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The Okinawa Trough (OT) is an incipient back-arc basin, but its crustal nature is still
controversial. Gravity inversion along with sediment and lithospheric mantle density
modeling are used to map the regional Moho depth and crustal thickness variations of
the OT and its adjacent areas. The gravity inversion result shows that the crustal
thicknesses are 17–22 km at the northern OT, 11–19 km at the central OT, and
7–19 km at the southern OT. Because of the crust with a thickness larger than 17 km,
the slow southward arc movement, and scarce contemporaneous volcanisms, the
northern OT should be in the stage of early back-arc extension. All of the moderate
crustal thickness, high heat flow, and intense volcanism at the central OT indicate that this
region is probably in the transitional stage from the back-arc rifting to the oceanic
spreading. A crust that is only 7 km thick, lithosphere strength as low as the mid-
ocean ridge, and MORB-similar basalts at the southern OT demonstrate that the southern
OT is at the early stage of seafloor spreading.
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INTRODUCTION

Crust is the outermost solid shell of the Earth and the crust types vary significantly among different
tectonic units, such as continental margins, oceanic basins, and island arcs. The variation of crustal
thickness is a critical factor for understanding the processes of continental rifting and breakup, and
determining the crust nature for the incipient back-arc basin (Sutra and Manatschal, 2012).

The Okinawa Trough (OT) is a back-arc basin developed under the area of East China Sea.
Although a number of studies have been performed to examine its crustal structure (Iwasaki et al.,
1990; Nakamura et al., 2003; Gungor et al., 2012; Klingelhoefer et al., 2012; Shang et al., 2017; Qi et al.,
2020), it is still controversial if the nature of its crust is continental, transitional, or oceanic (Liu et al.,
2016) (Figure 1). Iwasaki et al. (1990) and Nakahigashi et al. (2004) suggested a thinned continental
crust at a rifting stage for northern OT based on OBS data. Sibuet et al. (1998) had the same
suggestion for southern OT. Han et al. (2007), however, suggested that the central and southern OT
are at a transitional stage based on the extremely high heat flow and intense volcanic activities. Arai
et al. (2017) and some earlier researchers (Lee et al., 1980; Sibuet et al., 1987) suggested that oceanic
spreading have already occurred in OT. Liu et al. (2016) and other earlier researchers (Sibuet et al.,
1987; Sibuet et al., 1998) reported the founding of the linear magnetic anomalies in central OT. Also,

Edited by:
Tianyao Hao,

Institute of Geology and Geophysics,
(CAS), China

Reviewed by:
Luis E. Lara,

Servicio Nacional de Geología y
Minería de Chile (SERNAGEOMIN),

Chile
Finnigan Illsley-Kemp,

Victoria University of Wellington,
New Zealand

*Correspondence:
Xiwu Luan

xluan@qnlm.ac

Specialty section:
This article was submitted to

Structural Geology and Tectonics,
a section of the journal

Frontiers in Earth Science

Received: 03 August 2021
Accepted: 23 September 2021
Published: 03 December 2021

Citation:
Zhang L and Luan X (2021) Moho
Geometry of the Okinawa Trough
Based on Gravity Inversion and Its

Implications on the Crustal Nature and
Tectonic Evolution.

Front. Earth Sci. 9:752488.
doi: 10.3389/feart.2021.752488

Frontiers in Earth Science | www.frontiersin.org December 2021 | Volume 9 | Article 7524881

ORIGINAL RESEARCH
published: 03 December 2021

doi: 10.3389/feart.2021.752488

http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2021.752488&domain=pdf&date_stamp=2021-12-03
https://www.frontiersin.org/articles/10.3389/feart.2021.752488/full
https://www.frontiersin.org/articles/10.3389/feart.2021.752488/full
https://www.frontiersin.org/articles/10.3389/feart.2021.752488/full
https://www.frontiersin.org/articles/10.3389/feart.2021.752488/full
http://creativecommons.org/licenses/by/4.0/
mailto:xluan@qnlm.ac
https://doi.org/10.3389/feart.2021.752488
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2021.752488


regarding the oceanic spreading, Kimura (1985) gave an average
half spreading rate of 2 cm/year to the southern OT since early
Pleistocene. The time of initial rifting of the northern and central
OT is considered to be at the Middle Miocene (Gungor et al.,
2012; Xu et al., 2014), while that of the southern OT is believed to
be just in the Quaternary (Wu et al., 2007; Shang et al., 2017).
Until now, the references have no answer to why there is so long a
delay time between northern and southern OT (Shang et al.,
2017).

Many researchers have mapped theMoho of the OT by gravity
methods, but their results vary considerably from each other
(Hao et al., 2006; Ding et al., 2017; Xuan et al., 2020). In addition,
the crustal thickness predicted by gravity method is quite
different from the reflection and wide-angle seismic methods
in southern OT (Klingelhoefer et al., 2012; Liu et al., 2016). The
reason for this difference might be that the low-density anomaly
in the mantle due to magma upwelling was not considered in the
previous gravity study (Zhou et al., 2001).

Recently, a new alternative gravity inversion method was
provided by Bai et al. (2019b), which incorporates sediment
and lithospheric mantle density corrections to map the
regional Moho topography. Considering the low coverage of
deep seismic refraction and broadband seismogram data
(Aitken, 2010), here we adopt Bai’s method to map new

regional Moho topography of OT by combining it with heat
flow, OBSs, and lithospheric strength data, to further examine
and discuss the crustal nature of the OT and provide new insight
into the ongoing processes of the back-arc basin.

GEOLOGIC SETTING

The Philippine Sea Plate is characterized by three seafloor highs,
known as the Amami Plateau, the Datio Ridge, and the Oki-Daito
Ridge to the north (Nishizawa et al., 2014) and relatively flat
topography to the south (Taylor and Andrew, 2004). The
Philippine Sea Plate is subducting beneath Ryukyu Arc along
Ryukyu Trench (Sibuet et al., 1998) with a current subduction
rate from ∼8 to ∼13 cm/year from north to south progressively
(Argus et al., 2013). The earthquake data indicate that the dip of
the Wadat–Benioff zone of the Philippine subduction plate is
25°–27° at the north and 55°–75° at its south.

OT extends ∼1,200 km in the NE-SW direction along and at
the back of Ryukyu Arc. It can be divided into northern, central,
and southern OT by the Tokara Fault in the north and the
Kerama Fault in the south (Fabbri et al., 2004; Gungor et al., 2012)
(Figure 1). The depth of seafloor of the southern OT is deeper
than that of the central and northern OT, suggesting more rapid

FIGURE 1 | Simplified structural map showing the tectonic setting of the Ryukyu trench-arc-basin system and its adjacent region. The base map is the ETOPO1
global relief grid. NOT: northern Okinawa Trough (OT); COT: central OT; SOT: southern OT. The boundaries of the three OT sections are the Tokara Fault and the Kerama
Fault (Yan and Shi, 2014).
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subsidence in the south. Seismic data suggest that the southern
OT is characterized by well-developed symmetric deep faults,
while more diffuse rifting occurred in the north (Gungor et al.,
2012). It indicates that the forces along the OT are uneven (Doo
et al., 2018). The OT ends at the collision zone between the Luzon
Arc and the Taiwan Island since 3.5–4.0 Ma, and this collision
probably induced the opening of southern OT (Letouzey and
Kimura, 1986; Rateb et al., 2017).

OT has an abnormally high heat flow and intense magmatic
activity (Zhang et al., 2019). The average heat flow of the OT
based on the 348 available measurements from the global heat
flow database of the International Heat Flow Commission is
458 mW/m2, which is much higher than the global average value
of 86 mW/m2 (Davies, 2013). The extremely high heat flows
(>1,000 mW/m2) in the OT are almost distributed in the central
axis of OT, where active volcanoes and hydrothermal vents are
developed considerably (Figure 1) (Ishibashi et al., 2015). The
geochemistry studies indicate that magmatic activity is affected
obviously by fluids derived from the subducting slab dehydration
(Guo et al., 2017). Active magmatism at the back-arc and non-
spreading central and northern OT may be induced by
subducting of the Datio Ridge and the Amami Plateau (Sibuet
et al., 1998; Rateb et al., 2017).

The evolution of the OT can be divided into two (Letouzey and
Kimura, 1986; Sibuet et al., 1987; Shang et al., 2017) or three
stages (Kimura, 1985; Gungor et al., 2012; Liu et al., 2016). The
first stage is the initial rifting, triggered by the back-arc normal
faulting. The second stage is the passive extension, triggered by
the strike-slip pull-apart process or transtensional NNE-trending
faults. The third stage is the initial divergence indicated by the
newborn oceanic crustal spreading (Liu et al., 2016).

METHODOLOGY AND DATA

The Moho defined as the boundary between crust and mantle is
one of the largest density boundaries with the lithosphere (Lai
et al., 2016), so gravity method can be used to image the Moho
geometry.

The free air gravity anomaly (Δgf) is given by:

Δgf � gm + gb + gs + gt + go, (1)

where gm is the mantle residual gravity anomaly that reflects
Moho undulations; gb and gs are the gravity anomaly induced by
seawater and sediment, respectively, when taking continental
crust density (2.7 g/cm3) as the background; gt is the anomaly
that originates from mantle density perturbations because of the
thermal expansion when taking the normal mantle density (3.3 g/
cm3) as the background; go is the gravity anomaly caused by the
other sources, and this anomaly is relatively small and can be
ignored (Bai et al., 2014; Kusznir et al., 2018). After the isolation
of the mantle residual gravity anomaly, the Moho burial depth
can be mapped based on this mantle residual gravity anomaly
(gm) in the frequency domain (Oldenburg, 1974).

Seawater density is taken as a constant of 1.03 g/cm3, but the
density variations of sediment and lithospheric mantle should be

modeled in detail. The advantage of this method is that it can
remove the gravity effect of density variations of sediments due to
compaction and those of lithospheric mantle due to thermal
expansion from the observed free air gravity anomaly by density
modeling, which is essential for the gravity inversion in the back-
arc basin with hot mantle upwelling (Bai et al., 2019b).

Estimating Gravity Effect of the Sediment
Layer
The sediment gravity effect is unavoidable for theMoho inversion
when the sediment layer is thick. The key issues for estimating
gravity effect of the sediment layer are the sedimentary thickness
and the density variation. The data and method for mapping
sediment thickness variations will be explained in Methodology
and Data. The relationship between sediment burial depth,
porosity, and density can be used to calculate the sediment
density (Sawyer, 1985; López-Coto et al., 2013; Bai et al.,
2019a). The porosity variation is a function of buried depth
(z) as

Φz � Φ0e
−cz, (2)

where Φ0 is the initial sediment porosity and c is an empirically
determined constant with a unit of 1/depth. The parameters Φ0

and c vary with lithology. Based on the drilling data in the Xihu
Sag (Figure 1), Φ0 � 0.55 and c � 0.45 × 10−4 m−1 (Zhang et al.,
2009). When sedimentary pore is filled by seawater, the sediment
density (ρz) varying with depth z can be modeled via:

ρz � Φzρw + (1 −Φz)ρg, (3)

where ρw is the seawater density with a value of 1.03 × 103 kg/m3

and ρg is grain density with a value of 2.65 × 103 kg/m3 (Sawyer,
1985; López-Coto et al., 2013).

Estimating Gravity Effect of the Lithospheric
Mantle
The density perturbations of the lithospheric mantle caused by
thermal expansion can generate a large gravity anomaly at young
oceanic basins and rifted continental margins (Chappell and
Kusznir, 2008). There are different lithospheric mantle
temperature modeling methods (McKenzie, 1978; Stein and
Stein, 1992; Afonso et al., 2008). The gravity effect of density
perturbations due to thermal expansion can be modeled based on
the thermal expansion coefficient and the temperature structure
(McKenzie et al., 2005). The pure shear model by McKenzie
(1978) is adopted here for modeling lithospheric temperature
field as the work by Chappell and Kusznir (2008).

Crustal age is an important parameter for modeling the
temperature structure of lithospheric mantle (Cowie and
Kusznir, 2012). The crust of the West Philippine Sea Basin is
oceanic, and its age has been interpreted from marine magnetic
lineation (Müller et al., 2019). The continental crust is usually
much older than that of the oceanic crust, so we assigned the
continental crust to have a thermal age of 300 Ma (Currie and
Hyndman, 2006). Our tests show that the lithospheric mantle
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FIGURE 2 | The thickness map of the sedimentary layer in our study area. The grid is created via Kriging interpolation method based on the global marine sediment
thickness grid (Straume et al., 2019) and recent interpretation results of seismic reflection data (Fang et al., 2020). The black dashed lines represent the boundaries of the
Okinawa Trough.

FIGURE 3 | The free-air gravity anomalies (Sandwell et al., 2014) and the heat flow stations from the database of the International Heat Flow Commission.
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temperature almost does not change when the crustal age varies
larger than 300 Ma. Since the crustal nature is unclear at the
central and southern OT, a series of thermal ages will be assigned
to examine which can yield the Moho inversion result that can
best fit with the seismic interpretation.

Mapping Sediment Thickness Variations
The sediment thicknesses data used in this study are partly from
the global sediment thickness model for oceans and marginal
basins (Straume et al., 2019) and from recent seismic survey by
CGS and reported by Fang et al. (2020). Kriging interpolation
method is used to merge these two grids. Figure 2 shows the
sediment thickness data created and used in this study. The
depocenters distribute in NE trending, such as the Xihu and
Jilong sags. The maximum sediment thicknesses of the two sags
exceed 11 km. In the OT, the maximum sediment thickness
decreased from 8 km at the central OT to only 4–5 km at the
northern and southern OT.

Input Data
The free-air gravity anomalies (Figure 3) are from the 1-min-
resolution global free-air gravity model based on the altimetry
data by the satellite named Geosat, ERS-1, Envisat, GryoSat-2,
and Jason-1 (Sandwell et al., 2014). The bathymetric data used in
gravimetric correction are from the ETOPO1, which is also a
1 arc-minute global relief model (Amante and Eakins, 2009). The
Moho interpretation results of 11 geophysical (mainly OBS)
profiles at the OT and the Ryukyu Arc (Figure 1; Table 1) are
collected in order to estimate the gravity inversion uncertainty.
The heat flow (Figure 3) can be used to recover the thermal
structure of the Earth and the heat flow data are extracted from
the global heat flow database of the International Heat Flow
Commission.

GRAVITY INVERSION RESULT

According to our tests, when the ages of the southern and central
OT are 1 and 10 Ma, respectively, the Moho inversion result can
fit with the seismic interpretation best and the RMS between the
gravity and seismic results is 2.28 km. The gravity effect of the

sediment layer and lithospheric mantle are highly correlated with
the sediment thickness and crustal age variations, respectively
(Figure 4). Figure 5 shows our final Moho inversion result and
the crustal thickness map, and the later one is based on the Moho
inversion, bathymetry, and sediment thickness data.

The Moho and crustal thickness are characterized by NE
trending lineation, consistent with characteristic of the Ryukyu
trench-arc-basin system. The Moho depths are 25–30 km in the
East China Sea Shelf Basin and 15–25 km in the OT, respectively
(Figure 5A). The southern OT holds shallowest Moho and
thinnest crust in the whole OT. The crustal thickness of the
northern OT is greater than that of the central OT (Figure 5B).
One belt with highly thinned crust locates along the Xihu and
Jilong sags, extending in the NE direction in the East China Sea
Shelf Basin even though there is no Moho shallowing in this
region.

UNCERTAINTY ANALYSIS

We evaluate the reliability of our Moho depth estimates derived
from inversion of gravity data against previous seismic imaging
studies, and discuss the effect of lithospheric mantle temperature
on Moho inversion.

Comparison With Seismic Profiles
TheMoho depths interpreted from seismic studies are considered
to have a better accuracy than gravity inversion. So, seismic
interpretation results are always taken as the reference for
estimating gravity inversion uncertainty (Chappell and
Kusznir, 2008; Bai et al., 2019b). However, note that the
seismic interpretation itself also contains uncertainty. For
example, at the intersection point between line 7 and line 8
(Figure 1), the Moho depth from line 7 is 19.0 km (Wu et al.,
2020), but that from line 8 is 17.9 km (Gao et al., 2006); thus, the
difference between them reaches 1.1 km. Figure 6 shows the
comparison between the Moho depths from the collected seismic
interpretation and our gravity inversion. The root mean square
(RMS) between the Moho depths from interpreted seismic
profiles and those from our final gravity inversion at the same
sampling stations is 2.28 km. However, the RMS is 4.12 km when

TABLE 1 | Information on the geophysical profiles used in this study.

Profile Index Profile type Data year Length (km) Section of
the OT

Was sediment
thickness interpreted?

References

Line1 OBS 1984 190 North Yes Iwasaki et al. (1990)
Line2 OBS 1984 295 North Yes Iwasaki et al. (1990)
Line3 OBS 1999 320 North Yes Nakahigashi et al. (2004)
Line4 OBS 1995 290 North No Arai et al. (2017)
Line5 GMS 1989 600 Central No Gao et al. (2006)
Line6 OBS 1988 120 Central Yes Kodaira et al. (1996)
Line7 OBS 2015 490 Central Yes Wu et al. (2020)
Line8 GMS 1998 725 South No Gao et al. (2006)
Line9 OBS 1988 195 South Yes Iwasaki et al. (1990)
Line10 OBS 2009 300 South Yes Klingelhoefer et al. (2012)
Line11 OBS 2013 400 South No Arai et al. (2017)

Note: OBS, ocean bottom seismic; GMS, gravity–magnetic–seismic comprehensive profile.
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ignoring gravity effect induced by both sediment and mantle, and
that is 3.16 km when ignoring only the mantle gravity effect.

The Effect of Lithospheric Mantle
Temperature on Moho Inversion
We set a 0–300 Ma OT crustal age span for testing. At first, each
possible age pair for central and southern OT combination will be
applied to temperature modeling and gravity inversion by setting
age varying step as 10 Ma.When the crustal age of the central and
southern OT is 10 and 0 Ma, the gravity inversion can fit with the
seismic interpretation best. Then, the age step is reduced to 1 Ma;
age varying range for the central OT is narrowed to 20–0 Ma, and
that for the southern OT is narrowed to 10–0 Ma. Finally, when
the crustal age for the central OT is 10 Ma and that for the

southern OT is 1 Ma, the smallest RMS of 2.28 km is derived.
Some of the results are listed in Table 2. Please note that, when
the lithospheric mantle density perturbations due to temperature
variations are ignored for gravity inversion, the RMS will be
increased to 2.67 km. Therefore, the lithospheric mantle density
modeling based on the age setting for the central and southern
OT can improve the Moho inversion accuracy.

TECTONIC IMPLICATIONS

The large-scale Moho and crustal thickness variation trend is an
important implication for the tectonic characteristics. There is no
corresponding mantle upwelling beneath the Xihu and Jilong sags
judging from the Moho depth (Figure 5A and Figure 7), but the

FIGURE 4 | Gravity effect induced by sediment density variations relative to normal continental crust density (A) and gravity effect induced by lithospheric mantle
density variations relative to normal mantle density (B).

FIGURE 5 | Moho depths (A) determined from gravity inversion and crustal thickness (B), which is obtained by subtracting the sea water depth and sediment
thickness from the Moho depth. The red thick lines in the left panel represent the locations of the profiles in Figure 7 and Figure 8.
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crust here has been thinned considerably (Figure 5B and
Figure 7). It indicates that the attenuation of the Xihu and the
Jilong sag is mainly in the upper crust. However, the mantle has
upwelled under the OT and there is also obviously high heat flow
at the OT. It means that the crustal thinning at the OT is not
contributed by the upper crustal necking predominantly.
Therefore, the crustal thinning mechanisms are different
between the OT and the Xihu-Jilong sags.

The crustal thicknesses are 17–22 km at the northern OT,
11–19 km at the central OT, and 7–19 km at the southern OT
(Figure 5B). The crustal thickness variations along the OT is quite
similar to the Lau-Havre-Taupo back-arc basins (Kimura, 1985;
Sibuet et al., 1987; Yan and Shi, 2014), so probably multi-evolution
stages from rifting to spreading have been developed along the OT.

The Northern Okinawa Trough
TheMoho depth variations at the northern OT agree with the seismic
interpretation results of the OBS line 1, line 2, line 3, and line 4
(references are list in Table 1). Even though the velocity structures
obtained from the OBSs data also indicate that the northern OT is a
thinned continental crust in an arc rifting domain (Arai et al., 2017),
the average crustal thickness here is larger than those of the central and
southern OT. We suggest that the subduction of the seafloor highs,
such as the Kyushu-Palau Ridge and the Amami Plateau, beneath the
northern Ryukyu Arc had hampered the back-arc extension at the
northern OT. The conversion from subduction to collision causes
fore-arc rotation and also results in plate boundary curvature. In
addition, GPS measurements show that the southward movement of
the northeast Ryukyu Arc is much slower than that in the southwest
(Nakamura et al., 2003). Contemporaneous volcanisms are
concentrated on the northern Ryukyu Arc and scarcely occur in
the northern OT (Figure 1). Therefore, the northern OT should be in
the stage of early back-arc extension.

The Central Okinawa Trough
Compared with the northern OT, the crust of the central OT has
been highly thinned, with the present thickness of 11–19 km and
the Moho depths of 16–23 km. The seismic interpretation along

FIGURE 6 | Moho depth from gravity inversion vs. that from seismic
interpretation. The root mean square (RMS) between them is 2.28 km.

TABLE 2 | The root mean square (RMS) between gravity inversion result and
seismic interpretation when setting different thermal ages for the central
Okinawa Trough (COT) and the southern Okinawa Trough (SOT).

Thermal age (Ma) RMS (km)

COT SOT

300 300 3.07
40 40 2.62
20 20 2.54
10 10 2.40
1 1 2.45
1 10 2.42
10 5 2.31
10 1 2.28

FIGURE 7 | The crustal structure and the heat flow along the profile AA′;
profile location is shown in Figure 5A. The bathymetry is from ETOPO1, the
sediment thickness is extracted from the data shown in Figure 2, and the
Moho geometry is from our gravity inversion. The heat flow data are
extracted from the global heat flow database of the International Heat Flow
Commission. The dashed part of the heat flow curve represents that the heat
flow here is much higher than 350 mW/m2.

FIGURE 8 | The crustal structure and the heat flow along the profile BB′;
profile location is shown in Figure 5A. The data sources are the same as those
in Figure 7.
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line 7 (Wu et al., 2020) and our gravity inversion result (Figure 8)
show an obvious mantle upwelling beneath the axis of the central
OT. In addition, the crust here has many similar characters with
the oceanic crust, such as extremely high heat flow (Figure 8),
hydrothermal fields, and intense volcanism (Figure 1) (Hao et al.,
2004). Unlike only arc volcanism at the northern part of the
Ryukyu trench-arc-basin system, the volcanism migrated from
the arc to the back-arc region at the central OT. This is called the
volcanic arc-rift migration phenomenon (VAMP) (Sibuet et al.,
1987). A series of NE-trending faults occurred in the region with
VAMP (Gungor et al., 2012). It indicates that themagma upwelling
is correlated to the extensional faults. Active rifting structures have
been observed from seismic reflection data in the Iheya Graben and
the adjacent area at the central OT (Ikegami et al., 2015). However,
the crust here is still not thin enough for crust break and further
seafloor spreading. In addition, the volcanismhere is still dispersed.
Similar to the northern OT, the subduction of the Datio Ridge and
the Oki-Daito Ridge beneath the central Ryukyu Arc also had
hampered the spreading of the central OT. Therefore, the central
OT is probably in the transitional stage from back-arc rifting to
oceanic spreading, characterized by moderate crustal thinning,
high heat flow, and intense magmatic activity.

The Southern Okinawa Trough
Figure 7B shows that the southern OT has the thinnest average
crustal thickness among the three OT sections. However, solely
based on the crust thickness, it is difficult to determine whether it
is highly thinned continental crust or oceanic crust. We will
further discuss this issue from the following three aspects.

1) From the thermal state. In general, the age of the oceanic crust
is obviously younger than that of the continental crust. Our
lithospheric mantle density modeling result indicates that the
lithosphere thermal state of the southern OT is quite similar to
the thermal state of the mid-ocean ridge, and so the crust here
is apt to be oceanic.

2) From the plate strength. The effective elastic thickness (Te) of
the lithosphere at the southern OT estimated from topography
and gravity data is 5–7 km. The minimum effective elastic
thickness occurred around the Yaeyama Graben with a
thickness of 2.5–3.0 km (Fu et al., 2002), which is similar to
the Te value of the mid-ocean ridge (Cochran, 1979).

3) From the rock type. Fresh basalts were collected by TV grab
on the western end of the Yaeyama Graben, and this graben
holds the thinnest crust of the whole OT (Lai et al., 2016).
Furthermore, MORB-similar basalts at the southern OT is
considered to be an important evidence for seafloor spreading
here (Zong et al., 2016).

Therefore, we suggest that the southern OT is at the early stage
of seafloor spreading, especially at the Yaeyama Graben.

Comparisons to Other Similar Tectonic
Regions
The progressive variations of deformation style along the rift axis
as occurred in the OT can be found in other basins, such as the

East Gakkel Ridge-Laptev Sea Margin area in the Arctic Ocean
(Franke et al., 2001) and the Woodlark Basin off Papua New
Guinea in the western Pacific (Benes et al., 1994). The rifting to
drifting transitions has generally been suggested as the result of
differentiated lithospheric strength and the transfer or shear
zones are always the boundaries between the rifting and
drifting regions (Dunbar and Sawyer, 1996; Van Wijk and
Blackman, 2005). Since the NW-SE-trending Kerama and
Tokara faults, which separate the northern-central-southern
OT, are thought as the result of the subduction of the high
and buoyant topography in the Philippines Sea Plate (Sibuet et al.,
1998; Gungor et al., 2012) and no evidence can demonstrate that
pre-rifting OT has varying lithospheric strength, we suggest that
the diffuse rifting in the OT is also due to the topographic high
subduction.

CONCLUSION

The acoustic sedimentary basement geometry was mapped
based on the published sediment thickness grid and recent
seismic interpretations. The density variations in the
sediment layer and the lithospheric mantle have been
modeled for gravity inversion. The crustal thickness of the
Ryukyu trench-arc-basin systems was estimated from the
high-resolution free-air gravity anomaly.

The variations of the crustal thickness, along with the heat
flow, the fault pattern, and the petrology data, indicate that the
three sections of the OT are at different back-arc extension stages.
The back-arc extension of the northern and central OT had been
hampered by the subduction of bathymetry highs in the West
Philippine Basin, but the southern section had not.

1) The northern OT holds the thickest crust among the three
sections, the slow southward arc movement, and scarce
contemporaneous volcanisms. These three facts indicate
that the northern OT is in the stage of the early back-arc
extension.

2) The central OT holds moderately thinned crustal thickness,
extremely high heat flow, and intense volcanism. Therefore,
the central OT is probably in the transitional stage from back-
arc rifting to oceanic spreading.

3) The thinnest crust at the southern OT is only with 7 km
thick. In addition, both the lithosphere thermal state and
the lithospheric strength of the southern OT are quite
similar to those of the mid-ocean ridge; MORB-similar
basalts have been found in the southern OT. Therefore, we
suggest that the southern OT is at the early stage of seafloor
spreading.
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