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Fine-grained mass-transport deposits (MTDs), especially their compressional toe zones,
are traditionally considered as effective seal in constraining the vertical fluid migration
underneath. However, this study documents thrust faults at the compressional toe zone of
fine-grained MTDs that could disaggregate the seal competence and promote vertical fluid
flow. The investigated MTD referred to as MTD-a lies directly over a large hydrocarbon
reservoir that is located within the Central Canyon of northern South China Sea, which is
examined by using high-resolution 3D seismic and borehole data. Thrust faults and
irregular blocks composed of coarse-grained sandstones are observed in the
compressional zone of the MTD-a’s toe. More importantly, seismic evidence (e.g.,
enhanced seismic reflections) suggests that a large amount of hydrocarbons from the
underlying reservoir penetrated through the MTD-a along these thrust faults and charged
into the coarse-grained sandstone blocks. This clear evidence of thrust faults
compromising the MTD’s seal effectiveness and thus facilitating the vertical fluid flow
through the non-permeable strata demonstrate the importance of reassessing the seal
capacity of MTD.
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INTRODUCTION

Mass-transport deposits (MTDs) widely occur at the continental margins and island flanks. They are
usually composed of the headwall domain, translational domain, and toe domain (Martinsen, 1994;
Lastras et al., 2002) and, accordingly, a systematic distribution of strain transferred from extensional
structures in the headwall zone to compressional structures in the toe zone (Trincardi and Argnani,
1990; Canals et al., 2004; Frey Martinez et al., 2005). Thrust faults are an important component of
MTDs at their compressional toe zones (Bull et al., 2009; Ogata et al., 2014; Alsop et al., 2017). They
are usually caused by the translating material buttressing against a seabed obstacle (Lewis, 1971;
Moscardelli et al., 2006) and typically affect the entire thickness of the MTD (Frey Martinez et al.,
2005; Bull et al., 2009).

Thrust faults are mainly imaged by geophysical data (e.g., seismic reflection data) and shown as
imbricated structures (Lamarche et al., 2008; Lackey et al., 2018). Because of the shear compaction
and dewatering during the mass movement (e.g., decreases of porosities and permeability), MTDs,
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especially those mainly composed of unlithified fine-grained
sediments, are proposed as seal/barrier for the vertical fluid flow
(Dugan, 2012; Alves et al., 2014; Sun and Alves, 2020).
Furthermore, failed sediments are inclined to accumulate and
thus thicken at the compressional toe zones (Moscardelli et al.,
2006; Lamarche et al., 2008). Furthermore, the long-distance
transportation of failed sediments at the toe zone is typically
highly deformed and thus their fabrics are greatly damaged.
These make the seal capacity of compressional toe zones of
MTDs more effective. Although remnant blocks within MTDs
are proposed to provide conduits for the vertical fluid flows
(Alves et al., 2014; Gamboa and Alves, 2015; Cox et al., 2020), no
vertical flow pathways have been identified at the compressional
toe zone until now.

In this study, the investigatedMTD, here referred to asMTD-a, is
immediately lying on a large hydrocarbon reservoir in the
Qiongdongnan Basin (QDNB) of the northern South China Sea,
based on high-resolution 3D seismic and borehole data. The aims of
this study are 1) to characterize the MTD-a, including the internal
structures, blocks, and free gas within the MTD-a; 2) to assess the
seal completeness of the compressional zone of MTD-a; and 3) to
explore the vertical fluid migration system in the study area. This
study demonstrates that free gas has leaked from the underlying
hydrocarbon reservoir and migrated into the blocks through thrust
faults. Therefore, it provides clear evidence for the thrust faults at the
compressional zone of MTDs serving as fluid pathways for the first
time, which suggests that the seal completeness of MTDs should be
reassessed where the thrust faults develop.

FIGURE 1 | (A) Geological setting of the Qiongdongnan Basin in the northern South China Sea (modified from Mao et al., 2015; Liang et al., 2020). The Central
Canyon is marked with yellow color; (B) the subdivisions (depressions and uplifts) of Qiongdongnan Basin (Modified from Su et al., 2014; Liang et al., 2020). The study
area is mainly located in the Songnan Low Uplift. Well Cc1 and locations of Figures 3, 4 are labeled.
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GEOLOGICAL SETTING

The QDNB, one of the Cenozoic basins in the northern South
China Sea located to the southeast of Hainan Island (Figure 1),
covers an area of ∼45,000 km2 (Xie et al., 2008; Su et al., 2014). It
comprises a few uplifts (massifs) and depressions (sags)
(Figure 1B). The QDNB formed through two-stage tectonic
evolutions, the Eocene-Oligocene rifting stage and the
Miocene-to-Present post-rifting stage (Figure 2) (Gong and Li,
1997; Wu et al., 2008). During the rifting stage, deposits from the
marsh-to-coastal plain Yacheng Formation and the littoral
Lingshui Formation formed the main source rocks in the
QDNB (Zhu et al., 2009). The post-rifting strata are composed
of the littoral to neritic Sanya and Meishan formations, as well as
the bathyal to abyssal Huangliu, Yinggehai, and Ledong
formations (Figure 2) (Gong and Li, 1997; Zhu et al., 2009).

The QDNB is petroliferous, especially along the axis of the
Central Canyon where numerous hydrocarbon fields have been
found (Zhu et al., 2009; Wang Z. et al., 2015; Chen et al., 2015).
The Central Canyon is > 425 km long and 3–16 km wide (Su

et al., 2014). Its deep incision into the strata as old as 8.2 Ma was
fully filled at ∼4.2 Ma (Liang et al., 2020). Moreover, the Central
Canyon is mainly filled by the fine-grained mudstone and layered
coarse-grained sandstone that acts as hydrocarbon reservoir
(Wang Z. et al., 2015). After ∼4.2 Ma, multiple MTDs are
draped on the Central Canyon strata and formed the seal for
the hydrocarbon reservoir (Liang et al., 2020).

MTDs widely developed in the QDNB and those in the
southern QDNB (Huaguang Sag) are well studied (Sun et al.,
2011; Wang et al., 2013; Wang D. et al., 2015). Those MTDs are
cyclic with turbidities, such as triple packs of turbidities and
MTDs, which are probably related to the sea-level changes
(Sun et al., 2011). Moreover, the reactivation of major faults
and associated volcanism in the late Miocene were proposed as
the dominant trigger mechanisms for those MTDs (Wang
et al., 2013). MTDs also frequently occurred in the central
QDNB, as mentioned above (Liang et al., 2020). They may
source from the northern slope area, western slope area, or
Guangle Massif (Cheng et al., 2021) and mainly formed after
∼4.2 Ma (Liang et al., 2020). Moreover, the slope overstepping

FIGURE 2 |Geological column of structural evolution stages, depositional environments, and relative sea-level changes in the Qiongdongnan Basin (modified from
Su et al., 2014; Wu et al., 2018). The focused interval of this study is between T29 (4.2 Ma) and T28 (3.7 Ma).
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resulting from high sediment supply likely triggered the slope
instability (Qin et al., 2015; Liang et al., 2020). The occurrence
of MTDs greatly changed the sediment dispersal pattern in the
Central Canyon and thus influenced the hydrocarbon systems
(reservoirs and seals) in the study area (Li et al., 2015; Liang
et al., 2020).

DATA AND METHODS

The time-migrated 3D seismic reflection data used in this study
cover an area of ∼1,050 km2 and were provided by the China
National Offshore Oil Corporation (CNOOC). It was acquired
in 2010 with 3,000-m-long streamers consisting of 240 channels
at a spacing of 12.5 m and a sample rate of 4 ms. The bin spacing
of the 3D seismic data is 25 m in the crossline and 12.5 m in the
inline. The dominant frequency of the focused strata is ∼35 Hz,
and thus, a vertical resolution of ∼20 m is calculated, based on
the strata velocity of 2,800 m/s from the Well Cc1 (Figure 1B).
The 3D seismic reflection data are zero-phase processed and
displayed with the Society of Exploration Geophysicists (SEG)
normal polarity, whereby a downward increase in acoustic

impedance corresponds to a positive reflection event (red on
seismic profiles) (Brown, 2004). Exploration well Cc1 is used for
the lithology and strata velocity correlation. This well was
located at the flank of the Central Canyon and drilled
through several gas-charged sandstone layers (Figure 3). To
better image the blocks, a variance attribute is used in this study
(Figure 4). The variance attribute measures the variability in
shape between seismic traces (Brown, 2004). It is directly
derived from the processed data and thus is free of
interpreter bias. The variance attribute is typically used to
map structural and stratigraphic discontinuities (e.g., blocks,
faults, and channels).

RESULTS

General Characteristics
The most prominent structure in the study area is the “V”-
shaped Central Canyon. It quickly widens upward, and the fill
sediments onlap onto its walls (Figures 3A,C, 6). The strata are
mainly parallel/subparallel along the axis of the Central
Canyon (Figure 5), and tapering/onlapping seismic

FIGURE 3 | (A) A 3D seismic profile crossing through the Well Cc1, mass transport deposit a (MTD-a), and Central Canyon. The location of Well Cc1 is
marked with a black thick line, and loggings of gamma ray (GR, blue curve) and density (RHOB, red curve) are also labeled. Gas-charged blocks (enhanced
negative seismic reflections) within MTD-a and several gas-charged reservoirs within the Central Canyon are also clearly observed; (B) detailed
characteristics of the GR and RHOB curves. The gas-charged layers are marked with cyan squares, and they show sharp decreases of the GR and
RHOB; (C) interpretation of the seismic profile (A). Green colors above the Central Canyon representing gas occurrences within the coarse-grained siltstone/
sandstone.
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reflections are only occasionally observed along the axis
(Figure 5). Many boreholes have targeted the hydrocarbon-
rich Central Canyon and show that the strata mainly comprise
fine-grained mudstone (Su et al., 2014; Liang et al., 2020).
Coarse-grained siltstone and sandstone are also observed
within the Central Canyon (Figure 3C), which is the main
hydrocarbon reservoir (Wang Z. et al., 2015).

Multiple MTDs characterized by chaotic/blanking seismic
reflections are observed above the Central Canyon, separated
by continuous seismic surfaces (Figures 3A, 5, 6). This study is
focused on the lowermost MTD, here named as MTD-a, which is
directly draped on the Central Canyon (Figure 3A).

Many irregular blocks, characterized by short enhanced-
amplitude, negative-polarity seismic reflections are identified
inside the MTD-a (Figures 3A, 5–7). Although there is no well
directly through these blocks, referencing the Well Cc1’s layered

structure leads to a reasonable assumption that the blocks are
mainly composed of sandstones (Figure 3). The blocks are
surrounded by fine-grained mudstone (chaotic seismic
reflections). The head zone of MTD-a has not been imaged,
because of the limitation of 3D seismic coverage (Figure 4). It
may have originated from the slope of QDNB to the north
(Figure 1) and flowed toward the southeast part, judging from
the extension of MTD-a (e.g., the direction of the lateral
margins) (Figure 4). In the 3D seismic coverage, MTD-a
could be divided into three subzones, such as a northern
highly deformed zone, a blocked zone, and a southern highly
deformed zone (Figure 4). No macroscopic blocks could be
observed within the northern highly deformed zone, and it is
mainly composed of chaotic seismic reflections (Figure 6). In
the blocked zone, blocks float within the fine-grained strata
(mudstone) and they are separated by high-angle thrust faults
(Figure 5). There are suspected blocks observed on the variance
slices in the highly deformed zone to the south (Figure 4).
However, the seismic identification of these structures is not
definitive (Figures 3A, 6).

Blocks
A total of 306 seismic-scale irregular blocks were recorded in
the study area, characterized by enhanced seismic reflections
as mentioned above, and are observed in the toe zone of MTD-
a, especially those close to the southeastern boundary (blocked
zone; green dashed zones in Figure 4A). However, the blocks
are rarely observed at the distal termination part of MTD-a
(southern highly deformed zone; Figure 4A). They are mainly
bounded by thrust faults to their northwestern and
southeastern sides and surrounded by chaotic seismic
reflections (Figures 6, 7). In other words, they “float”
within the chaotic seismic reflections. Although they are
bounded by the thrust faults, the blocks are close to each
other and some of them are even directly connected
(Figure 7).

The irregular blocks are distributed in a linear fashion in
plain view with orientations of E–W at the northwestern corner
of the blocked zone and NE–SW at the left blocked zone
(Figure 4). The dips of blocks are perpendicular to their
strike extensions, and a few blocks are nearly horizontal
elongation without any dips (Figure 5). The lengths of
blocks range from ∼0.20 to ∼6.34 km with an average of
∼1.48 km, while the blocks’ widths are between ∼0.10 and
∼2.05 km, with an average of ∼0.27 km. There is no apparent
relationship between the lengths and widths of blocks (R2 �
0.03; Figure 8A). The blocks cover an average area of ∼0.44 km2

ranging from ∼0.02 to ∼4.24 km2. The areas of blocks are
moderately related to their lengths (R2 � 0.54; Figure 8B)
and widths (R2 � 0.50; Figure 8C). The average height of
blocks is ∼42.4 m (∼30.3 ms twt), and thus the total volume
of blocks (total area × average height) is ∼5.68 km3.

Thrust Faults
A total of 350 seismic-scale thrust faults are identified in the
blocked zone, which separate the blocks apart (Figures 5, 7).

FIGURE 4 | Variance slices above 100 ms twt (A) and 30 ms twt (B)
of MTD-a’s base. The northern highly deformed zone (without blocks),
blocked zone (with blocks and thrust faults), and southern highly
deformed zone (with suspected blocks) are subdivided. The blocks
within the blocked zone are gas-charged. Boundary of MTD-a,
boundary of gas-charged blocks, and locations of Figures 5, 6A,B are
marked.
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Most of the thrust faults penetrate the whole MTD-a and
terminate at the upper surface of the underlying Central
Canyon strata (Figure 6). However, some small-scale thrust
faults are mainly located in the upper part (above the blocks)
of MTD-a (Figure 7B). The lengths of thrust faults range between
∼0.27 and ∼4.92 km with an average of ∼1.4 km (Figure 8D). The
strikes of thrust faults mainly extend between 40° and 70° (∼84%
of the total thrust faults) (Figure 8D). Less thrust faults strike
90°–147°, and they usually have short vertical extensions
(<1.0 km; Figure 8D). Accordingly, the thrust faults mainly
incline 130°–160° (37% of the total thrust faults) and 320°–340°

(45% of the total thrust faults; Figure 8E). The dips of thrust
faults range from ∼25° to ∼87°, and most of them (90%) are
between ∼30° and ∼70° (Figure 8F).

Free Gas
Enhanced seismic anomalies characterized by negative reflections
are observed in the Central Canyon andMTD-a’s blocks (Figures
3A, 5–7), which is similar to the typical seismic characteristics of
free gas (e.g., Judd and Hovland, 2007; Løseth et al., 2009; Sun
et al., 2017). In fact, the exploration well Cc1 drilled through these
enhanced seismic anomalies and confirmed that they are gas-
charged sandstones (Figures 3A,C). Furthermore, these gas-
charged sandstones characterized by sharp decreases of
gamma ray (GR) and density (RHOB) are surrounded by fine-
grained mudstones (Figure 3B). Accordingly, the irregular blocks
within MTD-a could be interpreted as the counterparts of
sandstones (Figure 3C). Moreover, the enhanced negative
seismic reflections of blocks (Figures 3A, 5–7) indicate that
free gas also charged into them. The average porosity of
sandstone from well Cc1 is ∼29.6%, and that of gas saturation

is ∼71.2%; hence, the volume of free gas stored within theMTD-a’
blocks can be as high as ∼1.2 × 109 m3.

DISCUSSION

Seal Disintegration and Vertical
Hydrocarbon Migration
Fine-grained MTDs usually have decreased porosities and
permeability, because of shear compaction and dewatering during
their emplacement (Piper et al., 1997; Shipp et al., 2004; Sawyer et al.,
2007; Dugan, 2012; Sun and Alves, 2020). Therefore, they usually act
as effective seal to hinder the vertical migration of fluids (Alves et al.,
2014; Sun and Alves, 2020). Remnant blocks that break through the
MTDs could occasionally support the vertical fluid migration
(Gamboa and Alves, 2015; Cox et al., 2020). However, there are
no reports about vertical fluid flow in the compressional toe zone of
MTDs as yet, where the compressional stress in the toe zone is
proposed to strengthen the seal capacity of sediments.

Gas-charged blocks within MTD-a indicate that significant
amounts of hydrocarbon have leaked from the gas field
underlying the MTD-a (Figures 5–7). Because the blocks are
surrounded by fine-grained sediments and are not directly
connected with the underlying gas reservoir, the thrust faults
are believed to act as the primary pathways for vertical fluid
migration. Normally, the thrust faults in the compressional
environment would be tight/closed to barrier fluids (Elmore
et al., 2003; Micklethwaite, 2008). However, the thrust faults,
likely with fractured medias, are mechanically weak zones (e.g.,
Lacroix et al., 2014; Cook et al., 2020), and they would likely
reactivate under overpressure due to the underlying

FIGURE 5 | A 3D seismic profile perpendicular to the extension of MTD-a shows its lateral boundaries. Gas-charged blocks are clearly observed within
MTD-a. Central Canyon is mainly unfilled by layered sediments. Top and base of MTD-a are marked with cyan and blue dashed lines. See location in
Figure 4.
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accumulation of hydrocarbons. Moreover, the blocked zone has
weaker deformation compared to the northern and southern
highly deformed zones where the failed sediments are probably
fully mixed (Figure 4). The less mixture of sediments in the
blocked zone would partly keep the fabrics of the strata, which is
also in favor of reactivation of the thrust faults. This study
documents the thrust faults at the compressional zone of
MTDs to serve as fluid pathways for the first time. It also
indicates that the fabric heterogeneity plays an important role

on the seal completeness, and certain factors (e.g., overpressure)
may trigger the disintegration of seal, even for the fine-grained
sediment-dominated compressional zones of MTDs.

Hydrocarbon Migration and Accumulation
System
The hydrocarbon migration and accumulation system in the
study area can be updated through this study together with

FIGURE 6 | 3D seismic profiles nearly parallel to the extension of MTD-a. MTD-a directly overlies the Central Canyon. Several gas-charged layers (enhanced
negative seismic reflections), especially the uppermost layers, occurred within the Central Canyon. Gas-charged blocks within the MTD-a are surrounded by chaotic
seismic reflections, interpreted as mudstone. Normal faults developed below the Central Canyon, and they provide the main pathways for the deep-seated hydrocarbon
migration. Locations of Figures 7A,B are marked with black squares.

Frontiers in Earth Science | www.frontiersin.org November 2021 | Volume 9 | Article 7643197

Sun et al. Thrust Faults Promoted Hydrocarbon Leakage

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


previous studies (Zhu et al., 2009; Li et al., 2017). The deeply
buried coal-bearing strata of the lower Oligocene Yacheng
Formation serve as the main source rock in the QDNB
(Huang et al., 2003). The source rock entered the peak gas-
generation window during the late Miocene and Pliocene (Zhu
et al., 2009). Hydrocarbon (gas) from the source rock migrated
upward mainly along tectonic faults (Figure 6A) and charged
into the reservoir of the Central Canyon from the Pliocene to the
present (Wang et al., 2014). Within the Central Canyon, the
interconnected coarse-grained siltstone/sandstones provided

the lateral and vertical hydrocarbon migration pathways
(Figure 9). Finally, the hydrocarbon accumulated at the
topmost part of the Central Canyon where the reservoir is
directly capped by the compressional zone of the fine-grained
MTD-a (Figures 6, 9). The compressional zone of MTD-a is
composed of a series of thrust faults and coarse-grained blocks,
as mentioned above (Figure 3). Accompanying the gradual
accumulation of hydrocarbon, overpressure would increase
and finally exceed the yield strength of thrust faults.
Therefore, the thrust faults would reactivate and arrow

FIGURE 7 | Enlargements of seismic profiles (A,C) and their interpretation (B,D) showing the details of blocks and thrust faults within MTD-a. MTD-a
directly lies on the hydrocarbon reservoir. Thrust faults link the underlying hydrocarbon reservoir and MTD-a’ blocks and provide pathways for the gas leaking
upward.
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hydrocarbons would migrate upward along these faults and
charge the blocks, as observed in this study (Figures 7, 9). This
study indicates that a large amount of hydrocarbons (∼1.2 ×
109 m3) has probably leaked from the main reservoir of the gas
field. Furthermore, the hydrocarbon system including the
hydrocarbon migration, accumulation, and leakage in the
study area is probably still dynamic, and special attention
should be paid to the seal completeness where thrust faults
occur within the MTDs.

CONCLUSION

This paper is focused on an MTD-a that is directly overlying a
large gas field in the Central Canyon of the Qiongdongnan
Basin (South China Sea), using high-resolution 3D seismic

data and borehole data. The main conclusions are drawn as
follows:

1) Well-developed seismic-scale blocks and thrust faults are
widespread in the compressional zone of MTD-a.

2) Thrust faults helped to penetrate MTD-a’s seal and provided
pathways for vertical fluid migration. This is the primary
mechanism for as much as 1.2 × 109 m3 of hydrocarbon to
escape from the reservoir, migrate upward, and eventually
accumulate in the sandstone blocks.

This study provided clear evidence for the thrust faults
promoting fluid flow at the compressional zone of MTDs for
the first time, which has important implication on the assessment
of MTDs’ seal competence and underlying reservoir
completeness. Moreover, reevaluation of other fine-grained

FIGURE 8 | Parameters of blocks (number � 306) and thrust faults (number � 350) within MTD-a. (A) Block length vs. block width; (B) block length vs. block area;
(C) block width vs. block area; (D) strike of thrust fault vs. length of thrust fault; (E) inclination of thrust fault vs. length of thrust fault; and (F) dip of thrust fault vs. length of
thrust fault.
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MTDs assumed as seals is advised to reduce uncertainty in the
sealing capacity of MTDs, particularly those displaying blocky
and faulted textures.
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