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In order to examine the pore structure and reveal the fractal geometric nature of shales, a
series of laboratory experiments were conducted on lacustrine shale samples cored from
the Kongdian Formation. Based on the low temperature nitrogen adsorption, fluorescent
thin section and field emission scanning electronic microscope, a comprehensive pore
structure classification and evaluation were conducted on shale samples. Fractal
dimensions D4 and D, (with relative pressure of 0-0.45 and 0.45-1.00, respectively)
were obtained from the nitrogen adsorption data using the fractal Frenkel-Halsey-Hill (FHH)
method. With additional means of X-ray diffraction analysis, total organic carbon content
analysis and thermal maturity analysis, the relationships between pore structure
parameters, fractal dimensions, TOC content and mineral composition are presented
and discussed in this paper. The results show that interparticle pores and microfractures
are predominant, whereas organic matter pores are rarely found. The pore morphology is
primarily featured with wide-open ends and slit-shaped structures. In terms of pore scale,
mesopores and macropores are predominant. The value of fractal dimension Dj
representing small pores ranges from 2.0173 to 2.4642 with an average of 2.1735.
The value of D, which represents large pores ranges from 2.3616 to 2.5981 with an
average of 2.4960. These low numbers are an indication of few pore types and relatively
low heterogeneity. In addition, smaller Dy values reveal that large pores have more
complicated spatial structures than smaller ones. The results of correlation analysis
show that: 1) D, is correlated positively with specific surface area but negatively with
average pore diameter; 2) Dy and D, literally show no obvious relationship with mineral
composition, TOC content or vitrinite reflectance (R,); 3) both total Barrett-Joyner-Halenda
(BJH) volume and specific surface area show a positive relationship with dolomite content
and a negative relationship with felsic minerals content. These results demonstrate that the
pore types are relatively few and dominated by mesopores, and the content of brittle
minerals such as dolomite and felsic minerals control the pore structure development
whilst organic matter and clay minerals have less influence due to low thermal maturity and
abundance of clay minerals.
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INTRODUCTION

In response to rising petroleum costs at the turn of the 21st
century, the exploration and exploitation of shale gas and shale oil
have become more and more important in China (Lu et al., 2018;
Wang et al,, 2019). Since 2010, shale gas mainly from marine in
the south China has been investigated extensively including the
basic geological characteristics (Zou et al., 2019), pore structure
(Shang et al., 2020a; Shang et al., 2020b; Shang et al., 2020c; Liu
etal., 2020), production controlling factors (Shang et al., 2019; Liu
et al.,, 2021), etc., More recently, the shale oil from lacustrine
basins in the north China has generally received significant
attention (Lu et al., 2016; Zhao et al., 2018; Pu et al., 2019).
However, the higher heterogeneity, lower thermal maturity, and
limited geographical distributions of shale oil in China, pose
greater challenges to a cost-effective development compared with
marine shale oil reservoirs in North America (Ma et al., 2021).

Although the terms shale oil and tight oil are often used
interchangeably in public discourse, shale formations are only a
subset of all low permeability tight formations, which include
sandstones and carbonates, as well as shales, as sources of tight oil
production (Energy Information Administration, 2013). The
restricted petrological definition of shale is fine-grained clastic
sedimentary rock composed of mud and characterized by
laminated structure, in field exploration, however, with the
development and exploitation of shale oil and gas, it typically
refers to any fine-grained sedimentary rock with total organic
carbon (TOC) content greater than 1%, in a practical way.

The United States, home to the Bakken formation, Eagle Ford
Formation and Barnett Formation, is the world’s hotspot of shale
oil exploration (Montgomery et al, 2005; Jarvie et al, 2007;
Bustin et al., 2008; Chalmers et al., 2012). As their success
story unfolds, shale oil has become one of the most attractive
unconventional sources all over the world. According to an EIA
report released in 2013, the total reserves of technically
recoverable shale oil in China is 320 x 10® bbl (about 43.84 x
10%), which is the third largest in the world. Nevertheless, the
shale oil in China is way more difficult to extract. For comparison,
the shale oil in United States is primarily light oil generated from
widely-distributed and organic-rich marine shales with high
maturity and low heterogeneity; while the majority of shale oil
in China is relatively heavy oil generated from sparsely
distributed and organic-rich lacustrine shale with low maturity
and high heterogeneity (Lu et al., 2016). In terms of lithology, the
mineral composition of marine shale in the United States is
dominated by biogenic quartz and carbonate, and the former
consists of biogenic silica which is associated with organic matter
enrichment. When it comes to the lacustrine shales in China,
their mineral composition is dominated by clay followed by
detrital quartz and chemical carbonate. Detrital quartz is
terrestrial, resulted from mechanical transportation in most
cases, and usually shows no signs of organic origin (Nie et al,
2016).

Although China has tremendous shale oil reserves, extraction
remains a challenge. The shale oil development approach is rather
different from the American paradigm. In my opinion, the biggest
difference is deposition system. With higher thermal maturity to
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ensure that the shale oil is abundant and light with low viscosity,
and with lower heterogeneity to ensure that the pattern of storage
space for shale oil is more easily to be predicted, the pivot point of
marine shale oil exploration is pore structure. Compared with
marine shales, the lacustrine shales in China are featured with
rapidly changeable sedimentary environment, relatively low
maturity and limited thickness (Liu et al, 2015; Ma et al,
2021). High heterogeneity of lacustrine shale results in
different rock properties, and therefore, the heterogeneous
pore structure and its controlling factors need to be studied
and understood.

Since the fractal theory was put forward by Mendelbrot (1982),
it has been proven to be very useful to quantitatively describe the
heterogeneity of naturally occurring geometries. Katz and
Thompson (1985) supported the theory, confirming fractal
characteristics in several sandstones. They calculated the
fractal dimension using SEM and optical data and gave correct
porosity prediction based on fractal analysis. Furthermore, the
experiment results from Thompson (1991) revealed the
significance of characterizing a sedimentary rock’s pore
geometry with fractal dimensions. Apart from the verification
of fractal geometry of porous media, three fractal dimension
measurement approaches were generalized: 1) the discrete
methods (Mandelbrot, 1982; Orford and Whally, 1983; Kartz
and Thompson, 1985; Krohn and Thompson, 1986) that use
rulers of different lengths to measure the fractal dimension of an
object, just like the fractal measurement of coastline at the very
beginning. 2) the scattering methods (Freltoft et al, 1986;
Rojanski et al., 1986; Sinha et al., 1988; Hurd et al., 1989) that
use small-angle X-ray or neutron scattering to study a wide range
(length scale of 0.5-50nm) of disordered systems; 3) the
adsorption methods (Avnir et, al, 1983; Pfeifer and Avnir,
1984) that characterize the fractal geometry at the
molecular scale.

Fractal theory has been applied for pore size classification and
reservoir evaluation by using data from SEM imaging, nitrogen
adsorption, mercury intrusion, and nuclear magnetic resonance
to quantify the fractal characteristics and heterogeneity of shale
reservoirs (Lai & Wang, 2015; Yang et al., 2016; Sun et al., 2017;
Ma et al., 2021). We based our study on the Frenkel-Halsey-Hill
(FHH) theory and more recent and commonly used Brunauer-
Emmett-Teller (BET) surface area approach to obtain fractal
dimension.

Several methods have been proposed to calculate the fractal
dimensions from nitrogen adsorption experimental results.
Among them, one empirical correlation, developed on the
basis of Frenkel-Halsey-Hill model, has been testified and
widely used by many researchers. The equation is shown

1n<vlo> - A[ln(ln(%))] +C (1)

Where V is the absorbed gas volume under equilibrium pressure
P; V is the absorbed volume of gas monomolecular layer; Py is
the gas saturation pressure; A is the power-law exponent obtained
as the trending line slope in the InV vs In (In (Po/P)) plot, having

Frontiers in Earth Science | www.frontiersin.org

November 2021 | Volume 9 | Article 760583


https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles

Pan et al.

Adsorption

Desorption

FIGURE 1 | Schematic of nitrogen adsorption/desorption (Ma, 2016).

something to do with the fractal dimension D and adsorption
mechanism.

Upon the onset of gas adsorption, the adsorption force is
mainly Van de Waal’s force between solid and gas, and the
relationship between fractal dimension D and slope A is:

D=3(1+A) (2)

In the equation, surface tension is not accounted for. But when
the relative pressure increases, the surface tension effect between
liquid and gas is no longer negligible, then the equation becomes:

D=3+A (3)

According to Ismail and Pfeifer, (1994),
when 3 (1 + A) —2<0, surface tension should be considered,
and the fractal dimension value D is calculated using Eq. 3,
otherwise Eq. 2 is used to obtain D.

In order to characterize pore size distribution (PSD) and total
porosity of the porous media, a number of methodologies have
been developed by previous researchers. The fluid invasion
methods, including gas adsorption and high-pressure mercury
intrusion (MICP), are widely used. In addition, nuclear magnetic
resonance (NMR), micro-focus X-ray computed tomography
(X-ray CT), SEM and TEM (transmission electron
microscopy) are popular tools for pore structure
characterization (Lu et al, 2016). Last but not least, low
temperature nitrogen adsorption is known as an effective
method to characterize pore structure on nanometer to
micrometer scale.

The pores are classified into three types according to the
standard put forward by IUPAC (International Union of Pure
and Applied Chemistry) in 1985, micropores (<2 nm), mesopores
(2-50 nm) and macropores (>2 nm). It is claimed that different
shapes of hysteresis loops at 77.35K are often identified with
different pore structures.

In the nitrogen adsorption experiment, the nitrogen molecules
attached to the pore surface are forced out under gas pressure.
This occurs to both monolayers and multilayers (Sing, 2001). The
gas molecules form a monolayer at zero initial relative gas
pressure (P/P, = 0) and start to fill the smallest pores. As
pressure increases, they tend to fill increasingly larger pores
until the entire multilayer is saturated towards the end of the
adsorption process. Desorption is the reverse process of
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adsorption when pressure decreases, that is to say, desorption
begins with the largest pores and ends with smallest ones. When
the desorption process is complete, capillary condensation gives
rise to the hysteresis loop (Figure 1).

The plot of adsorbed volume vs relative pressure that
represents both the nitrogen adsorption and desorption
processes was used to distinguish different pore types in
accordance with Sing’s classification that derived from De
Boer’s classification of hysteresis loops (De Boer and Lippens,
1964; Sing et al., 2001). Four theoretical patterns (H1 through H4)
of hysteresis loops (curve divergence) that correspond to four
typical pore shapes (cylindrical, ink-bottle, slit, and wedge) are
shown in Figure 2.

Previous studies on the second member of Kongdian
Formation focused mainly on geochemistry and hydrocarbon
generation potential (Pu et al., 2016; Yang et al., 2018; Zhou et al,,
2019; Xin et al,, 2021), but not much was mentioned about pore
structure especially on the nanoscale. Because of this, the
characteristics of pore structure and heterogeneity of shales
were poorly understood. In this paper, we used FE-SEM and
low temperature nitrogen adsorption methods to characterize
shale pore structure of the second member of Kongdian
formation, and thereafter calculated fractal dimension based
on the FHH theory. In the end, we discussed the fractal
characteristics and their controlling factors of shale samples.
Furthermore, we explored the relationships between fractal
dimension, mineral constituents, and pore structure and the
practical value of fractal dimensions.

GEOLOGICAL SETTING

Cangdong sag is an intracontinental sub-depression unit of
the Huanghua Depression bordered by Cangxian Uplift in the
west, Xuhei Salient in the east and Kongdian Salient in the
north (Figure 3). The second member of Kongdian
Formation was deposited when Cangdong Sag was an
enclosed inland lake basin. It’s fine-grained sediments are
composed of dark mudstone, thin-medium bedded siltstone
and argillaceous dolomite (Pu et al., 2016; Zhao et al., 2019;
Zhou et al,, 2019). Hydrocarbon discoveries in recent years
and several good oil wells producing from the second member
of Kongdian Formation in Cangdong sag indicate great shale
oil potential.

MATERIAL AND METHODS

Samples

10shale samples were selected from Well GX, Well GY and Well
GZ. All the three wells are from the area with daily oil production
ranging from 30t to 60t.

Experimental Approach

A series of laboratory tests were conducted on these samples,
i.e., total organic carbon (TOC), vitrinite reflectance (R,), XRD
analysis, FE-SEM and low temperature nitrogen adsorption.
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FIGURE 3 | Map of the Cangdong Sag and lithology column of the second member of Kongdian Formation (Modified based on Zhao et al., 2018).

XRD, TOC, and Ro Analysis
Approximately 5 g of each shale sample was pulverized to 40-60

mesh and then mixed with ethanol. The mixture was hand
ground and then coated on glass slides for XRD analysis. This

preparation technique was meant for semi-quantitative
estimation of mineral percentages. A Bruker AXS D8-Focus
diffractometer with CuK a radiation (40kV, 40 mA) and Ni
filtering was used to collect XRD data. The relative mineral
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FIGURE 4 | Morphology observed of major minerals in shale samples under FE-SEM.

contents were estimated according to the major peaks of each
mineral and the corrections of Lorentz and polarization
(Chalmers and Bustin, 2008).

Next, approximately 30 mg of each sample were powderized to
80-200 mesh, decalcified with a 5% HCI solution, and then dried
for 36 h in preparation for TOC analysis. A Leco CS-230 carbon
and sulfur analyzer was used to determine the TOC content.

For R, analysis, shale samples were cut into 5 x 5 x 1 mm slices
and polished. The standby immersed oil and monochromatic
light (wavelength of 546 nm) were also prepared. A Zeiss
microscope and an MPV-I microphotometer were used to
measure R,. At least 10 measurements were taken for each
sample.

FE-SEM Analysis

The high-magnification capacity of electron microscopy is
straightforward and effective for direct observation of the
sizes, shapes, and distribution of micro-nano pores. Secondary
electron (SE) images of rough, broken shale surfaces provide high
resolution textural information and allows for recognition and
description of larger-scale features (Slatt and O’Brien., 2011). The

shale samples were cut into approximately 10mm X
10 mmx3 mm slices and then coated with Au to avoid
electrostatic charging. FE-SEM analysis was conducted with a
cold field emission scanning electron microscope (54800, Hitachi,
Japan) at the maximum magnification of 800 K. The element
composition of the minerals was analyzed by an EDS
spectrometer.

Nitrogen Adsorption Analysis

The shale samples were crushed to 40-60 mesh. Then the
powdered samples were alternatively cleaned by methanol and
toluene until the hot toluene in which the samples were immersed
for 12 h became completely transparent. After this, the samples
were dried at ambient temperature. 0.35-0.40 g of powdered
samples were degassed in the vacuum at 10°C to remove any
adsorbed moisture and volatiles. Subsequently, low temperature
nitrogen adsorption tests were conducted using a Micromeritics
Tristar II 3020 analyzer with a measurable aperture of
3.5-300 nm and a minimum detectable specific surface area of
0.01 m?/g. The specific pore surface area was calculated based on
the Brunauer-Emmett-Teller (BET) theory (Brunauer et al,
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FIGURE 5 | Types of pores and morphology of shale samples under FE-SEM.

BT g O

1938), and pore volume was calculated using the Barrett-Joyner-
Halenda (BJH) method (Barrett et al., 1951).

RESULTS

Mineral Composition and Organic

Geochemistry

The X-ray analysis results show that the shales in the study area
have complexed mineral composition that includes quartz, albite,
dolomite, carbonate, analcite and clay minerals, and none of these
minerals is dominant. The average contents of felsic minerals
(quartz and albite), carbonate minerals (dolomite), calcite,
anacite and clay minerals are 43.59, 22.69, 14.71, 9.90 and
8.40%, respectively. In addition, there is a very minor content
of pyrite associated with mirabilite and halite (Figure 4J), which
appears to be round-shape under the optical microscope and bar-
shaped under the electronic microscope (Figure 5C). The results
show high contents of brittle minerals and low contents of clay
minerals, representing mixed deposition of small lake basin.

The TOC contents of all shale samples range from 1.02 to
5.32% with an average value of 3.26%. The kerogen types are II;
and II, according to the cross plot of Ty, (the temperature at
which the second peak (S2 or HI) is observed during Rock-eval
analysis) and Hydrogen index (HI) (Zhao et al., 2018). The R,
values are in the range of 0.67-1.05%. Considering the fact that
T nax is distributed primarily above 440°C, the low maturity shale
samples from the study area are mostly in the oil window (Zhao
et al, 2018).

a-authigenic quartz (well GX, 3,024.90m); b-albite grain (well
GX, 3,141.57m); c-albite grain with eroded surface (well GX,
3,057.94m); d-eroded calcite crystal (well GX, 3,147.5m);
e-authigenic dolomite (well GY, 3,885.27m); f-microcrystals of
dolomite (well GY, 3,893.38m); g-clustered analcite (well GZ,
4,113.02m); h-monocrystal of analcite (well GZ, 4,113.02m);
i-analcite crystal clamped by layered clay minerals (well GZ,
4,114.31m); j-bar-shaped monocrystal of pyrite along with
mirabilite (well GZ, 4,119.15m); k-pyrite filling in the tectonic
microfractures (well GZ, 4,124.60m); l-monocrystals of pyrite
filling (an enlarged area of picture k).
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FIGURE 6 | The N, adsorption/desorption experiment results at low

temperature (77 K) for the shale samples collected from the study area.

Qtz-quartz; Alb-albite; Cal-calcite; Dol-dolomite; Anl-anacite;
Clay-clay minerals; Py-pyrite; Mir-mirabilite.

Pore Structure

Pore Types and Morphology

According to FE-SEM studies, the pores in the study area are
classified into four types: interparticle pores, intraparticle pores,
organic matter pores and microfractures. Taking florescent thin
section observation results into account, it can be concluded that

Fractal Characteristics of Lacustrine Shale

interparticle pores between authigenic minerals, like dolomite
and analcite, are the primary storage space for shale oil.
a-florescent thin section, abundant interpores in layered
dolomite (well GX, 3,147.50m); b-florescent thin section,
abundant interpores in layered analcite (well GX, 3,057.94m);
c-florescent thin section, radial clusters of pyrite (well GY,

3,885.27m); d-scanning electronic microscope, irregular
dissolution interpores between dolomites (well GX,
3,024.90m); e-scanning electronic microscope, slit-shaped

interpores between dolomites (well GZ, 4,114.13m); f-scanning
electronic microscope, strip-shaped interpores between analcites
(well GZ, 4,113.02m); g-scanning electronic microscope,
dissolution intrapores within dolomites (well GY, 3,885.27m);
h-scanning electronic microscope, interlayered intrapores within
clay minerals (well GX, 3,057.94m); i-scanning electronic
microscope, intrapores between microcrystals of dolomite (well
GZ, 4,124.60m); j-scanning electronic microscope, primary
organic matter pores within bacteria and algae (well GX,

3,024.90m); k-scanning electronic microscope, tectonic
microfracture with eroded plane (well GX, 3,141.57m);
l-scanning electronic microscope, a zigzagged tectonic

microfracture (well GY, 3,893.38m).

1) Interparticle pores.

Interparticle pores mainly refer to the residual space after
sedimentation or diagenetic alteration (Ji et al., 2016), which are
quite common in shallow-buried sediments (Loucks et al., 2012).
Due to weak diagenetic alteration, low thermal maturity, and high
content of brittle minerals found in the shale samples, the
interparticle pores are believed to be abundant in the study
area, probably having polygonal or slit-shaped apertures
supported by rigid minerals like dolomite and analcite
(Figure 5D, Figure 5E, Figure 5F). However, felsic minerals
including quartz and albite are often mixed with clay minerals
and organic matter because most of them derive from terrigenous
detrital sediments, which leads to limited effective storage space
for shale oil. It’s worthy to note that the dominant interparticle
pores between dolomite crystals taking relatively regular shapes
are well preserved and connected, forming an effective pore
network. This can be clearly observed from florescent thin
section observation.

2) Intraparticle pores.

The intraparticle pores are those within mineral particles or
organic matter particles themselves. Some of them are primary
pores in origin, but most of them are secondary pores formed in
the diagenetic process. The intraparticle pores are primarily
dissolution pores in the carbonate grains. They are usually
irregularly-shaped with several to hundreds of nanometers in
size and are disorderly distributed (Figure 5G). In addition,
intracrystal pores in the microcrystalline dolomite as well as
elongated pores between clay mineral interlayers (intergranular
pores within flocculent illite and leaf-shaped chlorite) can also be
found in the study area (Figure 5H, Figure 5I).

3) Organic matter pores.

Organic matter pores are intraparticle pores found within an
organic matter, appearing as bubble-shaped, strip-shaped or oval
space with irregularity. Two distinct kinds of organic matter pores
have been identified: the primary organic matter pores linked to
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FIGURE 7 | Pore size distribution plotted based on nitrogen adsorption experiment results of shale samples.

TABLE 1 | Mineral composition and organic geochemistry for all shale samples.

Samples Depth/m TOC/% Ro/% Mineral composition wt%

Quartz Feldspar Dolomite Carbonate Analcite Clay Pyrite
GX-1 3,147.50 2.98 0.75 35.11 16.82 20.23 5.91 11.93 10.00 0.00
GX-2 3,141.57 1.02 0.78 24.88 31.00 2.57 19.18 9.22 12.00 1.20
GX-3 3,024.90 1.20 0.68 17.53 3.62 45.77 15,73 1217 5.18 0.00
GX-4 3,057.94 2.26 0.67 15.96 14.83 42.15 3.02 13.27 9.77 1.00
GY-1 3,885.27 1.63 0.92 21.16 22.16 23.66 18.03 7.00 6.99 1.00
GY-2 3,893.38 5.32 0.94 23.44 35.95 1.07 28.19 6.00 4.35 1.00
GZ-1 4,113.02 4.58 1.02 20.06 23.18 29.02 7.75 15.00 5.00 0.00
GZ-2 4,124.60 3.52 1.01 14.46 30.24 28.30 6.00 10.00 11.00 0.00
GZ-3 4,114.31 3.02 0.98 17.02 27.95 11.78 22.25 10.00 10.00 1.00
GZ-4 4,119.15 4.23 1.05 9.13 31.36 22.35 21.14 4.26 9.76 2.00

TABLE 2 | Contribution of micropore, mesopore, and macropore to total pore specific surface area and volume of shale samples.

Samples depth/m BJH average BET specific Specific surface area BJH total Specific pore volume
adsorption diameter/nm  surface area/(m%2g~" contribution/% volume/(cm®g~" contribution/%
Micro Meso Macro Micro Meso Macro
GX-1 3,147.50 22,1328 0.9112 6.62 83.69 9.69 0.00433 0.58 50.12 49.30
GX-2 3,141.57 24.0877 0.7682 6.98 83.02 10.00 0.003863 0.54 52.30 47.15
GX-3 3,024.90 20.4097 1.4758 0.69 93.10 6.21 0.007072 0.07 66.73 33.20
GX-4 3,057.94 15.2933 1.5659 9.51 84.86 5.63 0.005758 1.15 59.17 39.68
GY-1 3,885.27 47.0340 0.5492 0.00 75.46 24.54 0.004270 0.00 40.99 59.01
GY-2 3,893.38 25.4800 0.6128 16.23 72.51 11.26 0.002353 1.23 48.50 50.28
GZ-1 4,113.02 30.8784 0.7641 5.64 82.80 11.56 0.004703 0.16 53.16 46.68
GZ-2 4,124.60 44,0871 0.6964 7.53 68.37 24.09 0.004863 3.27 36.80 62.87
GZ-3 4,114.31 28.6874 0.6459 21.72 63.31 14.97 0.002857 1.43 35.61 62.96
GZ-4 4,119.15 30.8814 0.7591 12.63 72.04 15.33 0.004779 0.76 43.48 55.76
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TABLE 3 | Fractal dimensions obtained from N, adsorption.

Samples P/Py < 0.45 P/P,0.45
K R? D, K R? D,

GX-1 -0.8945 09568 21055 -0.4656  0.994  2.5344
GX-2 -0.9827 09222 20173  -0.482 09914 2518
GX-3 -0.5358  0.9409 24642 -0.4552 09616  2.5448
GX-4 —0.9402 09779 2.0598 -0.4019 09888 25981
GY-1 -0.6957 09287 23043 -0.4903 09897  2.5097
GY-2 -0.8661  0.9353 21339  -0.4738  0.9903  2.5262
GZ-1 -0.5928  0.9392 24072 -0.5601 0.9844  2.4399
GZ-2 -0.8724 09558 21276  -0.6384 09894  2.3616
GZ-3 —0.9209 09451 20791 -0.5168 0.9916  2.4832
GZ-4 -0.9636 09320 2.0364 -0.5562  0.9909  2.4438

kerogen type which existed even before sedimentation, and the
secondary pores caused by organic maturation and hydrocarbon
expulsion (Curtis et al.,, 2012; Loucks et al.,, 2012; Reed et al.,
2014). The organic matter pores are much less common,
especially being compared with highly-mature marine shales in
Paleozoic strata of south China. As bacteria and algae are the
dominated source of organic matter (Yang et al., 2018) and shale
maturity is low, so honeycomb pores, strip-shaped pores and
bubble-like pores can be observed (Figure 5]J).

4) Microfractures.

Microfractures mainly include tectonic fractures resulted from
tectonic stress and shrinkage fractures caused by three possible
phenomena, hydrocarbon expulsion from organic matter,
dehydration of clay minerals and mineral recrystallization in

Fractal Characteristics of Lacustrine Shale

the diagenetic process. In the study area, tectonic
microfractures are regularly-shaped with smooth fracture
plane, extensively distributed, well developed and usually
filled with pyrite on micron to decimeter scale (Figure 5K,
Figure 5L). This is because Cangdong Sag had experienced
strong and continuous rifting in the early Paleogene when the
shales were deposited (Chen et al., 2016; Luo et al., 2017). By
contrast, shrinkage microfractures are less common due to
low maturity level and low content of clay minerals found in
shale samples. Tectonic microfractures are often well
connected with other types of pores, forming complexed
yet effective transport network, thus significantly
improving the shale permeability.

Pore Size Distribution

It is found that shales in the study area mainly feature type H3
hysteresis loop. For most graphs recorded, the adsorption curve
shows a slight ascent when relative pressure increases from 0 to
around 0.1, inferring nominal presence of micropores. Between
0.1 to around 0.8, the adsorption curve rises marginally and
almost linearly, indicating that narrow or slit-shaped pores
account for the majority. The onset of a sharp bend occurs
around 0.8, and beyond 0.9 the curve skyrockets to infinity,
which means the pores have open ends. Desorption reserves
the process, but leaving a gap between the adsorption curve
owning to capillary condensation. In conclusion, the results of the
nitrogen adsorption experiments demonstrate that in the study
area aggregates of plate-like particles give rise to open-ended slit-
shaped pores of shales.
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FIGURE 9 | Plots of In (InPy/P) vs InV for all 10 shale samples.

The Brunauer-Emmett-Teller model was used to calculate the ~ micropores, mesopores and macropores account for 8.75,
specific surface area of shale samples. Based on the Barret-Joyner- 77.92 and 13.33% of the total specific surface area, and 0.92,
Halenda model, the adsorption curves are plotted in order to  46.69 and 50.69% of the total specific pore volume, respectively
obtain the pore size distribution (Figure 6, 7). (Table 3). The pore sizes are mainly distributed in the range of

The specific surface area of shale samples is between = 2-50 nm with three peaks observed at 2nm, 5 and 25nm
0.6128 m®/g and 1.4758 m’/g with an average value of  (Figure 7).

0.8748 m?/g. It is worthy of note that most values are below Since micropores contribute the least to either the total specific
1 m?/g, which is less common, especially for shales. On the  pore surface area or volume (Table 1, Table 2, Table 3), it be can
basis of all experimental data and statistical analysis, = concluded that the shales in the study area are dominated by
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FIGURE 10 | The scatter diagrams and extrapolated correlations for different pore structure parameters vs organic matter and mineral compositions.

mesopores and macropores which are normally associated with
organic matter and clay minerals.

Regression analysis was carried out in order to find the
relationships between different pore structure related parameters.
From Figure 8-12 we can see that BET specific surface area
correlates negatively with average pore diameter and positively
with BJH total volume. Nevertheless, the data points of BJH total
volume vs average pore are too scattered to be deemed relatable. The
results indicate a narrow range of pore size where the mesopores are
found to be the shale’s major reservoir space in the study area within
the measuring range of nitrogen adsorption experiments.

Fractal Analysis Based on Nitrogen
Adsorption

The sedimentary rock structure is multi-fractal, hence different
fractal dimension value represents different pore structure and
physical property. In the adsorption/desorption curves shown in

Figure 6, it can be clearly observed that hysteresis loop usually
appears around 0.45 relative pressure when capillary
condensation kicks in. This marks two distinctive pore
structures that are existent in the rock samples. Therefore, D,
is calculated based on nitrogen adsorption data when the relative
pressure is less than 0.45. This relates to the smaller pores like the
micropores that mainly adsorb nitrogen in single or multi-
molecules. While D, is calculated in the same way except that
the relative pressure is greater than 0.45. This represents the
bigger pores like macropores and mesopores that mainly absorb
nitrogen in multi-molecules due to capillary condensation.

The table above shows the fractal dimensions of 10 shale
samples calculated based on the aforementioned model and
equations. The almost perfect linear fit (all R are greater than
0.91 with an average value of 0.95) of InV vs In [In (Py/P)] plot
shows evident fractal feature of pore structure in the shales. D,
ranges from 2.0173 to 2.4642 with an average value of 2.1735, D,
ranges from 2.3616 to 2.5981 with an average value of 2.4960.
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Two things are worth noticing here. First, D; values are smaller
than D, for all samples, reflecting that the bigger pores have more
complexed structures than the smaller ones, which is very
unusual for shales. Second, all D; and D, values are smaller
than 2.6, inferring that pore types are not many.

The results of fractal analysis point to an unusual conclusion that
the bigger pores have more complicated structures than the smaller
ones. The underlying reasons could be that the micropores
associated with organic matter and clay minerals are poorly
developed with few types because of low maturity and low clay
content of shales in the study area. By contrast, the macropores and
mesopores like interparticle pores and microfractures develop
attributed to high content and various types of brittle minerals,
therefore they feature higher heterogeneity than the smaller pores.

DISCUSSION

A lot of research work on pore structure and their controlling factors
of terrestrial and marine shales in China has been done to date (Yang
et al, 2016; Chen Q. et al, 2016; Peng et al., 2017). For the high
maturity marine shales in South China, the mineral composition is
dominated by quartz and clay minerals (Zou et al,, 2019). Their pore
types and abundances are primarily controlled by the types and
contents of organic matter and clay minerals. The well-developed
micropores in the organic matter and clay minerals, various pore types
and a broad range of pore size distribution together lead to high shale
heterogeneity, giving rise to high values of fractal dimensions D; and
D, (Chen et al,, 2016; Yang et al., 2016; Peng et al,, 2017; Li et al., 2016).

The relationship between organic matter, mineral
composition, pore structure parameters and fractal dimensions

are discussed hereinafter to ascertain the controlling factors in
pore structure development, paving the way for prospecting local
shale plays with more confidence.

Relationship Between Pore Structure
Parameters and Organic Matter and Mineral

Compositions
Regression analyses for pore structure parameters (BET specific surface
area, BJH total volume and the average pore diameter) versus TOC
content, Ro, brittle minerals content and clay minerals content are
carried out as follows.

The results above show that the total volume and specific surface
area are correlated positively with dolomite content but negatively with
felsic minerals content. In addition, no pronounced correlation is found
between pore structure parameters and TOC, R,,, or clay minerals. The
results indicate that the volume and surface area of shales in the study
area are mainly controlled by brittle minerals, and the influence of
organic matter and clay minerals on pore structure is weak. Probable
explanations are that the brittle minerals, such as authigenic dolomite,
provide considerable pore space for shale oil, whereas terrestrial clastic
materials like quartz and albite are typically mixed with pore-plugging
clay and organic matter, thus unable to provide effective storage space
for shale oil.

Relationship Between Fractal Dimensions
and Pore Structure Parameters

The fractal dimensions (D; and D,) are correlated with different
pore structure parameters (BET specific surface area, BJH total
volume and the average pore diameter) as below.

Frontiers in Earth Science | www.frontiersin.org

November 2021 | Volume 9 | Article 760583


https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles

Pan et al.

Fractal Characteristics of Lacustrine Shale

A,

2.6 ° & g.
5,5 s _°  R=0.1873 °
2" . L S
b5 L ] =
g 2.4 °
B °
S 234 .

3 i
£ 2.2 — __R-00114
L ° = e
2.1
. e é
®
2 T T T T T 1
1 2 3 4 5 6
C TOC content (wt.%)
2.7+
2.6 ° * D,
° ° D,
§as{T——— A . :
2 K R’=0.0115 ,°  ————
o 2.4 .
£ o
3 234 T~ 3
cks g
s ~
.
= N R'=0.4735~___ ®
2.1 ~a
° .. \\\\\.‘
Z T T T T T T T T 1
4 s 6 7 8 9 10 11 12 13
E Clay content (wt.%)
2.7
2.6 e R= e D
R'=0.0343 D
g 2.5 ks - &
22
a ® ® °
544 o .
8 o -
= 234 . _
2 o
2 2.2 il
£ 7 R™=0.3434
R
- L]
- L]
21e hd
- T T T T 1
20 30 40 50 60 70
Dolomite content (wt.%)
FIGURE 12 | The scatter diagrams and correlations of fractal dimensions vs mineral compositions, TOC content, and R,

274
4 5 . D
%6 S R=0.6679 e D,
T 9
£ 2.5 T— e
‘& s T
g s
S 2.4 )
2
—2:37) .
b} )
3 R’=0.0038
g 2.4 A
g ——
L L]
2.14 .
L] ® .
2 T L T T T 1
0.6 0.7 0.8 0.9 1.0 11
D R, (%)
2.7
2.6 o 2 g'
e o 2
L] [ ] -
g 2.5 e °°
3 . )
5 54] ¢ R™=0.0370
E o
s, ~
'_—'g 3+ \\\\\ °
bt e
S 2.2 e
= 2 .\\\ .
o R’=0.2483 S vl
R <
L]
2 T T T T * 1

20 30 40 50 60

Felsic content (wt.%)

The results show that D, correlates poorly with surface area,
average pore diameter and BJH pore volume, meanwhile D, has a
positive correlation with specific surface area and a negative
correlation with average pore diameter. This bears two
implications: 1) the pore structure is irregular and complex.
The micropores mainly are constructed by different brittle
minerals with different types of rigid edges. From the view of
section, we can find that the storage space formed by straight lines
of dolomites and calcites, round lines of analcite, and zigzag lines
of felsic minerals (Figure 5D, Figure 5E, Figure 5F). Different
brittle minerals crossing already make it look like a pile of tree
branches and leaves stacking together. The rest clay minerals and
organic matter will increase the irregularity and complexity even
more.; 2) this complexity is linked to the bigger pores (pore
size>4.5 nm). Micropores contribute less to surface area and are
less complexed than mesopores due to the low thermal maturity
and low content of clay minerals. If we take the particle size of
shale oil and the thickness of bond water into consideration (Lu
et al,, 2018), 10 nm should be the minimum storage diameter for
shale oil. And in this particular area, combining with the pore size

distribution, the pores with diameter greater than 20 nm should
be the main storage place for shale oil.

Relationship Between Fractal Dimensions
and TOC Content, Ro, and Mineral

Compositions
The fractal dimensions (D, and D,) are correlated with mineral
compositions, TOC content, and R, as below.

It is obvious that none of the correlations above are
deemed a good fit. This infers that the heterogeneous pore
structure in the study area finds no single cause. But there is
still some noteworthy abnormality. For example, the negative
correlation between D, and R, may be related to dolomite
recrystallization during hydrocarbon generation (Pu et al,,
2019). Further, in the dissolution and crystallization process
of micrite carbonate, impurities such as clay and fluid
inclusions are discharged, leaving more pure dolomite
crystals in place, giving rise to low heterogeneity and
hence low D,. Last but not least, the unusual negative
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correlation between D; and clay content would entail further
research.

The dominant controlling factor on pore structure is brittle
minerals which include quartz, albite, dolomite, calcite and
analcite. The formation of the ultimate pore structure is a long
and complicated process, involving the mixture of terrestrial
clastic materials and the transformation of authigenic
minerals. That explains why there is not a single brittle
mineral showing good correlate with fractal dimensions.

In conclusion, because the low maturity and low content of clay
minerals in shales has little to do with the complexity of pore structure,
fractal dimensions are irrelevant with Ro, TOC and clay minerals.

CONCLUSION

1) The low thermal maturity, low content of clay minerals and high
content of brittle minerals together shape the unique pore
structure characteristics of shales in the Cangdong Sag. The
pore type is primarily interparticle pores caused by authigenic
brittle minerals and microfractures. The organic matter pores
(macropores, mesopores, and few micropores) only account for a
small portion; the pore sizes are mainly distributed in the range of
2-50 nm with three peaks, 2, 5 and 25 nm. So it is fair to claim
that there is a limited number of pore types.

D, values that represent the fractal dimension of smaller pores
are smaller than D, meant for bigger pores. Furthermore, both
D, and D, values are low compared with typical marine shales,
demonstrating that mesopores and macropores are much
more complicated than micropores in structure.

As the shale reservoirs are mainly contributed by brittle
minerals, which means that mesopores, macropores and
microfractures are the majority of storage space for shale
oil. The most favorable pore types are interparticle pores and
microfractures in terms of practical development.

2

~

3)

In conclusion, the interparticle pores and intraparticle pores
that are associated with a variety of brittle minerals lead to
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