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High-resolution flood simulation considering the influence of high buildings and
fundamental facilities is important for flood risk assessment in urban areas. However, it
is also a challenging task due to the difficulties in acquiring detailed topography and
monitoring data for model construction and validation. In this study, a high-resolution flood
simulation with a grid size of 0.5 m is realized through the use of detailed topography
obtained by an unmanned aerial vehicle and real-time flood information acquired from
social media. To discover the influence of terrain resolution on flood simulations, the high-
resolution simulation results are compared with those with coarser grid resolutions (5, 10,
and 20m) for a flash flood event in Taiwan. In the case with higher grid resolution, the
simulation results are in better agreement with the photos from social media in terms of
flood extent, depth, and occurrence time. The flood simulation with coarse resolution
(>5m) tends to overestimate the flood duration on roads and provide bias information to
decision-makers in the assessment of traffic impact and economic loss.

Keywords: urban flooding, unmanned aerial vehicle, volunteered geographic information, computational flood
simulation, social media

INTRODUCTION

Flash floods resulting from extremely heavy rainfall have been recognized as one of the most
common and destructive threats in recent years (Panthou et al., 2014; Chan et al., 2016; Bao et al.,
2017; Busuioc et al., 2017; Yang et al., 2017; Fu et al., 2019). In the last two decades, computational
flood simulation (CFS) has been widely used to generate detailed flood scenarios in space and time by
simulating water transportation on the surface and in sewer systems (Hunter et al., 2007; Kuiry et al.,
2010; Seyoum et al., 2012; Jahanbazi and Egger, 2014; Chang et al., 2015; Jang et al., 2018; Jang et al.,
2019). However, these CFS models require a detailed digital elevation model (DEM) and real-time
flood records for model construction and validation, which are often inadequate in timeliness and
accuracy for flash flood events occurring rapidly in localized areas (Suarez et al., 2005; Yin et al., 2016;
Pregnolato et al., 2017).

Many research studies have highlighted the influence of DEM resolution on hydraulic modeling
(Leitao et al., 2009; Vaze et al., 2010; Li and Wong, 2010; Saksena and Marwade, 2015). For urban
flood modeling, Yang et al. (2014) recommended that the resolution of a DEM should be higher than
5 m to properly represent topographical indices. Flood simulation under coarser DEM resolutions
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tends to overestimate the flood area and underestimate the flood
depth in low-lying urban areas (Kim et al., 2020). Recently, some
authors mentioned that a high-resolution DEM has a greater
influence on flood damage estimation than on flood hazard
estimation (Komolafe et al., 2018). Low spatial resolutions
may generate large errors in flood loss estimation due to
improper representation of buildings (Afifi et al., 2009). Jang
et al. (2021) indicated that the increase in DEM resolution greatly
increased the accuracy of flood hazard maps and reduced the
errors in household flood risk analyses by 53%. Thus, the
acquisition of a high-resolution DEM has become a crucial
task for sophisticated flood impact analysis in urban areas.

Traditionally, DEM data are derived by airborne Lidar which
is too costly to be updated frequently (Sankey et al., 2018), and
flood records are usually obtained by post-disaster field
investigations that contain only rough coordinates and water
depths without detailed time series. Recently, two raising
techniques, namely, unmanned aerial vehicle (UAV) and
volunteered geographic information (VGI) have been adopted
for DEM generation and flood detection, respectively. Studies
have shown that the DEM derived by UAVs have similar
performances in urban overland flow modeling compared with
that derived from Lidar (Leitão et al., 2016). With proper design,
the DEM resolution derived fromUAV images could reach a sub-
meter scale, and its capacity to improve the urban flood modeling
is the major focus of this study. It is worth noting that to reach
sub-meter scale using UAV images is usually limited to a small
spatial extent, while airborne Lidar could produce DEM sub-
meter resolution for a much larger spatial extent.

The VGI considers every citizen as a sensor to acquire spatial
data on a wide range of phenomena by crowdsourcing the
keywords on social media such as Facebook, Twitter, and
Instagram (Goodchild and Glennonm, 2010; Le Coz, et al.,
2016; Michelsen, et al., 2016; Starkey et al., 2017; Tauro et al.,
2018). Cervone et al. (2015) used Twitter for remote sensing data
collection and damage assessment of transportation
infrastructure in the case study of 2013 Boulder flood. Huang
et al. (2018) proposed a convolutional neural network (CNN)
architecture to classify the flood pictures and a sensitivity test to
extract flood-sensitive keywords that were further used to refine
the CNN results. The VGI photos however are not free of
problems. When using VGI photos to validate flood modeling,

the geographic location of the VGI photos needs to be
recognizable and the time stamp of the VGI photos needs one
assumption that the time when the photo was posted on social
media and the moment when the photos were taken are
very close.

From literature review, the UAV, VGI, and CFS have been
used in some developed countries for DEM construction, flood
detection, and inundation simulation, respectively. However,
these applications are more like practices without an overall
discussion on the methodology, strength, and uncertainties in
the process of combining the three techniques. Moreover, only
very few studies explore the influence of DEM resolutions on
hydraulic modeling at a sub-meter scale. The applications of
UAV and VGI open a new page for the sophistication of CFS
models. Compared with traditional methods, the UAV and VGI
are more economical and applicable to retrieve detailed terrain
and flood information in real time. The DEM generated by UAV
aerial imagery can be used as the boundary conditions to increase
the spatial resolution of CFS, and the time series of water levels
retrieved by VGI can be used to validate the temporal variation of
CFS results. With the help of UAV and VGI, this study introduces

FIGURE 1 | Rainfall hyetograph on June 14, 2015, at Gongguan rain
gauge station (C1A760).

FIGURE 2 | Study area (red polygon) at Gongguan, Taipei, Taiwan (the
Google Earth images sourced from © Google, Landsat/Copernicus, and the
shading image was derived from SRTM with 30 m resolution).
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the methodologies and demonstrates the advantages of
conducting high-resolution CFS for flood risk assessment in
urban areas.

MATERIALS AND METHODS

The flash flood event on June 14, 2015, in Gongguan, Taipei,
Taiwan, is selected for case study. The rainfall event occurred
between 13:00 and 18:00 on June 14, 2015, with an hourly
rainfall peak of 131.5 mm/h from 14:30 to15:30, as shown in
Figure 1. This rainfall intensity exceeded the designed drainage
capacity of the sewer system and resulted in severe flash flooding in

the cross section of Keelung Road and Changxing Street near
National Taiwan University. The study area and the location of
the rain gauge are shown in Figure 2. The DEM derived by UAV
integrated with structure from motion (UAV-SfM) and the flood
photos collected from VGI are used to establish and validate the
CFS, respectively. The conceptualflowchart of this study is shown in
Figure 3. First, the UAV is deployed in clear weather after the flood
event to collect a great number of images for generating DSM/DEM
of the study area. Second, the rainfall and DEM resampled under
four different resolutions are introduced into a CFS model to
reconstruct the time series of flood depth and extent for the
selected flood event. Finally, the simulated results are compared
with the VGI photos to see the influence of DEM resolution on CFS.

FIGURE 3 | Conceptual flowchart of this study (the VGI photo was adopted from PTT, Taiwan).

FIGURE 4 | Illustration of collinearity condition and space intersection (adapted from Lillesand and Kiefer, 1999).
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DEM Generated by UAV
The procedure of developing the urban 3D terrain is shown on
the left side of Figure 3. The methods of generating DEM from a
set of aerial images or videos are quite mature (Zhou et al., 2004;
Pollefeys et al., 2008), which are based on the fundamental
principle of collinearity condition (Figure 4) expressed by the
following equations:

xp � −f[m11(XP −XL) +m12(YP − YL) +m13(ZP − ZL)
m31(XP −XL) +m32(YP − YL) +m33(ZP − ZL) ]

(1)

yp � −f[m21(XP −XL) +m22(YP − YL) +m23(ZP − ZL)
m31(XP −XL) +m32(YP − YL) +m33(ZP − ZL)],

(2)

where xp and yp are the image coordinate of any point p;
XP, YP, andZP represent the ground coordinate of point p;
XL, YL, andZL represent ground coordinate of the projection
(optical) center; f is the focal length; m11 . . .m33 are the
coefficients of a 3 × 3 rotation matrix defined by the angles ω,
ϕ, and κ that transforms the ground coordinate system to the
image coordinate system (Lillesand and Kiefer, 1999). The six
parameters XL, YL, andZL and ω, ϕ, and κ are used for exterior
orientation of an image, which can be determined through the
process of space resection, as illustrated in Figure 4. In the figure,
theX,Y, andZ coordinate of any point in thematched stereo pair
of tilted images can be determined. Using a set of images taken by

UAV, the ground coordinate of any point in the overlap of tilted
images can be determined by the image matching method of
structure from motion (Remondino and Fraser, 2006; Westoby
et al., 2012). Finally, the coordinate accuracies at checkpoints are
examined, and the urban 3D terrain model is obtained by
resampling the coordinates to a regular gird system by the
nearest neighboring method (Wu, 2013).

The UAV used in this study is DJI Phantom 2 Vision+ (Da-
Jiang Innovations) which weighs 1.2 kg and has a camera with
4,384 × 2,466 pixels. The focal length of the camera is 3.3 mm,
and the field-of-view is 110°. The UAV campaign was
conducted in the early morning of July 22, 2015, in a
cloudless condition from 06:00 to 06:40 to reduce the
disturbances from weather and traffic. The camera on the
UAV is set in a nadir-looking orientation for image data
collection. In total, 589 positioned images were acquired
with an overlap ratio of 75–85% and a mean spatial
resolution of 2.84 cm. After space intersection, the average
ground sampling distance of point cloud is 0.03 m. The
UAV images were processed to generate orthomosaic image
and digital surface model (DSM) with Pix4Dmapper Pro
version 1.4.46 (Pix4D). To derive absolute coordinates, three
ground control points (GCPs) were distributed in the study
area (Figure 5). The coordinates of the three GCPs were
acquired using the static positioning of the global navigation
satellite system (GNSS) with positional accuracy at centimeter
level. The absolute positions of the images captured through the
GNSS receiver in the UAV were recorded to establish the
coordinate system constrained on the three GCPs.

The lens distortion of the camera was calibrated by flexible and
powerful self-calibrating bundle adjustment (Remondino and Fraser,
2006). The calibration relies on the continuous overlapped images to
do the aerotriangulation adjustment. After the interior orientation
and the coordinates of the object points are calculated, the correction
Δx and Δy can be revised as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Δx � −Δx0 − xi

f
Δf +K1xpr

2 + K2xpr
4 + K3xpr

6 + P1(r2 + 2x2
p) + 2P2xpyp

Δy � −Δy0 − yi

f
Δf + K1ypr

2 + K2ypr
4 + K3ypr

6 + P2(r2 + 2y2
p) + 2P1xpyp

,

(3)

where Δf is the principal distance error; Δx0 and Δy0 are the
displacements of the principal point; K1, K2, and K3 are the
parameters of the radial distortion; P1 and P2 are the parameters
of the decentering distortion; and r is the distance between the
image point and the principal point. The calibrated parameters
are listed in Table 1.

For CFS application, the DSM was converted to DEM by
removing the vegetation and the viaduct. The vegetation such
as shrubs and grasses is detected by the normalized difference
vegetation index (NDVI) in the range of 0.2–0.3 (Candiago
et al., 2015). Since the UAV images only observed red, green,
and blue bands, the near-infrared band was built on a specific
linear combination of the three bands with a lower-pass filter
(Rabatel et al., 2011). To remove the viaduct, the DSM points
with elevations higher than 9 m on the Keelung Road are
removed, and the DEMs beneath the viaduct were obtained

FIGURE 5 | Images taken by UAV and the distribution of the ground
control points.
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through interpolation using the neighboring ground elevation
data obtained by the UAV. This treatment did not deteriorate
flood simulation because the area beneath the viaduct occupied
about only 10% of the entire study domain, and the viaduct is
located along the road centerline with higher ground
elevations where floodwater less accumulated. Despite the
viaduct, all the buildings are maintained so that flood
simulation can more truly reflect the field conditions. Based
on the NDVI and elevation thresholds, the vegetation and
viaducts were filtered out in the DEM so that floodwater can
transport smoothly on the ground surface. However, unlike
traditional DEM, the elevations of buildings were not removed
to reflect the blocking effect on water transverse.

VGI From Social Media
Ethical and legal concerns are big issues for collecting and using
VGI (Foody et al., 2017). Fortunately, the Copyright Act and
Relative Laws in Taiwan allow researchers to quote, within a
reasonable scope, publicly released works for reports, comment,
teaching, research, or other legitimate purposes (Intellectual
Property Office., 2019). Based upon the act, the VGI data used
in this study are collected from the most famous bulletin board
system (BBS) in Taiwan named PTT. There are 8 photos collected
from PTT posted during 15:20–16:30 on June 14, 2015. From
these photos, we visually identified 8 locations in the study area,
as shown in Figure 6. Since the VGI photos downloaded from
social media were without EXIF attributes, an obvious landmark

TABLE 1 | Calibrated parameters for camera on the UAV.

Parameter Value Parameters Value

Image size (pix) 4,384*2,466 Focal length (mm) 3.32347
Pixel size (μm) 1.3306 Radial distortion K1 −0.382174
Principal point (mm) x0 2.9718 K2 0.182175

y0 1.71489 K3 −0.046338
CCD size (mm) Width 5.83335 Decentering distortion P1 0.000508

Height 3.28126 P2 0.000017

FIGURE 6 | VGI photos from social media and their acquisition time (adopted from PTT, Taiwan).
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in each photo was identified to mark the GNSS and visually
determine the relative flood depth with reference to neighboring
objects with generally fixed size such as wheels of bikes or
elevations of sidewalks. This GNSS information can be
obtained based on post-disaster field surveys and is invariant
as long as the landmarks were not destroyed during flooding. The
time stamp and the virtual water depths in these photos were used
to validate the CFS model. Although the time stamp when photos
were posted on the internet may not always be the acquisition
time and the flood depth estimated from photos may be subject to
experts’ experience, these uncertainties can be reduced by the
functions of “live stream” and “image recognition” on
social media.

CFS Model
The CFS model used in this study was developed by Jang et al.
(2018), in which a 2D overland flow model (OFM) is coupled
with a 1D sewer flow model (SFM) for sophisticated flood
simulation in cities with drainage systems. The OFM and SFM
are established based on shallow water equations and finite
difference numerical methods. The alternate direction explicit
scheme and implicit backward Euler algorithm are used to
solve the OFM and SFM, respectively. The SFM adopted the
Preissmann slot method (Cunge and Wegner, 1964) to
calculate the full and partially full flow conditions at the
same time. For the OFM simulation, the elevation at each
grid center is extracted from the DEM data. During rain, the
OFM is first initiated for surface water routing and the SFM is
then initiated by the water that flows into the sewer pipes via
street inlets. When the sewer pipes get full, the sewer water
surcharges back onto the ground surface via manholes. In the
simulation process, the water exchanged between the two
models is determined by weir and orifice functions via a
one-to-one relationship. To deal with wetting and drying, a
tolerance water depth of 0.001 m is used to distinguish wet
and dry cells. If a cell has a water depth lower than 0.001, all
velocities in this cell are set to zero to ensure numerical
stability caused by sudden drying in the next time step.
The CFS model has been validated in urban and coastal
areas with an overall hit rate of 0.8, meaning that 80% of
the observed food extents are correctly predicted. The details
of the CFS model can be referred to Jang et al. (2018); Jang
et al. (2019).

RESULTS AND DISCUSSIONS

DEM
The DEM accuracy is examined at the six GCPs. The errors inX,
Y, and Z directions range from −0.027 to 0.025 m,
−0.055–0.061 m, and −0.024–0.026 m, respectively. The root
mean square errors (RMSEs) of the absolute coordinate at the
three GCPs are less than 0.053 m (Table 2). The RMSEs of SRTM
were less than 10.343 m, and the RMSEs of 20 m DEM were less
than 3.953 m. The comparison of the RMSE values showed that
the UAV terrain model was with the smallest RMSE to achieve
high precision topography. The orthoimage and the DEM
resampled under spatial resolutions of 0.5, 5, 10, and 20 m are
shown in Figure 7. In the figure, the elevation distributes from 5.5
to 55.8 m, and the buildings are displayed in warm colors.

Flood Extent
To discover the influence of DEM resolution on flood simulation,
the grid meshes of the CFS model are established under four grid
sizes (0.5 m × 0.5 m, 5 m × 5 m, 10 m × 10 m, 20 m × 20 m), in
which the elevation at each grid center is extracted from the DEM
with accordant resolution. The flood extents simulated under the
four DEM resolutions at different times are displayed in Figure 8,
in which the VGI points out of the 8 locations are marked if the
simulated flood depths exceed 0.05 m. The value of 0.05 m is
selected as the threshold because it is the shallowest water depth
observed in the VGI photos (see point #6 in Figure 6). In the case
with 0.5 mDEM resolution, flooding starts around 14:00 at points
#4, #7, and #8, peaks around 15:00 at all points, and retreats at 17:
00 back to original points. With coarser DEM resolutions,
flooding occurs earlier and retreats later with more water
trapped between buildings. When the grid resolutions increase
to 10 and 20 m, the flood areas become more discontinuous with
staggered distribution of wet and dry cells, and the flooding at
points #1, #3, #5, and #6 are not predicted. Observing the flood
maps between 15:00 and 18:00, water inundated on the rooftops
of buildings can be properly simulated in the case with 0.5 m
DEM resolution but not in the case with coarser resolutions.

Flood Volume
The time series of flood volume simulated under the four DEM
resolutions are displayed in Figure 9. Compared with the case
with 0.5 m DEM resolution, the flood volume simulated under

TABLE 2 | Accuracy of the ground control points (m).

GCP_1 GCP_2 GCP_3 GCP_4 GCP_5 GCP_6 Mean Std RMSE

UAV X −0.006 0.025 −0.019 −0.027 0.014 0.008 −0.001 0.018 0.044
Y 0.061 −0.035 −0.038 0.059 0.039 −0.055 0.005 0.049 0.053
Z 0.002 −0.016 0.000 −0.024 0.021 0.026 0.002 0.018 0.041

SRTM (30 m) X 7.556 8.158 −12.744 13.737 −5.778 −11.562 −0.105 10.342 10.343
Y −7.753 −6.987 −10.723 5.558 −12.510 10.414 −3.667 8.554 9.307
Z 5.049 5.622 7.268 3.194 6.634 10.565 6.389 2.268 6.779

DEM (20 m) X −2.407 −6.559 1.627 0.000 0.597 2.822 −0.653 3.088 3.157
Y −3.280 0.000 1.200 8.340 −3.010 −1.750 0.250 3.948 3.956
Z −1.049 1.622 0.268 1.194 1.634 1.565 1.222 0.481 1.313
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coarser DEM resolutions arises faster but descends slower with
higher and earlier appearance of flood peak. This implies that
when DEM resolution decreases, the topography becomes
rugged, the friction increases, and the floodwater travels
slower. The flood volumes for 10 and 20 m DEM resolutions
are much larger than those for 0.5 and 5 m DEM resolutions,
indicating that more water will be trapped in the depressions
when the topography becomes more rugged. Table 3 compares
the simulation and observation results in terms of flood
occurrence time and water depth. The time stamps and
estimated water depths (WD) are obtained from the VGI
photos in Figure 6, and the flood durations at the eight VGI
points when the water depth exceeds 0.05 m are determined
based on the CFS results. It is seen that under 0.5 and 5 m
DEM resolutions, the time stamps of VGI photos all lie within the
simulated flood duration at the points with observed WD larger
than 0.05 m (points #1, #2, #4, #7, and #8). At the rest points, the
simulated and observed WDs are both smaller than 0.05 m. This
good agreement between observation and simulation reveals that
the flood model is accurate in rebuilding the process of flood
transport under both DEM resolutions.

When the DEM resolutions become larger than 5 m, the
periods with simulated WDs larger than 0.05 m do not
coincide with the time stamps of VGI photos for 10 m DEM
resolutions (at points #1 and #8) and 20 m DEM resolutions (at

points #1, #2, and #8). Thus, the spatial resolution of DEM in
urban areas should be at least finer than road width so that road
profiles can be clearly displayed; otherwise, runoff transportation
around buildings and on roads cannot be correctly simulated. The
resolution of 5 m can be regarded as a threshold for flood
modeling in urban areas, above which the geometries of
buildings and roads cannot be clearly identified and the
simulation performance deteriorates. Sub-meter resolution
DEM data generated by UAVs are adequate for assessing the
impact of localized flooding on transportation in cities. Some
open-access topographic datasets, such as the 30 m resolution
DEM by STRM from NASA (https://www2.jpl.nasa.gov/srtm/)
and the open DEM in Taiwan with 20 m resolution (https://data.
gov.tw/dataset/35430), are too coarse to serve the purpose.

Simulation Efficiency
Flood simulation under high grid resolutions is usually more
time-consuming as compared to that under coarse grid
resolutions due to the increase in grid numbers. The choice of
grid resolution for flood simulation is a trade-off between
accuracy and efficiency. For the study area in this research,
there are 573,000 and 5,730 grids for the mesh with grid size
0.5 m and the mesh with grid size 5 m, which consumes 1,127 and
16 min of computational time, respectively (with Intel Core
i7-7700 K CPU @ 4.2GHz and 64 GB RAM). For disaster

FIGURE 7 | Resampled DEM with spatial resolution of (a) 0.5 m; (b) 5 m; (c) 10 m; (d) 20 m.

Frontiers in Earth Science | www.frontiersin.org January 2022 | Volume 9 | Article 7561987

Su et al. High Resolution Flood Simulation

https://www2.jpl.nasa.gov/srtm/
https://data.gov.tw/dataset/35430
https://data.gov.tw/dataset/35430
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


emergency response on a regional scale, flood simulation under
coarse grid resolution is enough to gain a fast and overall
understanding of flood patterns. However, for evaluating the

flood impact on critical infrastructures such as metro stations,
power facilities, schools, government agencies, and hospitals,
high-resolution flood simulation is required.

FIGURE 8 | Simulated flood extents at different time under four DEM resolutions.
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CONCLUSIONS

High-resolution flood simulation in an urban area is a challenging
task since it requires high-resolution terrain and real-time flood
information for model construction and validation. Aided by the
rapidly growing technologies of remote sensing and crowdsourcing, it
is possible to update DEM data and record the flood depth in real
time by UAV and VGI. In this study, we adopt the UAV and VGI to
sophisticate CFSmodeling in the reconstruction of a flash flood event
that occurred on 14 June 2015, in Taipei City. The CFS model is
routed under four DEM resolutions with grid sizes 0.5, 5, 10, and
20m separately. In the case with sub-meter DEM, the simulation
results are in better agreement with the observation in terms of flood
extent, depth, and occurrence. Using DEM with coarser resolutions
(5, 10, and 20m in this study) for CFS overestimates the flood
duration on roads which may provide bias information to decision-
makers for impact assessment on traffic and economic losses. The
flood volumewith 5mDEM resolution shows a pattern similar to the
finest resolution, whereas those with 10 and 20m DEM resolutions
havemuch higher flood peaks andmore staggered distribution of wet
and dry cells. The resolution of 5m can be regarded as the optimum
threshold for flood modeling in urban areas, coarser than which the
simulation performance started to decline. Comparedwith traditional
methods, the UAV and VGI are more economical and applicable in
acquiring necessary data for high-resolution CFS.
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FIGURE 9 | Comparison of simulated flood volume under four DEM resolutions.

TABLE 3 | Comparison between CFS and VGI results.

Point (#) Lat. (degree) Lon. (degree) Observation (VGI) Flood duration with WD ≥ 0.05 m (CFS)

Time WD (m) DEM 0.5 m DEM 5 m DEM 10 m DEM 20 m

1 121.544603 25.016963 15:20 ≥0.05 14:40–15:30 14:00–15:50 N N
2 121.543563 25.016420 15:40 ≥0.05 15:00–15:50 13:50–18:00 13:40–18:00 N
3 121.544612 25.017167 16:10 <0.05 15:00–15:30 14:40–15:40 N N
4 121.544236 25.017421 16:10 ≥0.05 14:00–18:00 13:50–18:00 14:30–15:50 13:40–18:00
5 121.543351 25.017728 16:20 <0.05 14:40–16:10 14:40–16:00 N N
6 121.543462 25.017716 16:20 <0.05 14:40–15:40 14:40–15:40 N N
7 121.543674 25.017670 16:30 ≥0.05 14:00–17:50 14:00–18:00 14:00–18:00 13:40–18:00
8 121.543476 25.016745 16:30 ≥0.05 14:00–18:00 13:50–18:00 14:50–15:40 N
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