derived AGB is applied to train and validate the WCM model
over each of the 23 ALOS-2 acquisitions. Further,
multitemporal averaging as explained in the preceding
section is applied to the estimated AGB. The accuracy of the
modeled AGB using GEDI data is quantified using root mean
square deviation (RMSD) measured with respect to the GEDI
estimated AGB. Note that RMSD is used here as the parameter
used to train the models (GEDI AGB) has an RMSE of 32 Mg/ha
with respect to field measured AGB.

3.6 AGB Mapping and Comparison With
Available Tropical AGB Products
Using the multitemporal ALOS-2 acquisitions, we derived the
WCMmodel parameters using individual (Bi) and multitemporal
(Bmt) AGB retrieval strategies. These parameters were used to
invert the AGB and generate AGB maps of the Haldwani forest
range and the surrounding regions. We use the TanDEM-X 50-m
forest/nonforest (FNF) mask (Martone et al., 2018a,b) to mask
out any nonforest regions. The mask is resampled to 25 m
resolution using the nearest neighbor resampling method.
Although this FNF data masks out some forest regions, it
performs better than the ALOS-2 FNF over this test site.
Using the mean of the AGB map generated for each ALOS-2
acquisition, the multitemporal mean AGB map is generated. We
refer to this AGB map as ALOS-2 SLC AGB map.

To further assess the robustness of time-series ALOS-2 data
for AGBmapping, we apply theWCM parameters on the globally
available 25 m ALOS-2 yearly backscatter mosaics. The annual
mosaic backscatter is available from 2015 till 2020. For each of
these years, we calculated the WCM parameters from the
multitemporal ALOS-2 acquisitions for those years. Inverting
these parameters on the ALOS-2 global annual mosaics, we
obtain the AGB maps over Haldwani. We used the TanDEM-
X FNF to mask out the nonforest regions in this AGB map. We
refer to this AGB map as the ALOS-2 annual mosaic generated
AGB map.

We compare the generated AGBmaps with available reference
AGB products over the test site. The 2010 Global Biomass
(GlobBiomass) (Santoro, 2018) map generated at 25 m
resolution and the 1 km resolution pan-tropical biomass map
(Avitabile et al., 2016) are used as reference AGB maps to
qualitatively compare the generated AGB maps produced in
this study. The RMSE between the field measured AGB and
estimated AGB from these four maps is used for quantitative
analysis.

4 RESULTS AND DISCUSSION

4.1 Temporal Variation of Backscatter
The variation of backscatter as a function of field measured AGB
is shown in Figure 7. Here, the mean ALOS-2 backscatter for
each year is shown by the dots, and the standard deviation is
shown by the error bars. The standard deviation of backscatter
over the plots within a year is affected by the changes in weather
(change in dielectric constant (Khati et al., 2020)), surface
roughness (Wang et al., 1987; Ulaby et al., 1996; de Roo et al.,
2001; Joseph et al., 2010), seasonal variations (leaf-on, leaf-fall
(Khati et al., 2017; Bouvet et al., 2018)), and the number of annual
acquisitions. The dotted line in each plot is the WCM curve
estimated after calibrating the WCM model with the training
samples. Here, the mean model parameters for each year’s
acquisitions are used to plot the WCM curves.

Figure 7I shows the box plots of the temporal standard
deviation (mean, quantiles, minimum, and maximum
backscatter standard deviations) of ALOS-2 backscatter time
series for different AGB ranges. Here, the AGB is grouped at
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every 5 Mg/ha range. This represents the temporal behavior of
SAR backscatter as a function of the AGB level. Usually shorter
trees (or low-biomass forests) have a larger temporal
variability as the L-band SAR signal has higher penetration
through the canopy and is influenced to a larger extent by the
soil and canopy moisture variations, under-canopy structure
changes, and degradation. The temporal standard deviation of
backscatter decreases from a mean deviation of 2.5 dB for low-
AGB regions (≥100 Mg/ha) to less than 1 dB for forests with
AGB ≥ 100 Mg/ha. This shows that, for our case, we expect to
have higher variations in backscatter over the time series for
low-AGB regions. This is also seen in Figure 7H where the
error bars show higher backscatter deviation for AGB ≤
100 Mg/ha.

4.2 WCM Parameters
The iterative model training and validation approach explained
in Section 3.3 was applied to all the 23 ALOS-2 acquisitions
using a χ-squared minimization approach. The WCM model

parameters a, b, and c and their standard deviation for each
acquisition are estimated. We analyzed the impact of soil
moisture, precipitation, and wind speed on the estimated
WCM model parameters. In the absence of in situ soil
moisture sensor data, the soil water index (SWI) derived from
the Metop ASCAT sensor is used in this study. Although the
resolution of this product is 0.1°, we observed a positive
correlation with WCM parameter a (see Figure 8A). This is
consistent with observations reported at L-band (Bouvet et al.,
2018; Khati et al., 2020). Parameters b and c did not have any
correlation with SWI as shown in Figure 8B and Figure 8C.

The parameter a describes the scattering contribution from
the ground and is more sensitive to changes in soil moisture,
explaining its positive correlation with SWI. Parameter b
describes the contribution of canopy components in the forest.
Contrary to our findings in Lenor Landing, AL (Khati et al.,
2020), we do not observe a positive correlation of parameter b
with soil moisture. This can be attributed to the use of satellite-
derived SWI product instead of in situ volumetric soil moisture

FIGURE 7 |Mean annual ALOS-2 HV backscatter from 2014 to 2020 (A–G) plotted as a function of forest AGB with the WCMmodel curve. The whisker plots are
the standard deviation of the backscatter. N shows the number of acquisitions available for each year over the site. The plot (H) shows the mean backscatter across all
acquisitions plotted as a function of forest AGB. (I) is the HV backscatter multi-temporal standard deviation calculated for all acquisitions over the period 2014-2020.
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measurements as used in (Khati et al., 2020). The SWI products
are generated at coarser resolutions and typically represent the
soil moisture content excluding the contributions from
vegetation. Parameter c, representing the attenuation of the
L-band SAR signal through the forest canopy, varies between
0.015 ha.Mg−1 to 0.030 ha.Mg−1. This is consistent with values
reported by Bouvet et al. (2018) over Africa using ALOS/PALSAR
data (between 0.0129 and 0.0291 ha.Mg−1 for HV-pol). The

parameter c varies with forest type as it is a function of
vegetation water content and vegetation structure (Bouvet
et al., 2018).

4.3 AGB Retrieval Performance
The retrieved WCM model parameters are used to estimate the
forest AGB for each acquisition. The training and validation
samples are iterated to obtain an estimate of the RMSE between

FIGURE 8 | The estimated WCM model parameters (A–C) plotted against the soil water index (SWI) derived from the Metop ASCAT sensor. The parameter a
shows a positive correlation with SWI while no such trend is observed for parameters (B,C).

FIGURE 9 | (A) The root mean squared error (RMSE) of the estimated AGB with respect to the field AGB for each ALOS-2/PALSAR-2 acquisition measured for all
field plots and for plots with AGB less than 100 Mg/ha. (B,C) assess the impact of mean precipitation (72 h before acquisition) and SWI on model estimated AGB error.
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the field measured AGB andWCMmodel estimated AGB. This is
shown by the dotted line in Figure 9A. Additionally, the RMSE is
also calculated for field plots with AGB less than 100 Mg/ha
(according to the NISAR requirements) as shown by the solid line
in Figure 9A. The overall RMSE varies between 58 Mg/ha and
73 Mg/ha for the 23 individual acquisitions. The RMSE for low-
AGB forests varies between 32 Mg/ha and 69 Mg/ha. The
saturation of the WCM curves (β � βsat) for the 23
acquisitions varies between 65 Mg/ha and 125 Mg/ha with a
mean of 96 Mg/ha. We observed that the saturation was
higher for acquisitions with drier conditions (SWI ≤ 0.4) and
decreased as SWI increased. However, the correlation was not
significant.

The accuracy of AGB estimated from each acquisition depends
on a number of factors including weather, soil and canopy
moisture, changes in forest (disturbance and degradation), and
model-fitting errors. Using the calibration and validation approach
detailed in Section 3.3, we minimize the model-fitting errors. The
field data is carefully selected removing any plots affected by forest
changes (logging and growth). The impact of weather andmoisture
changes is analyzed in this study using the precipitation measured
at the weather station and SWI estimated over the study area. The
mean precipitation 72 h before the acquisition is used here. The
box plots in Figure 9B and Figure 9C show the effect of
precipitation and soil moisture on AGB estimation accuracy.
The black dots show the RMSE for individual acquisition in
each range of precipitation or SWI. There is an interesting
trend between the RMSE of retrieved AGB and mean
precipitation. For acquisitions in dry conditions (N � 8) the
RMSE varies between 58Mg/ha and 71Mg/ha. Here, the RMSE
is not influenced by precipitation but would be affected by other
factors discussed earlier. Excluding the acquisitions in dry
conditions, the RMSE increases with precipitation. The mean
RMSE is 60Mg/ha for light precipitation (≤1 mm/h)
acquisitions and increases to 66Mg/ha for acquisitions with
higher precipitations. For acquisitions with low soil moisture
(SWI ≤ 0.3), we observe RMSE between 58Mg/ha and 68Mg/
ha. Here, we are considering acquisitions with SWI values between
selected intervals. For acquisitions with higher SWI, the RMSE is
slightly higher between 65Mg/ha and 70Mg/ha.

The red squares in Figure 9B and Figure 9C represent the
RMSE of mean AGB for acquisitions within each precipitation
and SWI interval. For example, there are eight acquisitions with
zero precipitation. Themean AGB from these eight acquisitions is
used to estimate the RMSE shown by the red square in Figure 9D.
It is interesting to note that the impact of precipitation up to
10 mm/h can be minimized using mean AGB estimates as seen by
the red squares in Figure 9B.

4.4 Multitemporal AGB Retrieval
To take advantage of the multitemporal acquisitions and assess
their use in improving the AGB estimates, we use the mean of the
AGB estimates from each individual acquisition. Adding more
acquisitions improves the AGB estimates. We randomly selected
any N acquisitions with 1 ≤ N ≤ 23. Figure 10A shows that the
RMSE decreases from 65 Mg/ha to 55 Mg/ha with an increase in
the number of acquisitions used to estimate multitemporal AGB.

Similarly, for low-AGB regions, the RMSE improves from 49 Mg/
ha to 38 Mg/ha. Thus, using the multitemporal AGB retrieval
approach, we observed an overall improvement in AGB estimation
accuracy of 16% for all field plots and 21% for plots with AGB ≤
100Mg/ha (Figure 10B). Figure 10C shows the deviation of the
error for the increasing number of acquisitions. The stability of
AGB estimates improves with additional acquisitions. From this
analysis, we can observe that 1) after ten acquisitions, the
improvement in AGB estimation accuracy with each additional
acquisition is not significant and 2) the variations in backscatter
due to changes in soil and canopy conditions are better absorbed
with the use of multitemporal acquisitions.

This improvement in AGB estimation usingmultitemporal data
is consistent with findings reported in the literature. Cartus et al.
(2012) reported that, over the North-Eastern United States, using
ten ALOS/PALSAR acquisitions, the overall RMSD improved by
23.6% from 55Mg/ha for single acquisitions to 42Mg/ha for
multitemporal averaging. A similar analysis using multitemporal
ALOS-2 SAR data over Mondah and Lope forest sites in Gabon is
reported by Cartus and Santoro (2019). Their study assesses that,
using multitemporal L-band SAR acquisitions, the %RMSE
(percentage of mean AGB) improves from 135% to 89% for
Mondah and from around 60% to 45–50% for Lope forest test
sites. Using four ALOS-2 acquisitions over a Chinese fir-dominated
forest, the AGB estimation accuracy improved from a %RMSE of
33.8% for a single acquisition to 24.4% when multitemporal data
were used (Long et al., 2020). However, over a Pine and Eucalyptus-
dominated semiarid forest in Australia, Tanase et al. (2014) report
that the multitemporal approach provides more reliable AGB
estimates but did not improve the AGB estimation accuracy
significantly. Extensive analysis carried over Swedish forest sites
using ALOS/PALSAR data shows that, using HV-pol backscatter,
the RMSE improves by 50% or more when multitemporal retrieval
strategies were used (Santoro et al., 2015).

4.5 GEDI- and ALOS-2-Based Forest AGB
Retrieval
As described in Section 3.5, 227 binned samples of the GEDI AGB
were used to calibrate the WCM models using the HV-pol
backscatter of all 23 ALOS-2 acquisitions. The WCM model
parameters were used to invert the forest AGB. The RMSD of
the WCM-inverted AGB (with respect to the GEDI-derived AGB)
for each acquisition is shown in Figure 11A. The RMSD ranges
between 55Mg/ha and 88Mg/ha. The WCM curves for the GEDI
samples saturates between 55Mg/ha and 95 Mg/ha as shown in
Figure 11B. The saturation of the WCM curves was lower for
acquisitions after August 2018.

To test the utility of combining multiple ALOS-2 acquisitions
with GEDI, we use the multitemporal average of the estimated AGB.
We observed that combiningmultiple AGB estimates did not lead to
any significant improvement in AGB estimation accuracy. The
RMSD reduced from 70 ± 8Mg/ha (using single acquisition) to
66 ± 3Mg/ha (using all 23 acquisitions). To analyze further, we used
the acquisitions from each year to obtain the multitemporal AGB
estimates. Figures 11C–I show the validation plots comparing the
GEDI measured AGB with the SAR estimated AGB. The error bars
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FIGURE 10 | (A) shows the improvement in RMSE and (B) shows the percent improvement in RMSE (B) of the estimated AGB when time-series acquisitions are
used. (C) describes the reduction in deviation of the measured error in AGB estimates with an increase in the number of acquisitions used.

FIGURE 11 | (A) shows the RMSE of the WCM estimated AGB with respect to the GEDI measured AGB, and (B) shows saturation of the WCM curve for each
ALOS-2/PALSAR-2 acquisition. The scatter plots in (C–I) compare the multitemporal AGB estimates using ALOS-2 data acquired each year with the GEDI measured
AGB. The error bars along the abscissa represent the RMSE in the GEDI measured AGB, while the error bars along the ordinate represent the standard deviation of the
AGB estimates for each year.
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along the abscissa represent the RMSE in the GEDI measured AGB,
while the error bars along the ordinate represent the standard
deviation of the AGB estimates for each year.

The multitemporal AGB estimated from 2014 and 2016
acquisitions performs better with RMSD of 55.7 Mg/ha and
61.3 Mg/ha, respectively. The multitemporal AGB estimates
from 2018 and later show lower accuracy. This might be due
to the bias in the plots used for GEDI AGB estimation. As
discussed in Section 2.5, the plots used for training the GEDI
height-field AGB models are all acquired in 2015 and 2017.
Further, we have a limited number of colocated plots which
are not representative of all the forest species or density classes in
the test site. The changes in the forest after 2017 might not be
completely characterized by the GEDI AGB, leading to higher
uncertainties in the WCM modeled AGB estimates for
acquisitions after 2017.

4.6 Comparison of AGBMapsWith Available
Data Sets
The AGB maps are generated using the ALOS-2 multitemporal
acquisitions and the ALOS-2 annual global backscatter mosaic as

described in Section 3.6. A subset of the generated AGB maps
from ALOS-2 SLC and ALOS-2 annual mosaic are shown in
Figures 12A,B, respectively. The AGB maps over the test site
from the GlobBiomass and the pan-tropical biomass products are
shown in Figures 12C,D, respectively. Note that maps in Figures
12A–C are at 25 m resolution, while the pan-tropical AGBmap in
Figure 12D is at 1 km resolution. The four AGB maps have a
common color map which is clipped at 200 Mg/ha for easier
comparison and visualization.

Figure 13 shows the validation scatter plots between the field
measured AGB and the AGB estimated by the generated AGB
maps (Figures 13A,B) and the reference AGB maps (Figures
13C,D). The RMSE and the number of field plots imaged are also
shown. The number of field plots is lower for ALOS-2 SLC and
ALOS-2 annual mosaic generated AGB maps due to the use of
TanDEM-X FNF which masked a few forest areas. The RMSE for
the AGB map generated in this study using the ALOS-2 time
series is the lowest at 62 Mg/ha. The AGB generated using ALOS-
2 annual mosaic has the highest RMSE. This might be due to
higher uncertainties in the global mosaic backscatter. Also, the
WCMmodel parameters trained on ALOS-2 SLC data applied to
the backscatter mosaic adds additional errors. The GlobBiomass

FIGURE 12 | The AGB maps generated using the multitemporal mean AGB of (A) 23 ALOS-2/PALSAR-2 SLC acquisitions and (B) yearly ALOS-2/PALSAR-2
global mosaics. The generated AGB maps are compared with available AGB maps from (C) GlobBiomass (Santoro, 2018) and (D) pan-tropical AGB (Avitabile et al.,
2016). The pan-tropical AGB is at 1 km resolution while the other maps are generated at 25 m resolution.
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AGB product shows good retrieval accuracy despite the 5- to 7-
year gap between the AGB map generation in 2010 and the field
measurements. The saturation of the WCM model estimated
AGB around 100 Mg/ha is clearly observed in Figure 13A.
Although the GlobBiomass product has a higher AGB
saturation level, its variance along the correlation line is also
higher. The 1 km resolution pan-tropical biomass product does
not show any correlation with field measured AGB due to the
coarser resolution.

5 CONCLUSION

In this paper, we analyze the potential of multitemporal ALOS-2
acquisitions to improve AGB estimates over a subtropical forest
using the 3-parameter WCM model and 0.1 ha field
inventory plots. The novelty of this research work is that
it aims to assess the improvement in AGB with L-band time-
series data along with the impact of the higher uncertainties
in field inventory data due to relatively small plot size. The
small plot size combined with multiple field campaigns
spread over 3 years might lead to higher errors in the field
inventory data. As this is a managed forest with uni-species
compartments, the possibility of these plots not capturing the
variability in the forest is reduced significantly. However, due

to the forest management practices, the forest compartments
undergo changes (logging and plantation) which might
impact WCM model calibration. The influence of such
plots on the analysis carried out is reduced due to the
change detection analysis carried out for the 93 plots as
shown in Figure 4. Our analysis shows that forest AGB
retrieval improves by aggregating multitemporal AGB
estimates from L-band HV SAR backscatter time series.
For single L-band acquisitions, the RMSE of the estimated
AGB varies between 60 Mg/ha and 75 Mg/ha. With
multitemporal averaging, the AGB estimation accuracy
improves by up to 16% with RMSE decreasing to 55 Mg/
ha. Note that this approach leads to retrieval accuracy better
than any of the individual AGB estimates. Furthermore, this
analysis shows that the AGB estimation accuracy improves
by 21% for forests with AGB less than 100 Mg/ha. Using more
than ten ALOS-2 acquisitions in the multitemporal AGB
retrieval approach did not lead to significant improvement
in AGB estimates for the managed forest under study.

The RMSE with multitemporal retrieval is around 44% of
mean AGB and is relatively high. However, if we consider
only the low-AGB forest regions (≤100 Mg/ha), then the
retrieval accuracy with multitemporal data results in AGB
products with RMSE of 39 Mg/ha (31% of mean AGB). These
errors can be further reduced if 1) larger (>0.5 ha) and

FIGURE 13 | The validation scatter plots compare the field measured AGB with the multitemporal mean AGB of (A) 23 ALOS-2/PALSAR-2 SLC acquisitions, (B)
yearly ALOS-2/PALSAR-2 global mosaics, (C) GlobBiomass (Santoro, 2018), and (D) pan-tropical AGB (Avitabile et al., 2016).
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permanent field plots are available, 2) small footprint ALS
data or NFI data are accessible, which would reduce the
uncertainties in the field inventory data, and 3) denser L-
band timeseries is acquired leading to a lower temporal gap
between field inventory and acquisitions. This work assumes
importance from the perspective of the NISAR mission’s
goals to generate global forest AGB products. The NISAR
mission would acquire up to 30 acquisitions per year over a
target and generate global AGB products for forests with
AGB up to 100 Mg/ha. The products would achieve an RMS
error of 20 Mg/ha or better. Although the NISAR biomass
products may be generated using more complex algorithms
taking into account the seasonal and weather-induced
changes in SAR backscatter, there is limited ground
inventory data over most of the tropical and subtropical
forests. Among the other findings, this work confirms that,
using denser time-series L-band data and more complex
algorithms, it would be possible to generate AGB products
which would achieve the desired accuracy.

Further, this research work provides a preliminary analysis
of the AGB products that can be generated using the GEDI
height metrics and ALOS-2 time series. It should be noted that
we have a limited set of colocated field plots that were used to
relate GEDI height metrics with field AGB. The analysis
presented shows the potential of improved AGB estimation
using a fusion of GEDI height metrics and L-band SAR
backscatter time series.
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