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Changes in temperature variability can have more serious social and ecological impacts
than changes in the mean state of temperature, especially when they are concurrent with
global warming. The present study examines the summertime temperatures’ trends over
China from the quantile perspective. Through fully investigating the quantile trends (QTs) of
the maximum (Tmax) and minimum temperature (Tmin) using the homogenized
observation data and quantile regression analysis, we identify evident region-specific
quantile features of summertime temperature trends. In most of northern China, the QTs in
Tmax and Tmin for all percentiles generally show strong uniform warmings, which are
dominated by a warm shift in mean state temperatures. In contrast, the QTs of Tmax in the
Yangtze River Basin show distinguishable inter-quantile features, i.e., an increasing
tendency of QTs from cooling trends in the lower percentile to warming trends in the
higher percentile. Further investigations show that such robust growing QTs of Tmax
across quantiles are dominated by the temperature variance. Our results highlight that
more attention should be paid to the region-specific dominance of temperature variability in
trends and the related causes.

Keywords: extreme temperature, quantile trends, variability, China, summertime

INTRODUCTION

Global warming during the past 50 years is unequivocal, according to the continuous assessments of
the Intergovernmental Panel on Climate Change (IPCC) reports (e.g., IPCC, 2012,2013,2018,2021).
Such warming is not spread uniformly across the globe; instead, distinctive region-specific features
with various magnitudes or even opposite signs are detected.

In particular, previous studies have demonstrated that China has also experienced robust
warming trends during the past decades from the national mean perspective (e.g., Ding et al,
2007). However, strong regional and seasonal differences of such warming trends have also been
reported (e.g., Qian and Qin, 2006; Xu et al., 2017; Li et al., 2019; Li and Zha, 2019). For example, Li
et al. (2019) found that from the long-term (>50a) scale, summertime temperature during the past
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half-century exhibited a larger warming trend over the north of
China, whereas very slight warming or even cooling trends were
detected in the south of China. Similarly, this pattern of warming
trends is also recognized by several previous studies (Qian and
Qin, 2006; Xu et al., 2013; Xu et al., 2017), despite some slight gaps
in magnitudes due to different data, methods, and analysis
periods. Regarding daily maximum temperature (Tmax)
trends, Li et al. (2015) found that the trends of summer Tmax
during 1961-2012 over China also showed robust warming in the
north and slight warming or cooling in the south, which
resembles the above-mentioned warming pattern of mean
temperature.

Concurrent with such warming patterns, the trends of high-
temperature extreme events (e.g., heatwaves), however, are
evidently distinct from that of temperatures, particularly in
regions of southern China (e.g., Yangtze River Basin). As
revealed by Chen and Zhai (2017), the summertime
compound hot events were growing 15-20% (i.e., 2-4 days)
per decade, especially in the north China and south China. Hu
etal. (2017) investigated the trends of summertime heat days over
China and identified a significant increasing trend of heat days in
southern China, particularly in the south of the Yangtze River and
the southeast coast of China. Meanwhile, evident decreasing
trends of heat days were also detected in Henan and
Shandong province in their study. Similarly, Qian et al. (2019)
also showed that the summertime warm days (TX90P) have
significantly increased in western China and East China,
whereas slight decreasing trends were coherently detected in
some regions of central-eastern China. From the above
evidence, it is worth noting that the increasing (decreasing)
pattern of heat extremes seems inconsistent with the warming
(cooling) pattern of Tmax, especially for South China. This
further suggests that the trends of Tmax in different
percentiles are probably distinct because most studies used
percentile-based indices (e.g., TX90P) to define extreme events.
What is the feature and the main cause of the above-mentioned
inconsistency (i.e., different trends across percentiles) over China
remains unknown.

According to the IPCC SREX report (IPCC, 2012), the
variability of extreme temperatures is not only influenced by
the mean state shift in temperature, but also related to the
changing shape of the temperature distribution (e.g., changes in
temperature variance). Furthermore, McKinnon et al. (2016)
investigated the relative roles of four statistical moments of
temperature distribution (i.e., mean, variance, skewness, and
kurtosis) on the summertime temperature trends. Their results
showed that the warming trends in summer temperatures over
the majority of the Northern Hemisphere were due to shifts in
the temperature mean state, but in some specific regions (e.g.,
mid-to high-latitude Eurasia), changes in temperature variance
also make a non-negligible contribution to the trends. As global
warming and the concurrent growth of extreme events become
more severe, there are growing numbers of studies that highlight
the impact of temperature variability on extreme events more
widely than the mean state shifts (e.g., Schir et al., 2004; Screen,
2014; Wang et al., 2020; Yang et al., 2021). However, for China,
the assessment of relative contribution of temperature mean

Quantile Features of Temperature Trends

state shifts and changes in temperature variability to the
temperature trends in the context of global warming is still
lacking.

In recent years, China has suffered multiple dangerous and
deadly heatwaves (e.g., 2013 super summertime heat wave event
in southern China; Xia et al., 2016), which caused catastrophic
social and economic consequences. Multi-model-based future
projections suggest that if global warming persists, deadly heat
waves like the 2013 event will become increasingly frequent (e.g.,
Sun et al., 2014; Sun et al., 2018). Therefore, based on the above
gaps, two important scientific questions are raised, namely, what
are the quantile features of the summer temperature trends in
China? And what is the relative contribution of changes in the
mean state and variability of temperatures to the trends? The rest
of the article is presented in the following order: Section 2
describes the data and methods used in the study, Section 3
shows the main results of the study, and Section 4 contains the
necessary discussions and summaries of the current findings.

DATA AND METHODS
Data

The homogenized China daily maximum and minimum surface
air temperature (Tmax and Tmin hereafter) from 2,419
meteorological stations are used to investigate the variations of
Tmax and Tmin during 1961-2017. In addition, precipitation
data from the same homogenized dataset are also used in this
paper to investigate the covariability between temperature and
precipitation. Those datasets are derived from the China
Meteorological Administration (http://data.cma.cn/en).
Comparing with the original station records, the potential
inhomogeneities (i.e., influences from non-climatic factors) of
the data are significantly reduced in those datasets, and the
quality of the observed data are further improved. Details of
the production of these datasets are referred to Cao et al. (2016)
and Yang and Li (2014). To further minimize the
inhomogeneities from missing data and stations’ irregular
geographic distribution, two additional criteria are applied:

1) For meteorological variables, the stations that have any
missing data of summer days (ie., June-July-August)
during 1961-2017 are excluded;

2) Following Chai et al. (2018) and Li et al. (2019), we introduced
a re-grid algorithm to redistribute the station data onto a 0.5
x 0.5° longitude-latitude grids; details can be found in Li et al.
(2019).

Finally, the processed meteorological variables are continuous
(i.e., no missing data) in time and equal-weighted in space
(ie, 0.5° x 0.5 grid boxes). The illustration of the original
stations” distributions and the re-gridded equal-weighted grid
boxes can be found in Supplementary Figure S1.

Quantile Regression
To investigate the role of the changing shape of temperature
distributions on its trends across different percentiles, we
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introduce the quantile regression (QR) method to estimate the
quantile trends (QTs). The QR method can be seen as an
extension of the method of ordinary least squares (OLS); it
can discover more comprehensive relationships between
variables in any quantiles (e.g., median). This method has
been widely used for assessing the variability of extreme events
in recent decades (e.g., McKinnon et al., 2016; Mueller et al., 2016;
Yin et al., 2018). A full description of QR method can be found in
Koenker and Bassett (1978) and Cade and Noon (2003). The QR
source code can be implemented using the python statsmodels
(Seabold and Perktold, 2010) package. Detailed information of
statsmodels package and QR source code can be found in http://
www.statsmodels.org/stable/_modules/statsmodels/regression/
quantile_regression.html#QuantReg.

In this study, we first remove the seasonal cycle of Tmax
and Tmin in each summer between 1961 and 2017 according
to the daily climatology of the whole period (i.e., 1961-2017)
to obtain the daily Tmax and Tmin anomalies at summer
months (i.e., June-July-August). The QR method is then
applied to a 57-year (i.e, 1961-2017) time series of
summer daily Tmax (Tmin) anomalies for each grid box
(i.e., total series length for QR is 57 years x 92 days), and
linear trends in Tmax (Tmin) are calculated in 5% steps from
the 5th percentile to the 95th percentile. It should be noted
that the interpretation of QR results (i.e., QTs) is very similar
to the OLS regression, with the difference that instead of
predicting the mean of the dependent variable, quantile
regression looks at the quantile of the dependent variable.
Here, we illustrate with a specific example: suppose we do QR
on a Tmax series and obtain its 90th percentile QT of 0.2°C/
10a. This means that if the trend is translated into a change of
extremes, then hot days will plausibly increase in this
example. Similarly, the 10th percentile QT of Tmax (Tmin)
implies a change in cold days (nights). In contrast to OLS
regression, which can only predict the mean of the dependent
variable, QR can be applied to any quantile points, so by
investigating the QT at multiple percentiles, we can establish a
better understanding of the variation in the conditional
distribution of the temperature series. Specifically, for QTs
at the two tails of the temperature distribution, it is closely
related to changes in extreme events.

Furthermore, in order to quantify the contribution of changes
in temperature mean state and shape of temperature distribution
(STD) to the temperature QT's, we can assume that at a certain
percentile, the trend in temperature is only influenced by changes
in the temperature mean state and STD. Thus, we can measure
the change in temperature QTs due to STD as the difference
between the temperature QTs and the mean temperature trend
(ie, Trendsrp = Trendgr — Trendypan), and the relative
contributions of changing STD in temperatures’ trends
magnitudes can be calculated as:
Contribrrenag, = |Trendsrpl/ (|Trendsrp| + |Trendpypan|). In
addition, some commonly used statistical methods (e.g., linear
trend, Empirical Orthogonal Function, Kernel Density
Estimation, etc.) are also employed in our study. The
significance of the Tmax and Tmin trends in all quantiles are
tested using a two-tailed -test.

Quantile Features of Temperature Trends

RESULTS

Quantile Features of Summertime Tmax and

Tmin Trends over China
Previous studies have suggested that changes in STD (e.g,
changes in variance, skewness, and kurtosis) can also exert
important impacts on temperature extremes (IPCC, 2012;
McKinnon et al, 2016; Li et al, 2017). Note that the term
“changes in temperature variability” in the following text
refers specifically to changes in STD (ie., variance, kurtosis,
and skewness) other than the mean state shift. To investigate
whether there are evident differences of Tmax (Tmin) trends
among percentiles, Figure 1 shows the selected QTs of
summertime Tmax and Tmin at three different percentiles
(i.e,, 10th, 50th, and 90th percentiles) during 1961-2017 over
China. As seen from Figures 1A1-A3, the Tmax QTs clearly
show distinguishable features from low to high percentiles, while
the Tmin QTs are less variable across different quantiles.

Specifically, the QTs of Tmax at the 10th percentile exhibits
consistent significant warming trends (more than 0.2°C/10a)
over most regions in the north of China (i.e., to the north of
40°N), especially for North China (Figure 1A1). In contrast,
broad cooling trends are detected in the Yangtze River Basin
(YRB) and Huaihe River Basin with significant (p < 0.05)
cooling trends of —-0.3 to —0.4°C/10a. Compared to the low
percentile (10th percentile), the trend of the median (i.e., 50th
percentile) of Tmax generally shows a similar warming pattern
to the mean Tmax trend over China (e.g., mentioned in Li et al,,
2015 and Supplementary Figure S2A). In particular, significant
warming trends with a magnitude of 0.2-0.4°C/10a are shown in
the north of China (i.e., to the north of 40°N) and coastal areas of
South and East China, whereas there is no clear trend in the
Central China (slightly warming or cooling with a magnitude
less than +0.1°C/10a; Figure 1A2). For the Tmax at high
percentile (i.e., 90th percentile), the pattern of significant
warming trends is very similar to that of the median of
Tmax, ie., significant warming trends are detected in the
north of China (i.e., to the north of 40°N) and the coastal
regions of southeastern China (Figure 1A2 vs. Figure 1A3).
Notably, there are two distinguishable characteristics of Tmax
trends at 90th percentile in contrast to that of the median. First,
for YRB, the robustness and warming magnitude of Tmax
trends at the high 90th percentile is stronger (i.e., more grids
show significant warming trends) and higher (i.e., 0.2°C/10a
higher) than that at the median. Second, significant cooling
trends of Tmax at the high percentile with the magnitude of
-0.2 to —0.4°C/10a are also detected in the Huang-Huai-Hai
plain, where no clear trends are shown at the median
(Figure 1A2 vs. Figure 1A3). In conclusion, the QTs of
Tmax show a largely consistent and significant warming in
the north of China, but in the YRB region, this exhibits an
asymmetrical feature across quantiles, i.e., an increasing
tendency from cooling at the low percentile (i.e., 10th) to
warming at the high percentile (i.e., 90th).

To further interpret the current results, we can roughly link
the trend of Tmax at the 90th (50th) percentile to the trend of hot
extremes (mean Tmax). Therefore, the current results of Tmax
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FIGURE 1| The quantile trends of 1961-2017 summertime Tmax [row (A)] and Tmin [row (B)] at 10th (column 1), 50th (column 2), and 90th (column 3) percentiles,
unit: °C/10a. Stippling regions denote trends that are statistically significant at 95% confidence level. The red boxes in the panel (A) represent the Yangtze River Basin
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trends at the 50th and 90th percentile generally agree with
previous studies regarding the observed trends of mean Tmax
and hot extremes during the past 50 years (e.g., Deng et al.,, 2019;
Lietal, 2019; Qian et al., 2019). Moreover, it should be noted that
the evident opposite Tmax QTs between the high and low
percentiles at the YRB region may be caused by changes in
non-mean factors of temperature (e.g., variance and kurtosis),
according to McKinnon et al. (2016). This further implies that the
changing shape of Tmax distributions (i.e., changes in variance,
skewness, and kurtosis) may dominate the trend of hot/cold
extremes in the YRB region.

Unlike the Tmax, the QTs of Tmin are more consistent
among different percentiles (Figures 1B1-B3), with all QTs
showing almost the same trends as the mean Tmin
(Supplementary Figure S2B). Taking the trend of the
median of Tmin as an example, broad and consistent
warming trends are detected nationally, while the warming
magnitude in the north of China (0.3-0.5°C/10a to the north of
35°N) is higher than that in the south of China (0.1-0.4°C/10a
to the south of 35°N). In addition, the trends of Tmin at 10th
and 90th percentiles generally resemble that of the median
(Figures 1B1-B3). Comparing the above QT results of Tmin
and Tmax, two distinguishable features can be concluded: 1)
The QTs of Tmax show an asymmetric feature across
percentiles (i.e., an increasing tendency of Tmax trends from
low to high percentiles), whereas there are symmetric responses

of Tmin trends in all percentiles (Figure 1B), and 2) the
warming trends magnitudes of Tmin in all percentiles are
higher than that of Tmax, which agrees with the previous
findings regarding the more rapid warming of Tmin than
Tmax in recent decades (e.g., Davy et al., 2017). Moreover,
this asymmetric trends between Tmax and Tmin, irrespective
of the quantile, also implies that the diurnal temperature range
(DTR) has shown a clear decreasing trend over the past
decades, which has been well recognized in recent studies
(Xia, 2013; Xue et al,, 2019). In addition, physical reasons
for the declining DTR are probably related to the sunshine
duration, cloud cover, and large-scale vertical motion
anomalies (e.g., Liu et al., 2018).

Stability of Quantile Trends of Tmax and
Tmin over the YRB Region

In the previous part, we found that there were distinct responses
of QT's between Tmax and Tmin, particularly for the YRB region.
However, it is obvious that a trend of temperature can be
potentially affected by the start and end year (i.e., the position
and length of trend window), which in turn introduce
uncertainties and reduce the confidence of the current
conclusions. Therefore, in this part, we will fully discuss the
stability (i.e., uncertainty) of the observed features of the QT's of
Tmax and Tmin over the YRB region.
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FIGURE 2 | Running window quantile trends in the 10th (column 1), 50th (column 2), and 90th (column 3) percentiles of Tmax [row (A)] and Tmin [row (B)] at the
point (120°E, 31°N) within the YRB region, unit: °C/10a. The x-axis represents the start year of the analysis period, while the y-axis represents the length of the analysis
period. White and black dots represent trends that are statistically significant at 99% and 95% confidence levels, respectively.

First, we take one particular point (i.e., 120°E, 31°N) in the YRB
region as an example to conduct a running window QR analysis
(5th to 95th in step of 5%) that covers the window length (WL)
from 49 to 57 years and the start year (SY) from 1961 to 1969.
Through the running window analysis, the QTs of Tmax and
Tmin for 45 different periods will be calculated. It is worth noting
that we focus on long-term trends in temperatures in the
following analysis, and therefore, only WLs of about 50a or
more are shown here. Figures 2A,B exhibit the selecting
results (i.e, 10th, 50th, and 90th percentiles) of running
window QR analysis for Tmax and Tmin, respectively. A first
inspection shows that the QTs of Tmax and Tmin from low to
high percentiles within different periods on the whole exhibit
similar features to the spatial results of Section 3.1. In detail,
consistent cooling trends are detected at the low percentile
(i.e., 10th percentile) of Tmax in most of the selected periods
(44 periods out of 45; Figure 2A1). For the robustness, significant
cooling trends of Tmax in the low percentile with —0.2 to —0.4°C/
10a are shown in relatively long periods (i.e., 53-57 years),
whereas weak and insignificant cooling trends are shown in
relatively short periods (49-51years). The trends of the
median of Tmax generally show consistent and significant
moderate (0.1-0.3°C/10a) warming in all periods (except for
the trends start at 1961; Figure 2A2). Similarly, consistent but
stronger warming trends (0.3-0.5°C/10a) are detected in the
Tmax at the high percentile (ie, 90th) for all periods
(Figure 2A3). All the Tmax trends at 90th percentile within
different periods are statistically significant (i.e, p < 0.01). For

Tmin, running window QT results show uniformly strong and
significant warming at every percentile (Figures 2B1-B3), which
indicates that the uniform warmings of Tmin at all quantiles for
this specific point have a high degree of confidence. In addition to
the above results, it appears that the significance of the 10th
percentile cooling QTs of Tmax are not consistent across WLs. In
particular for the results after the SY of 1965, significance of Tmax
QT's across windows are very weak. For interpreting this finding,
we extend the WL (SY) of running window QT analysis to 20-57a
(1961-1998) in order to provide a panoramic view
(Supplementary Figure S3). Interestingly, in addition to the
characteristics we show for the long-term QTs, it is also clear
that Tmax QTs in all percentiles exhibit significant interdecadal
variations, i.e., the cooling trends of the 60-80s and the significant
warming trends of the 80s and onwards (Supplementary Figures
S3A1-A3). These interdecadal variations reflect the effect of
internal climatic variability (e.g, Atlantic Multidecadal
Oscillation) or other external forcing factors. Thus, this
complex multi-scale interdecadal variations superimposed on
the long-term QTs we identified will plausibly lead to different
degrees of significance for different WLs.

Furthermore, we calculate the statistics of running window
QTS for all the grid points at the YRB region to see whether the
quantile features of Tmax and Tmin are still pronounced for the
whole region. The results of the statistics (i.e., the first and third
quartiles, the median, and the kernel density estimation) are
shown as a violin plot (Figure 3). In general, the QT
characteristics of Tmin and Tmax mentioned above remain
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FIGURE 3 | Violin plot (showing kernel density estimate of distribution) of running window quantile trends at 10th, 30th, 50th, 70th, and 90th percentiles for all the
grid points at the YRB region, with the differences between Tmax (red) and Tmin (blue). Note that the quantile trend analysis for each point is exactly the same as
Figure 2. The number of data in each violin is: 45 different running window trends x 318 (265) grid points of Tmax (Tmin) in the YRB region. The meanings of each element
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valid in the statistical information (Figure 3) for the YRB region,
i.e., the tendency for the Tmax QTS to increase from low to high
percentile and the consistent warming of the Tmin QTS at each
percentile. Specifically, the uniform features of Tmin are very
stable for the YRB region, with the shape of the QT's distribution
(outlines of the violin plot, Figure 3) being almost identical for all
percentiles. Tmin QT's exhibit a warming of 0.2°C/10a at the
median for all selected percentiles, and the majority (over 80%) of
the data in the region show warming trends. For Tmax QTs, the
shape of the distribution is also consistently spread across the
percentiles, but as the quartiles increase, the overall distribution
of Tmax QTs shifts upwards (i.e., shifts towards warming). As a
result, the 10th percentile of Tmax shows a clear cooling QT
(i.e., ~—0.1°C/10a at the median) and 75% of the data in the YRB
region agree with the cooling, while the 90th percentile of Tmax is
closer to Tmin QT's (Figure 3). In addition, we can also find that
the rate of increase in the QTs of Tmax from the low to high
percentiles raises rapidly from —0.1°C/10a at the median to about
0.1°C/10a at the median in the low to medium percentiles
(i.e, 10th~50th, Figure 3). However, in the 50th~90th
interval, Tmax QTSs increase at less than half the rate of the
10th~50th interval. Therefore, it can be inferred from the above
results that the tendency of the Tmax intra-quantile QTs
identified in the YRB region may be largely attributed to
changes in the lower percentiles (e.g., 10th).

The Role of Non-mean Factors in the Tmax

and Tmin Trends

From the above sections, we show that the features of QTs
between Tmax and Tmin evidently differ from each other.
Specifically, evident differences of Tmax QTs among
percentiles are observed over the YRB region, whereas QT's of
Tmin show consistent warming nationally. Why there are distinct
(consistent) QTs of Tmax (Tmin) among percentiles? Previous
studies have demonstrated that the changing STD plays an
important role in changes of temperature extremes, causing

asymmetric responses of temperature between low and high
percentiles (McKinnon et al., 2016; Li et al., 2017; Tamarin-
Brodsky et al., 2020). Hence in this part, we will discuss the
relative contributions of changing mean state and STD on the
QTs of Tmax and Tmin.

Figure 4 shows the spatial features of Tmax and Tmin trends
in the 10th and 90th percentiles due to changing STD and their
relative contributions. As we expected, the changing STD of
Tmax caused a broad cooling (warming) trends in the 10th
(90th) percentile over the most parts in the south of China
(i.e., to the south of 35°N), especially for the YRB region with
a cooling (warming) trend of up to +0.3°C/10a (Figures 4A1,A2).
Furthermore, relative contributions of changing STD on Tmax
QTs at 10th and 90th percentiles in all grids are also calculated
(Figures 4B1,B2). Results show that the absolute magnitudes of
Tmax QTs due to changing STD contribute over 70% of the
whole Tmax trends in both 10th and 90th percentiles over the
majority of the YRB region (Figures 4B1,B2). In addition, further
investigations regarding the detailed reasons of the changing STD
are also conducted. According to McKinnon et al. (2016), we can
roughly express the spatial patterns of temperatures’ QTs due to
variance, skewness, and kurtosis by the first three modes of
Empirical Orthogonal Function (EOF) analysis on the intra-
quantile variations of temperatures QTs. The EOF results of
intra-quantile modes of Tmax trends are shown in Figure 5.
Looking at the principal components of the EOF, the first mode
shows a clear non-linear trend characteristic and the large
variation areas in the spatial distribution are also highly
consistent with the variability-dominated YRB regions that we
focus on (Figures 5A1,B1). This leading model can represent the
effect of changes in temperature variance on the temperature QT's
across percentiles based on the findings of McKinnon et al.
(2016). Obviously, we can further conclude that the observed
quantile features of Tmax trends in YRB due to changing STD are
mainly caused by changes in variance of Tmax from the evidence
(e.g., the percent variance of the first EOF mode reaches 80.2%) of
EOF results. In addition, the variance contributions are smaller
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for the second and third EOF modes (i.e., only 10.1% and 3.4% for
EOF2 and EOF3), which can also represent the effect of
temperature skewness and kurtosis changes on Tmax intra-
quantile QTs, respectively (Figures 5A2,B2,A3,B3).

Contrasting with Tmax trends, the magnitudes of Tmin trends
and the contributions due to the changing STD are still weak
(Figures 4A3,A4,B3,B4), which is consistent with the above-
mentioned mean state warming-induced uniformly pattern of
Tmin trends. In addition, our current results generally agree with
McKinnon et al. (2016), which also shows some hotspots
regarding the variance-induced Tmax trends over the north
of 30°N.

To sum up, all the above results highlight the non-negligible
role of changing STD (especially increasing variance) on Tmax
trends during the past decades in the context of global warming,
particularly for some variance-sensitive regions (e.g., YRB).
These also imply that the summers in the YRB region have
become more and more volatile during the past 57 years,
ie, accelerated warming in the high percentiles
(i.e., 90th~99th) of Tmax with rapid increases of extreme hot
events (e.g., deadly heatwaves).

DISCUSSION AND CONCLUSION

In the above sections, the quantile features of Tmax and Tmin
trends over China during the past half-century are
investigated. The evident differences between Tmax and
Tmin trends are observed the YRB region,
i.e., “variance-induced region-specific trends patterns of
Tmax” versus “mean state shift-dominated uniform
warmings of Tmin”. In particular, for Tmax, we emphasized
the non-negligible role of temperature variance changes in
modulating Tmax trends. However, in addition to the above

over

conclusions, there are several additional caveats that should be
highlighted and discussed.

First, we discuss whether such quantile features and patterns of
Tmax trends are still pronounced in the sub-seasonal scale
(i.e, monthly). As a matter of fact, the current results
represent the observed robust region-specific variance-induced
Tmax trends in the view of seasonal scale. Hence, we further
repeated our QR analysis for each month in summer (i.e., June,
July, and August) in order to investigate the QT's of temperatures
for sub-seasonal scale. The results generally show that the
observed differences between Tmax and Tmin as well as the
different patterns of Tmax trends between low and high
percentiles over the YRB region are still existent and
significantly pronounced (Supplementary Figures S4-S6).
Despite these similarities, stronger variance-induced distinctive
Tmax trends between high and low percentiles are also observed
in late summer than in early summer (i.e., August vs. June). In
brief, the sub-seasonal features of Tmax trends show not only
consistency with seasonal scale but also additional unique
different features among each month.

Second, we note that variance-induced robust increasing
trends of Tmax only occur in the YRB region, so why is this
such a unique regional signature? In summer, the baroclinicity
and circulation variability over mid-latitudes of East Asia are
much weaker than those in winter half year. Therefore, the
temperature variability is less impacted by mid-latitude
dynamics, e.g., cold front or cold air intrusion. In contrast,
temperature, and particularly Tmax, is more sensitive to
radiative processes, involving cloud cover and rainfall. Several
studies have highlighted the importance of covariability between
mean temperature and precipitation (e.g., Trenberth and Shea,
2005; Miao et al., 2016; Guo et al., 2020). This relationship may
also be valid for the coupling between temperature variability and
precipitation variability at summertime. During summer, the
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synoptic-to-subseasonal scale precipitation variation is typically
negatively correlated with temperature, especially Tmax, as
cloud cover and precipitation apparently reduce incoming
shortwave radiation and thus Tmax. Therefore, it comes
naturally to speculate that if the precipitation at any location
varies strongly, then the Tmax will also exhibit strong
variations. We further examined whether the variance-
induced Tmax trends in the YRB region are linked with the
strength of intraseasonal variability of precipitation. As we
expected, both intra-seasonal Tmax variability (Figure 6A)
and precipitation variability (Figure 6B) in summer show a
very similar pattern of robust increasing trends, and only in the
YRB region. This also implies that the variability of summer
precipitation in the YRB region is plausibly the physical essence
of variance-induced increasing trends of Tmax. The factors that
control the combined intra-seasonal variability of temperature-
precipitation over the YRB region, however, require detailed
exploration in subsequent studies. Nevertheless, although a

quantitative and deterministic analysis for the physical
mechanisms is beyond the scope of our current study, some
evidence regarding the causes of changing temperature
variability has been discussed in several recent studies (e.g.,
Hsu et al., 2017; Zhu et al., 2020). For instance, Hsu et al. (2017)
demonstrated that the boreal summer intraseasonal oscillation
could modulate the occurrence of the heatwaves for the
monsoon regions. In particular for the YRB region, the
10-30 days boreal summer intraseasonal oscillation is closely
linked to the increases in heatwave occurrence. For modeling
evidence, a growing number of studies have focused on the
dynamic causes (i.e., thermal advections, circulation changes,
and land-atmosphere interactions) of the increasing
temperature variability over Europe in the context of global
warming (e.g., Andrade et al., 2012; Douville et al, 2016;
Holmes et al., 2016). These results provide constructive clues
and insights for the physical causes of the covariability of Tmax-
precipitation over the YRB region.
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In addition, it is worth noting that the “trends” of Tmax and
Tmin in our study only represent the observed trends during
the past 57 years. Whether these quantile features of “trends”
are long-term trends or just an increasing phase of some multi-
decadal scale variations is unknown due to the limitation of
observation record. From another perspective, it is more
concerned that the “trends” is a signal (from anthnographic
forcings) or a noise (internal variability of the climate system).
In future studies, we can use the model results (e.g., CMIP5/6
simulations) to investigate such quantile features of Tmax
trends or the changing variability as well as the possible
mechanisms, particularly for the YRB region. Some
modeling evidence has been highlighted regarding the
variations of temperature variability in several studies
(Gregory and Mitchell, 1995; Rowell, 2005; Fischer and
Schir, 2008; Holmes et al., 2016; Chan et al., 2020). For
example, Chan et al. (2020) revealed that there are strong
couplings between warming and increasing variability in
various CMIP5 models in the context of RCP8.5 projections,
especially for mid-latitude regions (e.g., Europe, southeastern
China). This also implies that higher warming of mean
temperature probably accompanies by a higher increase in
temperature variability in the high-emission scenario. The
compound effects of increasing mean and variability of
temperature could significantly increase the risk from
potentially deadly heatwaves (Mora et al, 2017; Baldwin
et al., 2019).

In summary, the unique quantile features of temperatures’
trends in summer over China are shown in the current study. The
most important added value of our study is identifying a variance-
dominated pattern of Tmax trends for the YRB region compared
with the previous mean state shift-induced warming pattern.
Such compounded increasing variability and the uniform global
warming in the mean state could subsequently cause parts of the
world exposed to increasing risks of the potential deadly heatwave

(Chan et al, 2020). We highlighted that the anthropogenic
contributions and the physical mechanisms of the increasing
temperature variability should be paid more attention to in future
works in order to better plan strategies of adaptation and
mitigation solutions for the possible upcoming more intense
extremes and disasters.
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