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As an important segment of the North China Craton, the Trans-North China Orogen
(TNCO) has experienced strong tectonic deformation and magmatic activities since the
Cenozoic and is characterized by significant seismicity. To understand the mechanism of
the crustal deformation and seismic hazards, we determined the crustal thickness (H), Vp/
Vs ratio (κ) and crustal anisotropy (the fast polarization direction φ and splitting time τ)
beneath the TNCO and its adjacent areas by analyzing receiver function data recorded by a
dense seismic array. The (H, κ) and (φ, τ) at a total of 309 stations were measured,
respectively. TheMoho depth varies from ∼30 km beneath the western margin of the Bohai
bay basin to the maximum value of ∼48 km beneath the northern Lüliang Mountain, which
shows the positive and negative correlations with the elevation and the Bouguer anomaly.
The average φ is roughly parallel to the strikes of the faults, grabens and Mountains in this
study area, whereas a rotating distribution is shown around the Datong-Hannuoba
volcanic regions. Based on the φ measured from the Moho Ps and SKS/SKKS
phases, we propose that the crustal deformation and seismic hazards beneath the
TNCO could be due to the counterclockwise rotation of the Ordos block driven by the
far-field effects of the India-Eurasian collision.
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INTRODUCTION

The North China Craton (NCC) as the largest and oldest known Archean craton in China is
located in the eastern margin of the Eurasian plate (Zhao et al., 2001). The NCC consists of the
western NCC (WNCC) and the eastern NCC (ENCC), which are separated by a Paleoproterozoic
orogen, the Trans-North China Orogen (TNCO) (Figure 1). The WNCC, mainly including the
Ordos Block (OB) and its surrounding Grabens, the Hetao Graben (HTG) and theWeihe Graben
(WHG), is dominated by the stable and thick lithosphere, while the ENCC underwent significant
reactivation and destruction during Mesozoic and Cenozoic (Chen and Ai, 2009; Zhu et al.,
2011). The TNCO, a composite unit composed of the Lüliang Mountain (LLM), the Taihang
Mountain (THM) and the Fenhe Graben (FHG), was formed by the collision of the ENCC and
WNCC in the Late Paleoproterozoic (∼1.8 Ga), resulting in the final amalgamation of the NCC
(Zhao et al., 2001). As a transition zone of the surface topography, lithospheric thickness (Chen
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and Ai, 2009) and gravity anomalies (Deng et al., 2014)
between the ENCC with lithospheric thinning and the
WNCC remaining stable cratonic roots, the TNCO has been
accompanied by complicated tectonic deformation and
magmatic activity during the episodic geological evolution
(Ren et al., 2002; Xu et al., 2004; Zhu et al., 2011). The
relative movement of the TNCO estimated from GPS is at a
rate of ∼5–11 mm/year (Shen et al., 2000; Zhao et al., 2015),
which is characterized by the distribution of strong
earthquakes (Xu and Ma, 1992; Gao et al., 2020) (Figure 1).
The mechanism of crustal deformation is important in
understanding the tectonic evolution and seismic hazards in
this study area. However, the details on crustal deformation
beneath the TNCO and its adjacent areas are still being
discussed and debated recently (Tian and Zhao, 2013;
Zhang et al., 2016; Yang et al., 2018; Schellart et al., 2019;
Zheng et al., 2019; Cai et al., 2021; Chang et al., 2021). Further
studies on crustal structure and anisotropy are essential for
constraining the crustal deformation mechanism.

Crustal deformation can produce anisotropy on the
wavelength scale of seismic waves (Nicolas and Christensen,
1987; Mainprice and Nicolas, 1989). Therefore, measurements
of crustal anisotropy can also help us understand the mechanism
of crustal deformation and the process of tectonic evolution.
Generally, the upper crustal anisotropy is attributed to the stress-
induced alignment of cracks (Crampin and Peacock, 2008), while
seismic anisotropy in the mid-to-lower crust and upper mantle is
more likely to be caused by strain-induced lattice preferred
orientation of minerals (Meissner et al., 2002). S waves from
local earthquakes located in the upper crust have been used to
estimate the upper crustal anisotropy beneath the ENCC (Gao
et al., 2011). In the upper mantle, seismic anisotropy is commonly
determined by the splitting of the SKS/SKKS phases (Zhao et al.,
2008; Chang et al., 2017; 2021). There is a gap, obviously, between
seismic anisotropy derived from local S waves and teleseismic
SKS/SKKS phases to measure the mid-to-lower crustal
anisotropy. Sherrington et al. (2004) pointed out that seismic
anisotropy inside the mid-to-lower crust cannot be ignored when
we look at the crustal deformation. The Ps phase from receiver
functions, a P-to-S converted wave at the Moho, is an ideal phase
to estimate seismic anisotropy within the whole crust.

We noticed that Liu and Niu (2012) developed a
comprehensive technique that employed the radial (R) and
transverse (T) receiver functions to compute the crustal
anisotropy and Sun et al. (2012) further added a harmonic
analysis to enhance the robustness of the measurements. Based
on these methods, crustal anisotropy beneath the southeastern
and northeastern Tibetan plateau was calculated to investigate the
mechanism of the crustal deformation and thickening (Sun et al.,
2012; Wang et al., 2016; Xu et al., 2018). Yang et al. (2018) and
Zheng et al. (2019) also measured the splitting of the Moho Ps
phases from receiver functions and observed the spatial
distribution of crustal anisotropy beneath the northeastern
TNCO, respectively. Results mentioned above confirmed that
crustal anisotropy has been successfully estimated from the
splitting of the Moho Ps phases and performed to study the
crustal deformation.

To further improve the understanding of the crustal structure
and deformation beneath the TNCO and its adjacent areas, we
determined the Moho depth, Vp/Vs ratio and crustal anisotropy
using receiver functions extracted from the teleseismic data
recorded by a temporary dense array of broadband
seismographs in this study. We further discussed the potential
implications of the crustal structure evolution and deformation
mechanism by comparing other published models (Deng et al.,
2014; Shen et al., 2016; Wang et al., 2020; Chang et al., 2021;
Huang et al., 2021).

DATA AND METHODS

Data
The ChinArray project plans to roll over mainland China with a
transportable array consisting of more than 1,000 broadband
seismographs with a station spacing of ∼30–40 km in order to
understand the structure of Earth’s interior (ChinArray-Himalaya,

FIGURE 1 | Tectonic setting map showing the seismic stations used in
this study. Stations located in different blocks are indicated with different
symbols. The red solid circle represents station 15,819 as an example of the
H-κ analysis and crustal anisotropy in Figures 2,3. The color circles with
red solid line are the large historic earthquakes (M ≥ 6, Liu and Wang, 2012).
The thick gray line denotes the North-South Gravity Line (NSGL). Lightyellow
regions are Hetao, Weihe and Fenhe grabens. DTV, the Datong Volcano;
HNV, the Hannuoba Volcano; CAOB, the Central Asia Orogenic Belt; OB, the
Ordos Block; LLM, the Lüliang Mountain; THM, the Taihang Mountain; BHBB,
the Bohai Bay Basin; HTG, the Hetao Graben; WHG, theWeihe Graben; FHG,
the Fenhe Graben. Inset shows the location of the Trans-North China Orogen
with the blue rectangular. The black thick arrowhead indicates the absolute
plate motion (APM) direction from GSRM v2.1 model (Kreemer et al., 2014).
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2011). The third phase deployment of theChinArray project covers an
area of 8° × 10° centered at the TNCO (Figure 1). Each seismograph
was equipped with a Guralp CMG-3ESP or CMG-3ESPC
seismometer and a Reftek 130 data logger. In this study, we used a
total of 309 stations with high quality three component waveform
recordings from April 2016 to January 2019 and then selected 440
earthquakes (Supplementary Figure S1) with a magnitude greater
than 5.0 and an epicentral distance between 30° and 90° to calculate
the receiver functions. As shown in Supplementary Figure S1, most
of the teleseismic events come from inside the western Pacific
subduction zone and the Java trench. However, with the other
earthquakes, the overall coverages in backazimuth and distance are
reasonably good.

Methods
The true orientation of the two horizontal components is
important when we use the three-component recordings of the
teleseismic events to generate receiver functions (Zeng, et al.,
2020). Therefore we first employed the P wave particle motions of
teleseismic events to estimate the true sensor orientation for each
station with the method proposed by Niu and Li (2011) before
rotating the two horizontal components into the radial (R) and
transverse (T) directions based on the great arc raypaths
connecting the events and stations.

Following the previous studies (Vinnik, 1977; Niu and
Kawakatsu, 1998; Niu et al., 2007), we further projected R and
T components to the principal directions (longitudinal, P,
and in-plane transverse, SV) estimated from the covariance
matrix in order to minimize the P wave energy in the receiver
function. We then used the “water-level” deconvolution
technique (Clayton and Wiggins, 1976; Ammon, 1991) to
compute receiver functions in the frequency domain. The
“water level” and the corner frequency of the Gaussian low
pass filter were set to be 0.01 and 1.5 Hz, respectively. After
careful inspection, a total of 33,772 receiver functions from
the 309 stations were selected with a station average of ∼109
receiver functions.

The crustal thickness and average Vp/Vs ratio were
estimated at each station by the two-step analysis following
Niu et al. (2007). We first computed the initial crustal thickness
using the Nth-root stacking technique (Muirhead, 1968;
Kawakatsu and Niu, 1994) with the Moho Ps phase alone. By
searching for the range of 20–70 km, we defined the depth with
the maximum amplitude as the initial crustal thickness.
Figure 2A shows the depth stacking at the station 15,819
and a clear P to S conversion peak at ∼48 km. Then a refined
H-κ analysis (Zhu and Kanamori, 2000) was used to estimate the
final crustal thickness, H, and Vp/Vs ratio, κ:

FIGURE 2 | (A) denotes the stacked receiver function after the time-to-depth conversion of station 15,819. The maximum peak marked by black triangle indicates
the initial Moho depth. (B) is the result of H-κ analysis at station 15,819. The cross white lines indicate the location of the peak amplitude. (C) shows the time domain
stacked receiver functions with the Ps slowness (red solid line) and the 2p1s slowness (blue dashed line). Note that amplitude of the phases is larger when they are
stacked with the correct slowness. (D) plots the radial receiver functions as a function of back azimuth at the station 15,819. The red dashed lines denote the
average arrival time of the Moho Ps phase. (E) indicates the result of harmonic analysis at station 15,819. The reciprocal of the minimum residual, the maximum value of
peak amplitude and total energy are plotted as a function of the harmonic degree.
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s(H, κ) � c(κ)
K

∑
K

i�1
(w1ri(t1) + w2ri(t2) + w3ri(t3))

Here K denotes the total number of receiver functions at a
given station and ri(t) is the amplitude of the ith receiver
function at the relative arrival times of the 0p1s (t1), 2p1s (t2)
and 1p2s (t3), following the phase notation of npms

introduced by Niu et al. (2007), with respect to the direct
P wave. w1, w2, and w3 are the weights of the three time
windows, which are assigned to 0.5, 0.25, and 0.25,
respectively. c (κ) is a coherence index of the three phases,
which is introduced by Niu et al. (2007) to reduce the trade off
between H and κ. We searched for H within ±20 km of the
initial depth derived from the depth stacking and κ in the

FIGURE 3 |Results of crustal anisotropy from the joint analysis with multi-component receiver function data at station 15,819. (A–C) show three individual methods
to estimate seismic anisotropy: 1) radial energy maximization with a cosine moveout correction; 2) radial correlation coefficient maximization; 3) transverse energy
minimization. (d) is the joint solution. (φ, τ) are searched in the range of 0–360° and 0–1.5 s with an increment of 1° and 0.02 s, respectively. White plus marks the
measured (φ, τ) where the objective functions reach to maximum. (E,F) show the calculated SNRs of stacked receiver function data as a function of the square root
of the subsample numbers, S1/2. Open and filled symbols in (E,F) indicate SNR calculated from stacks of receiver functions before and after the removal of seismic
anisotropymeasured by the joint receiver function. More specifically, opened squares shown in (E) indicate stacks from T receiver functions without anisotropy correction
but with polarity correction, while opened circles are from T receiver function with no corrections of anisotropy and polarity. Filled squares and circles represent stacks
after correction of anisotropy, and with and without polarity correction, respectively.
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range of 1.5–2.0. H and κ were determined when the summed
amplitude, s (H,κ), reached its maximum. The result of H-κ
analysis at the station 15,819 is shown in Figure 2B, which
gives an estimate of H � 46.1 km and κ � 1.744.

For the comprehensive analysis of crustal anisotropy (Liu
and Niu, 2012), we first calculated the moveout and made
corrections for each station using the estimates of the above
H-κ analysis so that all the cluster receiver functions were
expected to have a Moho Ps arrival time equivalent to the one
with an epicentral distance of 60° and a source depth of 0 km.
The R and T receiver functions were further normalized with
the peak amplitude of the P wave. Then, we analyzed the R
and T receiver functions as a function of back azimuth to
study the systematic variations in the peak Ps arrival time of
the R receiver functions and polarity changes of the T receiver
functions. The normalized maximum amplitude (An,max),
maximum energy (En,max), and minimum total residual
(Rn,min) between each receiver function and the stacked
receiver function were calculated and summed along a
harmonic moveout with a degree varying from 1 to 8 by
the method proposed by Sun et al. (2012). In Figures 2D,E,
we show the R receiver functions plotted as a function of back
azimuth and the result of harmonic analysis at the station
15,819. Then, we employed three individual objective
functions (IFOs) and one joint objective function (JOF),
and performed a statistical analysis on the robustness to
estimate the crustal anisotropy beneath each station. A
more detailed description on the IFOs, JOF and the
statistical analysis can be found at Liu and Niu (2012).
Here, the Figure 3 shows the analysis of crustal anisotropy
at station 15,819. The fast direction (φ) and the splitting time
(τ) estimated from three IOFs and the JOF are shown in
Figures 3A–C and Figure 3D, and show good agreement in
this four measurements. The robustness of the estimated φ
and τ is further evaluated by comparing the SNRs of the Ps on
the R and T components before and after the correction of
crustal anisotropy in Figures 3E,F.

RESULTS

Based on the H-κ analysis and the crustal anisotropy
estimation, we obtained 309 measurements of Moho depth
and Vp/Vs ratio (Supplementary Figure S2), and 62 robust
parameters of the crustal anisotropy (Figure 5). All estimated
results are listed in Supplementary Table S1, which is
organized by grouping stations in the following tectonic
units: the Central Asia Orogenic Belt (CAOB), the Ordos
Block (OB), the Lüliang (LLM) and Taihang (THM)
Mountains, the Bohai Bay Basin (BHBB), the Hetao
Graben (HTG), the Weihe-Fenhe Graben (WFG) and the
Datong-Hannuoba (DHV) Volcano. We also present the
average crustal thickness, Vp/Vs ratio, and crustal
anisotropy, together with other parameters, in
Supplementary Table S2 for the further comparison.

The estimated (H, κ) at 309 stations were interpolated into
1,419 meshed grids of 0.25° × 0.25° to show the lateral

variations of Moho depth (Figure 4A) and Vp/Vs ratio
(Figure 4B) beneath the study area, respectively. The
Moho depth varies from ∼30 to ∼48 km (Figure 4A).
Overall, the crust across the study area gradually tends to
be thick from the southeast to northwest. Specifically, the
thinnest crust, less than 32 km, is observed beneath the
western margin of the BHBB while the thickest part
(∼48 km) is nearby the northern LLM. The eastern HTG
appears to have the highest Vp/Vs ratio up to ∼1.90, while
the lowest Vp/Vs ratio, generally below 1.65, is observed
between the OB and LLM. The average Vp/Vs ratio of the
CAOB is relatively lower in this study area (Supplementary
Table S2), but most of the study areas seem to be higher than
the global average 1.74 (Kennet et al., 1995; Zhu, 2018).

We measured the crustal anisotropy at all the stations in the study
area and listed the estimated parameters in the Supplementary Table
S1. However, the crust with weak anisotropy or isotropy beneath the
stations does not lead to the corresponding pattern of the harmonic
degree (n � 2) and the SNR test (Figure 2E and Figures 3E,F).
Among the 309 stations in the study area, 7 stations did not pass the
SNR test. We used “−” to indicate the measurements of 42 stations
without enough back azimuthal coverage for anisotropy analysis and 7
stations with the Ps phase splitting time greater than the maximum
time shift (1.5 s) in the Supplementary Table S1. Combined with the
harmonic analysis, a total of 62 reliable measurements with a
harmonic order of n � 2 are finally shown in the Figure 5 to
characterize the crustal anisotropy beneath the TNCO and its
adjacent areas. In addition, we take station 15,819 as an example
to exhibit the crustal anisotropy beneath the westernDHV (Figure 1),
which was measured with the fast polarization direction φ � 22° and
splitting time τ � 0.26 s, respectively. The average (φ, τ) of each
geological block is also listed in Supplementary Table S2. The average
φ measured from most of stations is roughly parallel to the strike of
major geological blocks, for example, the strike of the CAOB, LLM,
THM, HTG and WFG. The average τ at most of tectonic blocks is
approximately 0.3 s and the peak average value (τ � 0.45 s) is located
at the WFG. Particularly, stations located at the DHV and their
surrounding regions (marked by white ellipse in Figure 5) are
distributed in rotating fast polarization directions.

We also compared our Moho Ps fast polarization direction and
splitting time at the 62 stations with those measured from the SKS/
SKKS phases (blue lines, Chang et al., 2021), the GPS velocity (green
arrow, Zhao et al., 2015) and the absolute plate motion (APM, thick
black vectors, Kreemer et al., 2014) in the Figure 5. From the average
results of these four datasets at each tectonic unite (Supplementary
Table S2), we found that the datasets of the CAOB show roughly
similar directions, but certain differences at other blocks, the OR,
WFG, DHV, LLM and THM. Besides, the Moho Ps splitting times of
the tectonic unites aremuch smaller than those of SKS/SKKSphase. In
other words, the SKS/SKKS splitting times are mainly originated
inside the mantle beneath the TNCO and its adjacent areas.

DISCUSSION

The distributions of the estimated (H, κ) and (φ, τ) show
significant lateral variations, which suggests the crustal

Frontiers in Earth Science | www.frontiersin.org October 2021 | Volume 9 | Article 7536125

Xu et al. Crustal Anisotropy Beneath the TNCO

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


structures beneath the TNCO and its adjacent areas are quite
complicated. In fact, previous investigations revealed that the
TNCO is dominated by the strong tectonic activities and
intense seismicity (Xu and Ma, 1992; Liu and Wang, 2012; Li
et al., 2015). At least ten earthquakes with magnitude no less
than Ms 7.0 in Chinese history occurred beneath the TNCO.
Especially, three of devastating earthquakes located in the
WFG, i.e., the 1,303 Hongdong Ms 8.0, 1,556 Huaxian Ms 8.3
and 1,695 Linfen Ms 7.8 earthquake, caused serious damages
and casualties (Wu and Jia, 1981; Rao et al., 2017). In this
study, we utilized the obtained (H, κ) and (φ, τ) to understand
the crustal deformation and seismic hazards beneath the
TNCO and its adjacent areas.

Moho depth and Vp/Vs ratio are key parameters in
constraining the structure and bulk average composition of the
crust (Zandt and Ammon, 1995; Christensen, 1996). The crustal
composition is classified as lowVp/Vs ratio (κ ≤ 1.76), intermediate
values (1.76< κ ≤ 1.81) and high values (κ > 1.81) as the relative
abundance of quartz (Vp/Vs � 1.49) and plagioclase (Vp/Vs � 1.87)
fluctuates (Zandt and Ammon, 1995; Wang et al., 2010). An
increase of plagioclase content and a decrease of quartz content
usually give rise to the increase of the Vp/Vs ratio of a rock.
Generally, felsic rocks tend to low Vp/Vs ratio as compared to
mafic rocks. In this study, the lower Vp/Vs ratios observed at some
local regions of the CAOB and central LLM (Figure 4B) imply that
the crust has a more content of felsic rocks. The HTG with the
highest Vp/Vs ratio (∼1.90) represents more mafic crustal
composition here. In fact, the Vp/Vs ratios measured at most of
stations are higher than the global average in this study, which is
likely to be intermediate to mafic crustal composition.

In addition, the Moho depth gradually thickens from the
southeast to northwest in this study area (Figure 4A), which
is consistent with the previous results from the receiver
functions (Li et al., 2014; Cai et al., 2021), surface wave

dispersion (Shen et al., 2016) and the Bouguer anomaly
(Deng et al., 2014). According to the Airy isostasty and
WGM2012 global model (Bonvalot et al., 2012), the larger
anomalies of the negative gravity are usually located at the
regions with the higher mountains and thicker crust. The
Bouguer anomaly is negatively correlated with the elevation
and Moho depth (Supplementary Figure S3A–B) in this
study, which indicates that our Moho depth is reliable and
robust. Here, the Airy isostatic theory was used to examine
the variation of the Moho depth beneath the TNCO and its
adjacent areas. Assuming the crustal density as empirical
value, Wang et al. (2010) and Tugume et al. (2012) suggested
that 1 km uplift of the surface topography corresponds to
∼10 km predicted crustal thickening. The positive correlation
between the Moho depth and elevations is shown in
Supplementary Figure S3C, but its correlation coefficient
is only 0.43. The weak correlation implies that a certain
amount of mantle mafic materials compensate for the crust
to keep the Airy equilibrium (Ji et al., 2009; Tugume et al.,
2012). Furthermore, the Vp/Vs ratio increases roughly with
the crustal thinning (Supplementary Figure S3D). Based on
the widespread Cenozoic basalts and pyroclastic rocks in the
TNCO and its adjacent areas (Xu et al., 2004; Qian et al.,
2017), the variation and correlation of our datasets argued
above support the model (Ji et al., 2009; Hu et al., 2020) that
the underplating of mafic magmas from the partial melting
upper mantle intruded into the deep crust to balance the
crustal buoyancy. The higher Vp/Vs ratio demonstrates that
the crustal composition was compensated by the underplated
mafic intrusion when the local crust was gradually thinning
during the Cenozoic tectonic extension.

We further argue that the observed crustal anisotropy,
associating with other parameters (e.g., the GPS velocity, the
APM direction and the φ of the SKS/SKKS phase), reflects the

FIGURE 4 | Maps show the Moho depth (A) and Vp/Vs ratio (B) in this study. The abbreviations are the same as those defined in the caption of Figure 1.
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complex crustal deformation beneath the TNCO and its
adjacent areas. In the north of the study area, the CAOB
as the largest Phanerozoic accretionary orogenic belt has
grown significantly in the crust and developed a series of
E-W strike slip faults since the Paleo-Asian Ocean closed
(Xiao et al., 2003; Windley et al., 2007). The φmeasured from
Moho Ps and SKS/SKKS phases, as well as the directions of
the GPS and APM, are nearly E-W beneath the CAOB
(Figure 5 and Supplementary Table S2), which suggests
that the whole lithosphere deforms coherently along depth
with a compressional direction of N-S. Around the Ordos
block, the average φ of the Moho Ps phase trends NE in the
southeast and rotates to E-W trending in the north (Figure 5
and Supplementary Table S2). This counterclockwise
rotation pattern was also observed by the φ of the SKS/
SKKS phase and speculated to be derived from the
corresponding asthenospheric flow caused by the
northeastward growth and expansion of the Tibetan
plateau (Chang et al., 2017, 2021). The ongoing collision
of the Indian and Eurasian plates since ∼50 Ma has driven the
asthenospheric flow (Chang et al., 2021; Wang et al., 2020)
and counterclockwise rotation of the Ordos block (Zhang
et al., 1998), which may contribute to generating the left-
lateral shear stress in the lithosphere and observed seismic
anisotropy around the Ordos block. Another noteworthy

feature revealed by this study is the rotating distribution of
the fast Moho Ps phase directions around the DHV regions in
Figure 5. The mode of the φ around the DHV regions is also
consistent with the recently studies of SKS/SKKS splitting
(Chang et al., 2021) and surface wave dispersion (Huang
et al., 2021). At some active volcanic areas (e.g., the Mount
Ruapehu volcano, New Zealand), the anisotropic orientation
agreed with our observations and was further inferred to be
due to the stress-aligned microcracks caused by the magmatic
eruption (Gerst and Savage, 2004; Johnson et al., 2011). The
prominent low velocity anomalies fromboth the traveltime and full
waveform tomography have confirmed the existence of the mantle
upwelling beneath the DHV regions related to the stagnancy and
dehydration of the Pacific slab in the mantle transition zone (Lei,
2012; Tao et al., 2018). In addition to the anisotropies from P wave
tomography (Tian and Zhao, 2013) and SKS/SKKS splitting
(Chang et al., 2021), we propose that the fossil crustal
anisotropy with the rotating φ around the DHV regions is
resulted from the asthenosphere upwelling induced by the
Pacific plate subduction.

We noticed that the historical destructive earthquakes
occurred in the extensional WFG (Figure 1) where the
observed average τ is the largest, 0.45 s, in this study area
(Supplementary Table S2). GPS measurements, still
extending with a rate of ∼4 mm/year (Shen et al., 2000),
and large strike-slip rate of master-faults, 5.68–7 mm/year
(Xu and Ma, 1992), further indicated the strong crustal
deformation inside the WFG. By analyzing the causes of
crustal anisotropy and relationship between Moho depth
and Vp/Vs ratio above, we speculate that the
counterclockwise rotation of the Ordos block driven by the
far-field effects of the India-Eurasian collision facilitated the
left-lateral shear stress and extensional crustal deformation of
the WFG and in turn generated the high seismic hazards.

CONCLUSION

In this study, we investigated the Moho depth, Vp/Vs ratio
and crustal anisotropy beneath the TNCO and its adjacent
areas using receiver function data with the H-κ stacking
method and the joint inversion scheme. The variations of
the Moho depth and Vp/Vs ratio might reveal that the
underplated mafic intrusion compensated for the crustal
composition and Airy equilibrium. Based on the φ of the
Moho Ps and SKS/SKKS phases, we proposed that the CAOB
showed a coupling deformation between the crust and
mantle, under the N-S compressive stress, with the closure
of the Paleo-Asian Ocean. The asthenosphere upwelling
induced by the Pacific plate subduction caused the stress-
aligned microcracks and the rotating distribution of the
crustal anisotropic azimuths around the DHV regions. The
observed average φ of the Moho Ps phase and the high seismic
hazards are attributed to the counterclockwise rotation of the
Ordos block driven by the far-field effects of the India-
Eurasian collision.

FIGURE 5 | Comparison of crustal anisotropy measured from the Moho
Ps (the red bar lines) with measurements of the SKS/SKKS splitting (the blue
bar lines, Chang et al., 2021), the GPS velocity (the green arrows, Zhao et al.,
2015) and the absolute plate motion direction of the GSRM v2.1 model
(the black arrows, Kreemer et al., 2014). White solid ellipse outlines the
rotating distribution of the fast polarization directions measured from theMoho
Ps. The abbreviations are the same as those defined in the caption of
Figure 1.
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