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We perform numerical modeliing to simulate the shortening of an oceanic basin and the adjacent
continental margins in order to discuss the relationship between compressional stresses acting
on the lithosphere and the time dependent strength of the mid-oceanic ridges within the frame of
subduction initiation. We focus on the role of stress regulating mechanisms by testing the
stress—strain-rate response to convergence rate, and the thermo-tectonic age of oceanic and
continental lithospheres. We find that, upon compression, subduction initiation at passive margin
is favoured for thermally thin (Palacozoic or younger) continental lithospheres (<160 km) over
cratons (>180 km), and for oceanic basins younger than 60 Myr (after rifting). The results also
highlight the importance of convergence rate that controls stress distribution and magnitudes in
the oceanic lithosphere. Slow convergence (<0.9 cm/yr) favours strengthening of the ridge and
build-up of stress at the ocean-continent transition allowing for subduction initiation at passive
margins over subduction at mid-oceanic ridges. The results allow for identifying geodynamic
processes that fit conditions for subduction nucleation at passive margins, which is relevant for
the unique case of the Alps. We speculate that the slow Africa—Europe convergence between
130 and 85 Ma contributes to the strengthening of the mid-oceanic ridge, leading to subduction
initiation at passive margin 60-70 Myr after rifting and passive margin formation.

Keywords: subduction initiation, passive margins, convergence rate, mid-oceanic ridge, Alps

HIGHLIGHTS

e Numerical models are used to investigate the kinematic and stress conditions for subduction
initiation to occur at passive margins or amid the oceanic plate.

o Slow convergence rate favours subduction initiation at passive margins over subduction at mid-
oceanic ridges.

e Distribution of deformation is key to regulate levels of stress in the lithosphere.

INTRODUCTION

Studies of subduction systems show that oceanic subduction either nucleates at passive margins or
within oceanic plates (Gurnis et al., 2004; Stern, 2004; Stern and Gerya, 2018; Crameri et al., 2020).
Over the past decades several analogue, numerical and analytical modelling studies have been
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conducted to infer the preferred locus and suitable geometric,
kinematic and mechanical conditions for the initiation of
subduction zones (e.g., Cloetingh et al., 1989; Faccenna et al,
1999; Gurnis et al., 2004; Mart et al., 2005; Goren et al., 2008;
Nikolaeva et al., 2010; Maffione et al., 2015; Zhong and Li, 2019;
Auzemery et al.,, 2020; Candioti et al., 2020; Kiss et al., 2020).
These studies have shown that subduction zones develop at
passive margin through the lateral propagation from pre-
existing subduction (Ulvrova et al., 2019; Crameri et al., 2020)
or from the formation of new subduction fault at the ocean-
continent transition (Kiss et al., 2020; McCarthy et al., 2020). In
the latest scenario, subduction initiation at passive continental
margins critically depends on the buoyancy of the oceanic
lithosphere as well as density and strength contrasts across the
ocean-continent transition and the stratification of the passive
margin lithosphere (Goren et al., 2008; Nikolaeva et al., 2010;
Auzemery et al., 2020). Intra-oceanic subduction initiation is
favoured for oceanic lithosphere younger than 50 Myr, whereas
subduction nucleation occurs at the ocean-continent transition
for cases of intermediate age (50-110 Myr) oceanic lithosphere
and when the margin crust is decoupled from the underlying
mantle lithosphere. The latter condition is particularly important
because it facilitates strain localization and subsequent strain
propagation within weak layers of the passive margin crust
(Nikolaeva et al, 2010; Auzemery et al., 2020; Kiss et al.,
2020). Although the above quoted modelling studies
successfully simulate the initiation of subduction zones at
passive margins upon vertical or horizontal loading, the stress
levels required for the nucleation of subduction are usually
significantly higher than plate tectonic forces (England and
Wortel, 1980; Cloetingh et al., 1989; Mueller and Phillips,
1991; Gerbault, 2000; Gurnis et al., 2004; Zhong and Li, 2019).
In fact, the stress needed for subduction initiation at passive
margins is in general one order of magnitude larger than the
horizontal component of stress generated by ridge push
(Mahatsente and Coblentz, 2015). From a mechanical
perspective, it is important to note that the critical stress for
subduction initiation is also higher by ~5TN than the
lithospheric yield strength at (slow spreading) mid-ocean
ridges (Luttrell and Sandwell, 2012). This suggests that upon
contraction, deformation should predominantly affect the mid-
ocean ridge, the weakest part of the system, where subduction
would then initiate. Although active compressional tectonics is
well-documented in several oceanic basins (e.g., Forsyth, 1973;
Wysession et al., 1991; Stein and Stein, 1993), recent and past
examples of subduction initiation at or close to mid-ocean ridges
as suggested for the Tethys or Pacific realms, are less well
documented and subject to debate (Agard et al., 2016; Crameri
et al., 2020), suggesting that mechanisms such as the dissipation
of mechanical energy into heat regulates the stress level in the
oceanic lithosphere (Brun and Cobbold, 1980; Schmalholz et al.,
2009). How such mechanisms then contribute to favour
subduction initiation at passive margins over subduction at
mid-oceanic ridges remain unclear.

As stress regulation mechanism is linked to the strength of the
lithosphere and thermo-mechanical feedback mechanism leading
to strain localization, we argue that 1) convergence rate and the 2)
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FIGURE 1 | Simplified sketch illustrating magnitudes of integrated

differential stress observed on earth arising from: (A) ridge push (Mahatsente,
2017), (B) gravitational potential energy (GPE, Schmalholz et al., 2019) and (C)
shear tractions generated by mantle flow (Kendall and Lithgow-Bertelloni,
2016). (D) In comparison, minimum differential stress required for subduction
initiation at a passive margin is 16-20 TN/m (Zhong and Li, 2020) (E) slab pull
(Turcotte and Schubert, 2014) (F) frictional resistance at plate interface. The
orange and dark blue layers represent the crust and the mantle lithosphere,
respectively.

thermo-tectonic age of oceanic and continental lithospheres are
key parameters controlling the stress levels in the lithosphere. We
test this hypothesis through thermo-mechanical modelling to infer
the stress-strain-rate response to different kinematic and stress
conditions eventually leading to subduction initiation at passive
margins over subduction at mid-oceanic ridges. We conclude, by
discussing how the interplay between far-field tectonic forcing and
the strength of oceanic lithosphere impacts on the time-scales of
subduction initiation and highlight similarities of modelling results
to subduction initiation in the European Alps.

Stress Magnitudes in Oceanic Basins

On earth, the magnitudes of depth-integrated compressive
differential stress is in the order of 3-15TN/m (Cloetingh and
Wortel, 1986; Coblentz and Richardson, 1996; Ghosh et al., 2013;
Naliboff et al., 2009; Richardson et al., 1979). We emphasise here that
this value can vary from one study to another because some used the
integral of the maximum horizontal deviatoric stress which is half of
the differential stress used in this study (o, - 03 = 20},; see
Schmalholz et al, 2019; Candioti et al, 2020). At continental
passive margins, sources of compressive stresses include: ridge
push (e.g, England and Wortel, 1980), gravitational potential
energy (GPE, e.g, Pascal and Cloetingh, 2009), tectonic forcing
(Bird, 2017), or mantle convection (Ghosh et al., 2013; Kendall and
Lithgow-Bertelloni, 2016) (Figure 1). Ridge push arises from
lithostatic pressure related to the elevation of the hot mid-ocean
ridge above the cooler ocean basins surrounding it (e.g., Forsyth,
1973; Turcotte and Schubert, 2014). Although the contribution of
each mechanism is unclear (Swedan, 2015), ridge push represents
integrated differential stress values between 1 and 5 TN/m (Mueller
and Phillips, 1991; Swedan, 2015; Mahatsente, 2017), with an
average value in the order of 3.5TN/m for a 75Myr oceanic
lithosphere (Mahatsente, 2017). However, in some places, stress
arising from the oceanic plate are of equal magnitude as the GPE
from thick continental lithosphere (e.g., Tibetan plateau, 7-12 TN/
m; Molnar and Lyon-Caen, 1988; Molnar et al., 2015; Schmalholz
et al,, 2019), suggesting that in addition to ridge push, other forces
must contribute to oceanic plate motion (Flesch et al., 2001; Ghosh
et al.,, 2006; Naliboff et al., 2009). The horizontal shear tractions
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induced by mantle flow (Ghosh et al,, 2013), could generate an
additional integrated differential stress in the order of 3-6 TN/m
(Kendall and Lithgow-Bertelloni, 2016). Consequently, a
combination of ridge push and shear traction could generate
stress levels in the order of 4-11 TN/m, with an average of
~8TN/m for a 75Myr oceanic lithosphere. Larger integrated
forces could only be reached if additional tectonic processes are
considered. These are related to horizontal forcing at subduction
edges (van Summeren et al., 2012; Bessat et al., 2020), mostly driven
by slab pull, which estimates are of the order of 10-20 TN/m (e.g.,
Fowler et al., 1990; Turcotte and Schubert, 2014). However, as noted
in Turcotte and Schubert (2014), the trench pull force is largely
balanced by the frictional resistance at the contact between the
subducting and overriding plate (Figure 1F).

Asloads of 16 TN/m are needed to initiate subduction at passive
margins (Zhong and Li, 2020) additional forces are required next to
ridge push for the formation of a new subduction zone. It is,
therefore, expected that stress levels in excess of ridge push would
be relaxed through deformation of the mid-oceanic ridge, where
the lithospheric strength is low. The strength of spreading ridges is
subject to considerable uncertainty because the magma supply
mechanisms are not sufficiently well understood and quantified
(Luttrell 2012). However, inferences from
geochemical (Beaussier et al, 2019), geophysical (Luttrell and
Sandwell, 2012) and numerical modelling (Husson, 2012)
studies suggest that there is a strong correlation between
spreading rate and thermal thickness of the lithosphere at mid-
ocean ridges. When spreading rates are lower than ca. 1.5 cmyr™’,
the melt concentration is particularly low, and the thermal
thickness of oceanic lithosphere (isotherm 1,300°C) at the mid-
ocean ridges can be as large as 55 km (Husson, 2012). Therefore, an
ultra-slow spreading ridge is of similar strength than a 5-8 Myr old
oceanic lithosphere. This is in agreement with stress predictions
associated with oceanic lithospheric folding suggesting that an
ultra-slow mid-oceanic ridge could support horizontal loads of
8 TN/m (e.g., Indian ocean, Gerbault, 2000).

and Sandwell,

NUMERICAL MODEL

To investigate stress-controlled mechanisms for subduction
initiation at passive margins, 2D numerical thermo-mechanical
models with a visco-elasto-plastic rheology were used. The finite-
difference, marker-in-cell code (MDoodz; Duretz et al., 2016b)
was used to solve the equations of momentum 1), mass
conservation and the heat Equation 3.

aT,-]- oP
it — _pa. 1
an ax,» PYi ( )
aV,' _
o 0 (2)
DT 0 oT
PCth— ax,»<kax,«>+Q‘+ Quq (3)

where v is the velocity vector, T is the temperature, k is the thermal
conductivity, p is the density, C, is the heat capacity, Q, is the
radiogenic heat production, 7 is the deviatoric stress tensor, ¢ is the
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deviatoric strain rate tensor, P is the pressure and g is the gravity
acceleration vector. Qq is the production of heat by visco-plastic
dissipation (shear heating). For details regarding the mathematical
model and algorithms, see Supplementary Material S1.

Modelling Approach

In order to test our hypothesis, we perform numerical modelling
simulating shortening of an oceanic basin and the adjacent
continental margins. These models do not include melt
production processes at mid-ocean ridges but are designed to
capture the essential deformation features that characterize the
shortening of an oceanic basin of a given age, as a consequence
of the interplay between plate cooling and stresses arising from far-
field forcing. Ultimately, they serve as a basic model to determine the
stress and strain-rate boundary conditions required for subduction
initiation at passive margins or within the oceanic domain.

The modelling approach of this study is two-fold (Figures
2A,B). We first run a simplified model setup that adopts a
laterally uniform distribution of physical properties within the
oceanic lithosphere, where the age of the oceanic lithosphere is
everywhere the same (Figure 2A).

In step two, we incorporate the age dependent thickening and
lengthening of the oceanic lithosphere from an extinct spreading
center to the passive margin (Figure 2B). Hereafter, the extinct
spreading center will be referred to as the “ridge”. The results of the
parametric study (step 1) facilitate obtaining favourable boundary
conditions for subduction initiation at passive margins in step 2,
where the role of lithosphere thickness variation which varies
through time with cooling was investigated.

Model Geometry and Rheology
The model domain is a section of 3,000 x 500 km and the
numerical resolution is 1 x 1km in both dimensions. The
model top boundary is represented by a true free surface
(Duretz et al., 2016b). Erosion and sedimentation have been
implemented following a kinematic approach (e.g., Candioti et al.,
2020) where erosion and sedimentation are implemented above
or below a base level fixed at Okm. In all models, the
accommodation space is filled with a sedimentary material
composed of calcite, which is a rheologically weak lithology.
Models of step 1 comprise a 2000 km wide oceanic plate
flanked by two continental plates on either side (Figure 2A
and Table 1). The continental lithosphere consists of an
18 km thick granitic upper crust, a 12km thick feldspathic
middle crust, a 5km thick granulitic lower crust and a
lithospheric mantle with a fixed thermal thickness (hl). The
oceanic lithosphere entails an 8km thick crust and a
lithospheric mantle with a thermal thickness that depends on
its age following the plate cooling model used in Auzemery et al.
(2020). The passive margin is characterized by a crust that thins
progressively towards the ocean over a distance of 150 km. The
thermal base of the lithosphere at the passive margin is defined by
a linear interpolation between the ocean and the continent.
Deformation is governed by frictional, dislocation, diffusion
and Peierls creep equations, with parameters displayed in
Table 1. Following previous studies (Zhong and Li, 2019
Candioti et al., 2020; Kiss et al., 2020) we account for thermal
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FIGURE 2 | Model setup for (A) a uniform thickness of oceanic lithosphere; and (B) a model incorporating a mid-oceanic ridge. +Vj, is the velocity applied at the left
model boundary and -V, the outflow. Ib, Ipm and lo are the integrated stress at the model boundary, passive margin, and oceanic basin, respectively. Right diagrams
are the strength envelopes for the continent, calculated with the second invariant of the deviatoric stress tensor and thermal gradient. hm is the mechanical base of the
lithosphere.

TABLE 1 | Rheological and thermal parameters used for the reference numerical models. Here p is the density, k is the thermal conductivity, Q. is the radiogenic heat production,
¢ is the friction angle, A is a pre-factor, fis a correction factor, n is the stress exponent, Q is the activation energy. The shear modulus G is set to 6e 10'° Pa. References for
rheology are H&K_03: Hirth and Kohlstedt (2003); K_90: Kronenberg et al. (1990); R_95: Ranalli (1995).

(r) K Qr o () A v f n Q Ref
(kg.m™3) W.m™. K™) (W.m™) (Pa™.s™) (m3.mol™) (J.mol™)

Sediments - - - - - — - - - -
sediment (calcite) 2,600 25 2.0e-6 20 1.59e-25 0 0 4.7 297.0e3 K_90
Continental crust - - - - - — - - - -
Upper (dry quartz) 2,800 2.7 1.0e-6 30 3.98e-19 0 0 2.4 156.0e3 R_95
Middle (felsic granulite) 2,800 2.7 0.6e-6 30 2.01e-21 0 0 3.1 243.0e3 R_95
Lower (mafic granulite) 3,000 2.7 0.1e-6 30 5.04e-28 0 0 4.7 485.0e3 R_95
Oceanic crust (wet olivine) 2,900 3 1.0e-10 30 5.68e-27 11e-6 1 3.5 480.0e3 H&K_03
Mantle lithosphere (dry olivine) — — — — — — — — — —
Dislocation creep 3,300 3.2 1.0e-10 30 1.10e-16 11e-6 0 3.5 530.0e3 H&K_03
Diffusion creep 3,300 3.2 1.0e-10 30 1.50e-15 1.5e-16 0 1.0 375.0e3 H&K_03
Asthenosphere (dry olivine) — — — — — — — — — —
Dislocation creep 3,300 3.2 1.0e-10 30 1.10e-16 11e-6 0 3.5 530.0e3 H&K_03
Diffusion creep 3,300 3.2 1.0e-10 30 1.50e-15 1.5e-16 0 1.0 375.0e3 H&K_03

softening instead of pre-defined strain softening mechanisms to
allow for shear localization leading to subduction initiation. The
initial geotherm is computed assuming steady-state conditions
and accounts for different radiogenic heat productions in each
layer and a constant asthenosphere temperature of 1,330°C.

Investigated Parameters
For each model, we varied the thermal thickness of the oceanic
lithosphere and the convergence rate at the boundary, which both

influence the stress level within the oceanic lithosphere. The first
model setup (uniform thickness) comprises a 2,000 km wide
oceanic plate flanked by two continental plates on either side
(Figure 2A). 14 ages of oceanic lithosphere were tested, at 10 Myr
intervals, counting from 0 to 140 Myr. For each age of oceanic
lithosphere, a wide range of convergence rates were tested to
arrive at a threshold value for which we observe a change from
intra-oceanic subduction to subduction at the passive margin. We
carried-out two sets of numerical experiments with two different
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BS(%)  onset of subduction initiation
t0 ts

| ntegrated stress [ TN.m-1]

time (Myr)

FIGURE 3 | Schematic example of integrated stress evolution through

time and amount of convergence expressed as bulk shortening (BS) for an
experiment where subduction initiates at the passive margin. The steep
increase in the early stage represents elastic loading. The stress values
presented in Figure 4 are stresses integrated over the whole lithosphere for
the three locations indicated by the coloured arrows in Figure 2A (model
boundary Ib, passive margin Ipm, oceanic basin lo). tO and ts refers to the
time at the start of the model and the time of subduction initiation, respectively.

thermal thicknesses (160 and 180 km) of continental lithosphere
fixed in time, representing continental lithosphere of Palaeozoic
and Proterozoic age, respectively (Artemieva, 2009).

Based on the results of step one, the thermal thickness of the
continental lithosphere has been fixed at 160 km in stage two, as this
thickness facilitates subduction initiation at passive margins. The
thermal thickness and the length of the oceanic domain depend on
the age of the lithosphere along the x-axis, as functions of distance
from the former ridge. Therefore, by assuming that the ocean was
formed at an average half-spreading rate of 1 cm yr~ (in accordance
with a slow spreading rate, eg. Dick et al, 2003), the oceanic
lithosphere gets 10 Myr older every 100 km (counting from the
ridge) and the width of a 30 Myr oceanic basin is 600 km. We carried
out three sets of numerical experiments with three different ages of
oceanic basin namely 30 and 60 and 90 Myr. For each, the tested
parameters include the duration of the cooling period at the start of
the experiment and the convergence rate at the boundary during
subsequent shortening. The implementation of a cooling period
prior to shortening is necessary in order to obtain scenarios where
subduction nucleates at the passive margin.

Boundary and Loading Conditions

The model top boundary is a true free surface (Duretz et al.,
2016b). A constant inward normal velocity (+V;,) is applied to
the left boundary of the model (Figure 2A) to simulate horizontal
tectonic force loading arising from the continent (Duretz et al,
2016a). The right boundary remains fixed. In order to satisfy mass
conservation, an outflow velocity (—V,,;) is distributed at the base
of the model and on the sides from 200 km deep to the base of the
box (Figure 2A). The outflow is proportionally distributed over
the length of each boundary such as:

2VinHj, = ZVout Hout

These models with different thermal ages of the oceanic
lithosphere have been subject to horizontal velocity boundary

Parameters Controlling Subduction Initiation Location

conditions. For each age of oceanic lithosphere, a wide range of
convergence rates were tested to arrive at a threshold value for
which we observe a change from intra-oceanic subduction to
subduction at the passive margin.

Model Output and Stress Analysis
With the aim of monitoring stress magnitude through time, at
every location along the models, we compute for each time step

the total integrated stress in the lithosphere I over the thermal
thickness of the lithosphere hl:

hl

hl
1= JZTIIdZ = J(O'l —Ug)dz
0

0

where 777 is the square root of the second invariant of the
deviatoric stress tensor and (o7 — 03) is the differential stress
(Schmalholz et al., 2019). Though Al corresponds to the 1,330°C
isotherm, we use the mechanical base of the lithosphere hm, which
is fixed at the 1,000°C geotherm (~base of the strength envelope,
e.g., Figure 2A), for a better visualization of the modelling results.

A stress analysis is performed by computing the integrated
differential stress as a function of time (Figure 3) at three positions:
the model boundary, the passive margin, and the oceanic lithosphere
(Figure 2A). The integrated stress for the oceanic lithosphere is an
averaged value over the oceanic domain. At each position, subduction
initiation is assumed to start at the time where the integrated stress has
reached the highest value and is followed by a sudden stress drop at ts,
the time of subduction initiation (Figure 3). Figure 3 is an example of
how the integrated stress I varies along the model (for a given set of
model parameters). The variation of I describes the state of stress in the
lithosphere in terms of increase or reduction of stress relative to the
integrated boundary stress at the left side of the model. As such we
interpret that when I at the passive margin or in the oceanic domain is
lower than at the boundary, the stress is dissipated somewhere, for
instance by the presence of ductile shear zones. If I is higher, we
interpret that lithosphere undergoes a stress loading until stresses
release due to visco-plastic thickening of the plate.

Models were run for a range of convergence velocities, ages of
oceanic lithosphere, and thicknesses of continental lithosphere.
In each model, the integrated stress at the model boundary was
calculated and plotted in various domain diagrams (Figure 4).
We also use the evolution of integrated stress through time to
explain how it controls the lithosphere dynamics (Figure 5C). A
total of 150 models were run in order to establish a robust stress
transfer model for the oceanic basin.

MODELLING RESULTS

Series 1: Oceanic Lithosphere with Laterally

Uniform Thickness

In this section, we present the results of the first set of
experiments that shows the relationship of convergence
rate and the locus of subduction initiation as a function of
the age of the oceanic basin (Figures 4A,C). Throughout this
study we define t0 as the age of the oceanic lithosphere at the
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FIGURE 4 | Results of model series 1 with laterally uniform thickness of oceanic lithosphere: role of stress and convergence rate on the locus of subduction initiation
for two thermal thicknesses of continental lithosphere, 160 and 180 km. (A, C) Age of oceanic lithosphere vs convergence rate at model boundary at the onset of
convergence (t0). (B, D) Age of subduction vs integrated stress at model boundary at the onset of subduction initiation. The red and blue dot lines represent the minimum
and maximum integrated stress for subduction at passive margin.

start of the model and ts as the age of the oceanic basin when
subduction initiates. For each experiment, we calculate the
value of integrated stress Ib at the onset of subduction
initiation ts (Figures 4B,D). If subduction initiates at the
passive margin the value is plotted as a red dot whereas it is

shown in blue, when subduction initiates within the oceanic
domain.

Figures 4A,C indicate that for young oceanic lithospheres
(age < 50 Myr) subduction initiation at a passive margin is only
feasible at low convergence rates. The upper bound value of
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convergence rate for subduction at passive margin (max v) is
relatively constant (~v = 1.5 cmyr ', Figure 4A) and thus
independent of the age of the oceanic lithosphere. Moreover,
this limit is relatively lower for 180km thick continental
lithosphere (~v = 0.9 cm yr ', Figure 4C).

In contrast, for oceanic lithosphere older than 50-60 Myr,
the upper bound values of convergence rate for subduction
initiation at passive margin varies with the age of oceanic
lithosphere at the start of the model as well as the thickness
of the continental lithosphere. Intra-oceanic subduction is
consistently observed for higher convergence rates across all
tested ages of oceanic lithosphere (Figures 4A,C). Moreover, the
range of velocities leading to subduction initiation at a passive
margin is much larger in case of a 160 km thick continental
lithosphere (Figure 4A), than for a 180 km thick continental
lithosphere (Figure 4C), suggesting that subduction at passive
margin is less likely in case of thick continental lithospheres. It
shows again that for similar kinematic conditions, strain
localization at passive margins is controlled by the strength
of the continental lithosphere, regulated through its thermal
thickness.

From the distribution of modelling results, we delineate upper
and lower bounds of stress levels for subduction initiation (max.
and min stress, Figures 4B,C). The results show that, overall,

subduction at passive margins requires less stress than intra-
oceanic subduction suggesting that subduction at passive margins
is possible for stress levels lower than that within the oceanic plate
(Figure 4B, blue dash-dot line), which is predicted for oceanic
lithospheres older than ~40 Myr (Figure 4B). Consequently, with
cooling of the oceanic lithosphere, intra-oceanic subduction
becomes particularly intricate and requires large amounts of
integrated stress.

The minimum integrated differential stress necessary for
subduction nucleation at a passive margin (red dashed line at
60 Myr, Figure 4B) is in the order of 30TN/m, which
corresponds to an age of 40-50 Myr for the oceanic
lithosphere at the time of subduction. The stress magnitude
required for subduction at passive margins is sensitive to the
thermal thickness hl of the continental lithosphere. The
minimum stress for subduction initiation at passive margins
ranges from 30 to 36 TN/m for hl = 160 km and from 40 to
50 TN/m for hl = 180 km (Figures 4B,D), which corresponds to
age limits of oceanic lithosphere of 40 Myr for hl = 160 km and 60
Myr for hl = 180 km. This result shows that among all the
parameters analysed in this study, the thermal thickness of the
continental lithosphere is probably most important. For similar
ages of subduction initiation at passive margins, the disparity in
stress is due to a variation in convergence rate, with low
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convergence rate models requiring lower stress levels for
subduction initiation at passive margins (red dashed line,
Figure 4B).

Mechanisms for Subduction Initiation

Subduction initiation at passive margins requires high loading
level of shear stress acting on the margin but also low levels of
shear stress in the oceanic lithosphere. Our modelling results
show that convergence velocity is an important parameter that
regulates stress in the lithospheric layers and therefore controls
the locus of deformation. Models with low convergence rate
(~0.8cmyr™") predict strain localization and subsequent
subduction initiation at the passive margin (Figure 5A, 6.6%
BS), whereas models with high convergence rate predict intra-
oceanic subduction (Figure 5B, 7%BS). These results show that
stress loading preferentially occurs at passive margins for cases of

low convergence rate (Figure 5C), because deformation is
distributed over many small structures within the brittle layer
that accommodate low amounts of strain and is even more
distributed within the ductile layers of the models.
Consequently, distributed deformation (black curve) leads to
low shear rates and low heat production (Figure 5A). The
heat produced by viscoplastic dissipation (Hs, Figure 5A) is
then efficiently diffused within the viscous layer (red curve,
Figure 5A, 6.6%BS). Therefore, homogeneous distribution of
deformation and shear heating at low strain-rate limits the
magnitude of stress in the oceanic domain and thus prevents
stress loading and failure during cooling of the lithosphere
(Figure 5C). When the oceanic lithosphere reaches a certain
thickness (after ¢ = 30-35 Myr), it barely deforms, but acts as a
buttress and shortening leads to deformation of the passive
margin until subduction initiates (Figure 5A, 8.5%BS).
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The passive margin lithosphere consists of brittle layers in the
crust and the underlying lithospheric mantle where deformation
localises in shear bands, which eventually link-up to form a
through-going shear structure (Figure 5A). This moment of
formation of the incipient subduction plate boundary allowing
for underthrusting of the oceanic plate correlates with a
significant stress drop as shown in Figure 5C.

In contrast, for models with relatively high convergence rate
deformation is localized in the oceanic domain (Figure 5B,
between -500-0 km). The increase of integrated stress is largest
within oceanic lithosphere for both young and old oceanic
basins (Figure 5D, t = 20 Myr). Higher strain rates within
shear band type-structures lead to localised shear heating (Hs)
triggering shear-localization by thermal softening in the
ductile layer and the formation of a subduction plate
boundary (Figure 5B).

Series 2: Oceanic Lithosphere with Age

Dependent Thickness

In this section we present the results for three sets of experiments
defined by the age of the oceanic basin (30 Myr, 60 Myr and 90
Myr; Figures 6A-C) that include age dependent thickness
varjations within the oceanic lithosphere (Figure 2B).
Figure 6 delineates the mode of subduction as function of the
cooling period implemented at the start of the experiments and
the convergence rate during the subsequent shortening period.
Overall, these modelling results show that a cooling period of at
least 5 Myr before the start of shortening (Figure 6A) is necessary
to prevent underthrusting at the position where the thermal
thickness of the oceanic lithosphere is smallest, representing in
simplified forma former ridge. Consistent with results derived
from step 1, we infer that subduction initiation at a passive
margin is only feasible for low convergence rates (v < 0.9
cmyr ', Figure 6A). However, different to the models with a
uniform oceanic lithosphere, Figure 6 shows that subduction
initiation is more favourable in case of a young oceanic basin
rather than an old one (Figures 6A vs Figures 6B,C). To
understand this result, we present in Figure 7 two modelling
results with similar boundary conditions (tc = 5 Myr, v =
0.3 cmyr ') but with different ages of the oceanic basin (age =
30 and 60 Myr; Figures 6A,B) at the onset of shortening.

For both models, the oceanic lithosphere shows an increase in
thickness and integrated stress from the basin centre to the
continental lithosphere (Figures 7A,B), which is largest for the
older (60 Myr) oceanic basin (Figures 7A,B). In case of a 30 Myr
oceanic basin, the level of integrated stress at the ridge is close to
the value at the margin (~16-18 TN/m, black curve in
Figure 7A). Shortening of such young lithosphere at a slow
rate of 0.3cmyr ' leads to strain localization at the former
ridge early in the deformation history (Figures 7A, 7 Myr).
However, in the later stage (Figure 7A, 30 Myr), strain is
rather distributed, because lateral thermal thickness variations
get reduced as the oceanic lithosphere cools faster at the ridge
compared to the passive margin. Under such conditions, the
subsequent development of a shear-zone at the base of the
continental crust leads to underthrusting of the oceanic plate

Parameters Controlling Subduction Initiation Location

under the margin (Fig. 7a, 46 Myr). In comparison, in case of a 60
Myr old oceanic basin the level of integrated stress at the ridge is
significantly lower than at the passive margin (AI = 10 TN,
Figures 7B, 7 Myr).

Consequently, strain localises at the mid-oceanic
boundary which is much thinner (Fig. 7b, 45 Myr),
resulting in intra-oceanic under-thrusting (Fig. 7b, 45
Myr). These results suggest that the strength contrast
(expressed in this section by the thermal thickness)
between the lithospheres at the centre of the oceanic basin
and the passive margin controls the locus of subduction
initiation. Therefore, a young oceanic basin with minor
variation in strength between the extinct ridge and the
margin requires only 5 Myr of cooling prior to
convergence to permit subduction at a passive margin. In
contrast, an old oceanic basin would require a significant
period of cooling (tc > 20 Myr) to reduce the strength
differences between the lithosphere at the ridge and at the
passive margin to allow for subduction initiation at the
passive margin (Figure 6B).

DISCUSSION

Favourable Conditions for Subduction
Initiation at Passive Margins

We have set to investigate what conditions and mechanisms lead
to intra-oceanic subduction vs passive margin subduction
(Figure 8). Because mid-oceanic ridges have a thinner and
weaker lithosphere compared to passive margins, they
represent a priori preferential locations for subduction
initiation (e.g. Maffione et al, 2015; Agard et al, 2016).
Moreover, the large difference between ridge push force
(~1-5TN) and stresses arising from tectonics, or topography
related gravitational potential energy (5-10 TN) suggests that
subduction should predominantly initiate at mid-oceanic ridges,
which is consistent with our modelling predictions for fast
convergence rates. Additionally, this modelling study suggests
that subduction initiation at passive margin is physically feasible
under restricted conditions.

First, subduction initiation at a passive margin requires
processes that regulate stress levels in the oceanic lithosphere.
Our modelling results show that rheological conditions and
processes favouring distributed deformation within the ductile
part of the oceanic lithosphere is key for reducing stress levels and
de-localising deformation (Figure 8B). As such localised
deformation within the brittle layer, expressed as shear band
type structures, fail to propagate into and through the ductile
layer to form a subduction plate boundary. This behaviour is tied
to low convergence rates, ie., below 0.9 cm yr-1 (Figure 8B).
Similar results have been obtained by Giilcher et al. (2019) and
Qing et al. (2021), who observed in their numerical models,
reactivation of multiple detachment faults upon their inversion
but did not produce intra-oceanic subduction. When
deformation does not localized in oceanic domain, the vertical
rheological decoupling at the margin allows for the development
of along-lasting shear zone where stresses are relaxed through the
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formation of a decollement that propagate through the mantle.
Our results predict that even young (5 Myr old) oceanic
lithospheres can support tectonic stress of up to 12 TN/m
underlining its long-term stability. As such, subduction
initiation along spreading ridges is largely favored by warm
ridge and fast convergence rate (Figure 8C, see also Qing
et al, 2021) and/or the implementation of lithosphere-scale
pre-existing weak zones (Maffione et al, 2015) to localize
deformation in the mantle lithosphere.

Second, subduction initiation at a passive margin also entails
the transfer of deformation from the ridge to the margin during
the cooling of the oceanic lithosphere (Figure 7A). Previous
studies have emphasized that deformation at the passive margin
through spontaneous margin collapse is an unlikely mechanism
for subduction initiation, because stresses acting on the passive
margin lithosphere are never at yield (Cloetingh et al., 1984;
Mueller and Phillips, 1991). It is thus more likely that the
nucleation of a subduction zone at a passive margin occurs
upon additional external forcing to reach stress levels of at
least 16 TN/m (Zhong and Li, 2020) to induce failure of the
passive margin lithosphere. Numerical modelling studies
simulating the shortening of an oceanic basin (Auzemery
et al., 2020; Candioti et al., 2020; McCarthy et al., 2020; Zhong
and Li, 2020) emphasise that such stress levels can only be
supported by thick oceanic lithospheres, suggesting that
subduction initiation is only feasible in case of shortening of
an old oceanic basin. Therefore, subduction at a passive margin
could only happen after a relatively long period of cooling at an
extinct ridge prior to plate convergence (>60 Myr, Candioti et al.,
2020; McCarthy et al, 2020). In comparison, our models
simulating the effects of an extinct and cooling mid-oceanic
ridge suggest that subduction initiation at passive margins is

also possible in case of slow shortening of a young oceanic basin
(<30 Myr), following a short period of cooling (>5 Myr).
Although our approach assumes an initial short period (5
Myr) of cooling where no external forcing (convergence) is
applied, the results predict a more reasonable time scale for
the development of a subduction zone at a passive margin,
which amounts to 45 Myr from the moment that shortening
is applied.

Third, subduction initiation at continental margins does not
only depend on the age of the oceanic lithosphere (e.g. Auzemery
et al,, 2020; Zhong and Li, 2020) but also on the thermo-tectonic
age of the rifted continental lithosphere (Figure 4, see also
Nikolaeva et al, 2010). We show that subduction initiation is
favoured for thermally thin (Palaeozoic or younger) continental
lithospheres (<160 km) over cratons (>180 km) (Artemieva, 2009).
This could explain why subduction does not exist along the north
and south Atlantic margin, where the continental lithosphere is
particularly thick (Tesauro et al, 2013) and might also be the
reason for the proposed transference of subduction from the paleo-
Tethys, to the neo-Tethys, along the margin of the thinned
Cimmerian micro-continent (Wan et al., 2019).

Driving and Resisting Factors
Similar to Candioti et al. (2020) and Kiss et al., 2020, the stress
levels obtained in our study are larger than plate boundary forces
and represent upper bonds. Thus, other pre-existing lithospheric
structures or weakening mechanism are generally suggested to
explain subduction initiation at a passive margin (e.g., Stern and
Gerya, 2018).

First we note that, the level of integrated stress required for
subduction initiation depends mainly on the strength of the
continental lithosphere that depends largely on its composition,
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thermal regime and the presence of weakening mechanisms
(Cloetingh et al.,, 2005) and fluids (Regenauer-Lieb et al., 2001).
In our study, the stress limit also varies with rheological layering
and thermal state at the margin (Auzemery et al,, 2021) and the
earlier mentioned 20 TN/m limit is only valid for a 4 layer-160 km
thick-continental lithosphere. This explains differences with
similar studies (e.g., Zhong and Li, 2019), in which the crust is
weaker and thermal thickness at the margin is significantly smaller
than in our models.

Second, in our models, the sensitivity of deformation pattern to
the choice of softening parameters is too high. Therefore, to not
prescribed the locus of deformation, the magmatic (Gerya and
Meilick, 2011), hydro-mechanical (Dymkova and Gerya, 2013;
Schmalholz et al, 2020) and grain boundary weakening
(Bercovici Ricard, 2014) not implemented.
Parameterized strain softening was also not used because it is
not a transient mechanism and the strain-dependent weakening
limits are not well calibrated (Jaquet and Schmalholz, 2018). In
addition, our models do not include inherited structures such as
detachment faults that are prone to reactivation at stress levels
(Maffione et al., 2015) that are well below those required for the
development of new faults. Furthermore, a very thin oceanic
lithosphere is used to simulate an extinct mid-ocean ridge. As
such, melt- and fluid-related processes at mid-oceanic ridges,
which are yet poorly constrained because of scars high
resolution observations and rheology data from natural systems
(Bickert et al., 2021) are not taken into account. These have been
discussed in models deploying lithosphere extension (e.g. Ligi et al.,
2008; Dannberg et al., 2019), which is different to our setup, which
focuses on contraction of an oceanic ridge and its continental
margins. The mechanisms discussed above could greatly reduce the
stress limits after deformation localize at a passive margin or at a
mid-oceanic ridge. However, the doubts and uncertainties
associated with the choice of the weakening parameters would
affect too much the results of the parametric study and a less
complex approach was adopted.

Lastly, the discrepancy between analytical and numerical
models could be explained by the very high uncertainties about
the levels of integrated stress present within the lithosphere.
Traditionally, the magnitudes of integrated stress used to
explain plate tectonic processes are compared with analytical
calculations made on plate boundaries (subduction, ridge-push;
e.g, England and Wortel, 1980). However, these models are
extremely unclear as they ignore multi-scale and multi-physics
processes such as magmatic accretion or mantle dynamics (e.g.,
Husson et al., 2015). Besides, in nature, additional stress sources are
necessary in order to explain regional-to local-scale stress (e.g.
Heidbach et al., 2007) and deformation patterns (Gerbault, 20005
Cloetingh et al., 2005). Furthermore, it is common that forces are
calculated using the integral of the horizontal deviatoric stresses
(Ghosh et al., 2006; Mahatsente and Coblentz, 2015) that are lower
by a factor of two (see Schmalholz et al., 2019) than the differential
stress usually used to calculate lithosphere forces.

and were

Subduction Initiation in the Wilson Cycle
Our modelling results together with previous modelling studies
(Cloetingh et al., 1989; Gurnis et al., 2004; Hall, 2019; Nikolaeva

Parameters Controlling Subduction Initiation Location

etal., 2011; Stern and Gerya, 2018) suggest a mechanism that favors
forced subduction initiation at passive margins. In particular, we find
that slow convergence (<0.9 cm yr~ ") over a long period of time (~40
Myr) is critical in this context. Forces at play may include ridge push
(e.g., Forsyth, 1973; Vlaar and Wortel, 1976) GPE from adjacent
high areas (Ghosh et al., 2006; Marques et al., 2013; Pascal and
Cloetingh, 2009), transference from an existing subduction zone
(Baes et al., 2018; Duarte et al., 2013) or mantle flow (Candioti et al.,
2020 and references therein). Associated with this far-field tectonics
(Figure 8A), the partial starvation of basaltic melt underneath an
ultraslow spreading ridge can lead to the gradual increase in thermal
thickness of the oceanic lithosphere by 40-50 km (Husson, 2012)
resulting in a period where stresses transmitted from the extinct
ridge affect the passive margin (Figure 7).

In the frame of the above, the Alpine Tethys is a particular good
analogue where the geological record demonstrates ultra-slow
spreading (Lagabrielle and Cannat, 1990) and subduction initiated
at the passive margin (Manzotti et al., 2014b; Marroni et al., 2017;
Schmid et al., 2004). The latter process was probably associated with
low convergence rates affecting the Adriatic crust of Palaeozoic
(~320 Ma) tectono-thermal age (Castellarin and Cantelli, 2010).
The actual age of subduction initiation in the Alps is debated, but
high pressure rocks found in the Adriatic margin constrain an age for
underthrusting of ca 90-80 Ma (Manzotti et al., 2014a and references
therein). However, several authors suggest an earlier subduction
initiation at ca. 130 Ma, related to the change in Africa-Europe
convergence controlled by the opening of the south Atlantic Ocean
(Handy et al,, 2010; van Hinsbergen et al., 2020; Le Breton et al.,
2021). Based on our modelling results, we argue that subduction
initiation in the Alps was a long-lasting (40-50 Myr) process that
required a long period of very slow convergence allowing for
strengthening of the ridge and the stress build-up at the ocean-
continent transition. We note that the latter is achieved for times
when Africa did not move head-on relative to Europe. During this
period from 130 to 85 Ma, referred as “Cretaceous Quiet Zone” by
van Hinsbergen et al. (2020), plate reorganisation leads to a quasi-
absence of convergence between Africa and Europe (c.a. 0.6 cm yr™'
based on Figure 9). We suggest that such configuration would favour
a reduction of the spreading rate, the strengthening of the mid-
oceanic ridge as well as strain accumulation at the margin, until
subduction finally initiates due to an increase in plate convergence
rate 90 Ma (Capitanio and Goes, 2006). This scenario implies that at
the onset of slow convergence at 130 Ma, the Piemonte- Liguria ocean
is 30-40 Myr old, which falls within the range of “favourable”
conditions for SI at passive margins (Figure 6A). We furthermore
remark that exhumed and serpentinised mantle lithosphere of the
Alpine Tethys provided additional favourable mechanical conditions
for subduction initiation at stress levels that are compatible with plate
tectonic forces (e.g. Candioti et al., 2020).

CONCLUSION

Subduction initiation at passive continental margins is function of a
complex interplay between horizontal forcing and the strength of
the lithosphere, which acts as a stress guide. Both can vary
depending on the thermal thickness of the continental
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lithosphere at the margin, the age of the oceanic lithosphere and the
convergence rate. Strain accumulation at the passive margin during
a long period of time with very slow convergence enables the
development of a long-lasting shear-zone in the lower crust as well
as the strengthening of the oceanic lithosphere at the mid-oceanic
ridge. At the same time, this shear zone is critical for connecting
localised deformation within the brittle crust to deformation in the
mantle lithosphere. This evolution leading to the formation of a
subduction plate boundary at the passive margin critically depends
on the stability of the mid-ocean ridge, which is controlled by the
distributed style of deformation within the ductile oceanic
lithosphere. This has a de-localising effect, which prevents the
formation of a throughgoing shear zone and maintains a low
level of stress in the lithosphere. Under these conditions, oceanic
plate cooling together with gravitational stresses and far-field
tectonic forces provide suitable driving forces for subduction
nucleation at passive margins. In contrast, models with high
convergence rate favour strain localization also within the ductile
oceanic lithosphere, because shear heating is more efficient,
predicting the formation of a subduction plate boundary at the
weakest spot of the system, the mid-oceanic ridge.
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