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This paper proposed an improved U-Net fully convolutional neural network to automatically
extract a single landslide deformation information under time series based on the physical
model experiments. This method extracts time series information for three different
landslide deformation ranges. Compared to U-Net and mainstream superpixel method,
evaluation indicators of DSC, VOE and RVD verify the high recognition accuracy and strong
robustness of our method.
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INTRODUCTION

Landslides usually cause a large number of casualties and property losses (Lee et al., 2006; Shahabi
et al., 2013; Shirzadi et al., 2017), so it is very important to obtain characteristic information when
landslides occur (Guzzetti et al., 1994; Malamud et al., 2004; Lee et al., 2018). Some scholars have
done a lot of research on it from different angles (Kurtz et al., 2014; Tang et al., 2014; Zhang et al.,
2016; Zhang et al., 2020; Li et al., 2021a; Li et al., 2021b). Computer vision technology such as image
transformation algorithms improved the application of image recognition in landslide mapping
(Ardizzone et al., 2007; Cheng et al., 2013; Mwaniki et al., 2017; Bui et al., 2020; Shi et al., 2020).
While the image recognition of landslide deformation area in specific time deformation area of a
single landslide is few considered.

In the mainstream automatic recognition of Superpixel segmentation, Xie et al., proposed a
method of super pixel generation for SAR images based on significant differences and spatial distance
(Xie et al., 2019). Zhu et al., proposed a region merging method (Zhu et al., 2016). Hashiba et al., uses
the superpixel SLICO method to check the appropriate area size to extract the landslide area with
high accuracy (Hashiba and Sonobe, 2020). Yang et al., used superpixel algorithm to realize the
automatic extraction of landslide deformation information (Yang et al., 2019). But these methods are
lacking in accuracy and recognition speed. Some scholars use u-net neural network to extract
landslide deformation information (Ghorbanzadeh et al., 2021). Sanghoon Lee et al., used U-Net to
quantitative spatial analysis on whole slide images (Lee et al., 2020). Chen Yu et al., developed a U-net
like model suitable for mapping post-earthquake lanslide susceptibility (Chen et al., 2020).
Unfortunately, these methods cannot achieve both high accuracy and strong robustness for
recognition of landslide deformation area.
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TABLE 1 | Architectural details of the improved U-Net.

Layers Image size Operation Kernel size Stride Dilation

S1 L1 (512,512,3) The improved ResNet block (33,64) 1 2
L2 (512,512,64) Double Conv + BN + ReLU (33,64) 1 1
L3 (512,512,64) MaxPool (2,2) 2 -

S2 L4 (256,256,64) The improved ResNet block (33,64) 1 2
L5 −25,62,56,128 Double Conv + BN + ReLU (33,128) 1 1
L6 −25,62,56,128 MaxPool (2,2) 2 -

S3 L7 −12,81,28,128 The improved ResNet block (33,128) 1 2
L8 −12,81,28,256 Double Conv + BN + ReLU (33,256) 1 1
L9 −12,81,28,256 MaxPool (2,2) 2 -

S4 L10 (64,64,256) The improved ResNet block (33,256) 1 2
L11 (64,64,512) Double Conv + BN + ReLU (33,512) 1 1
L12 (64,64,512) MaxPool (2,2) 2 -

S5 L13 (32,32,512) The improved ResNet block (33,512) 1 2
L14 (32,32,1024) Double Conv + BN + ReLU (33,1024) 1 1
L15 (32,32,1024) ConvTrans (22,1024) 2 1

S6 L16 (64,64,512) Cat(L11,L15) - - -
L17 (64,64,1024) The improved ResNet block (33,1024) 1 2
L18 (64,64,512) Double Conv + BN + ReLU (33,512) 1 1
L19 (64,64,512) ConvTrans (22,512) 2 1

S7 L20 −12,81,28,256 Cat(L8,L20) - - -
L21 −12,81,28,512 The improved ResNet block (33,512) 1 2
L22 −12,81,28,256 Double Conv + BN + ReLU (33,256) 1 1
L23 −12,81,28,256 ConvTrans (22,256) 2 1

S8 L24 −25,62,56,128 Cat(L5,L24) - - -
L25 −25,62,56,256 The improved ResNet block (33,256) 1 2
L26 −25,62,56,128 Double Conv + BN + ReLU (33,128) 1 1
L27 −25,62,56,128 ConvTrans (22,128) 2 1

S9 L28 (512,512,64) Cat(L2,L28) - - -
L29 −51,25,12,128 The improved ResNet block (33,128) 1 2
L30 (512,512,64) Double Conv + BN + ReLU (33,64) 1 1
L31 (512,512,64) Conv + Softmax (11,64) 1 1
OUT (512,512,1)
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In this study, we propose an automatic recognition method for
landslide deformation characteristics based on improved U-Net
neural network. Compared with U-Net neural network and
mainstream superpixel methods, it has higher accuracy and
robustness in identifying landslide deformation features under
time series. Physical simulated landslide experiments verify the
reliability of our method.

METHODS

The U-Net network was first proposed by Olaf et al. to segment
images of biological cells. It is well known for its small training set.
U-Net consists of two parts: a contraction path and an expansion

path. The contraction path includes downsampling, ReLU, and
pooling; the expansion path includes upsampling and ReLU
(Ronneberger et al., 2015). This study improves the U-Net
network by: 1) that increasing the depth of the network is
conducive to extracting deeper features of the image (He et al.,
2015); 2) that replacing part of the traditional convolution kernel
using a hollow convolution kernel increase the receptive field to
preserve more local details of the picture (Wang et al., 2016).
Table 1 lists the specific operations of each layer of the improved
U-Net network. The improved U-Net contains 9 improved
residual modules, each of which is composed of two hole
convolutions, two BNs and two ReLU functions; 19
convolutional layers, four pooling layers and four transposed
convolutional layers.

FIGURE 1 | Rainfall device model.

FIGURE 2 | The flow chart of time sequence information extraction of landslide deformation area.
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Data Set and Experimental Environment
The data used in this study was from indoor rainfall-induced
landslides experiments. The physical model device is mainly
composed of a rainfall simulation equipment and a set of
monitoring sensors. The rainfall simulation system includes a
metal frame, a metal support, 15 nozzles, and 5 flowmeters
(water velocity was 25–250 ml/min for each flowmeter). The
length, width, and height of the metal frame are 1.6, 0.8, and
0.8 m respectively (Figure 1). Themain landslidemonitoring sensor
in our study is a trinocular camera (type: Point Gray Bumblebee X3,
resolution: 1,280 × 960), which saves the captured images every 5 s.
There are five groups of experimental models in the experiment,
named S1, S2, S3, S4, and S5. The five groups of physical model
experimentmaterials are all ionic rare earths, and each group of tests
rains for 5 h, and the total rainfall is 260 mm. In addition, the back-
peak rainfall method uses decreasing rainfall intensity, which are
140 mm/h, 70mm/h, 40 mm/h, 20 mm/h, and 10 mm/h
respectively. On the other hand, the front-peak rainfall method
uses incremental rainfall intensity, which are 10 mm/h, 20 mm/h,
40 mm/h, 70 mm/h and 140mm/h respectively (Li et al., 2020). In
these five sets of experiments, due to the different physical model
building methods and rainfall methods, the forms of slope landslide
damage are also different. These experiments provide more data
support for later method validation.

Test Procedure
In this part, we use an improved U-Net method to extract landslide
deformation information (Figure 2), and use currently popular
evaluation indicators to evaluate the experimental segmentation
results. Since there is no public dataset of continuous deformation
images of landslides, we used LabelMe software to make the training
set labels in the experiment. This experiment uses a neural network
framework based on PyTorch to implement U-Net full
convolutional networks. The data in the experiment consists of
two parts consisting of 500 pieces of training set and 100 pieces of
test set. Each group of tests extracts an average of 100 training sets
(30 small-scale damage images, 40 medium-scale damage images,
and 30 large-scale damage images) and 20 test sets (6 small-scale
damage images, 8 medium-scale damage images and 6 large-scale
damage images). In order to better utilize the characteristic of U-Net
full convolutional network, this paper keeps the size of each image in
the experiment 512 × 512. In the experiment we used i7-6,700
(CPU), NVIDIA RTX 2060s (GPU) in the Windows 10
environment, and the computer’s RAM is 16G. This paper
uses the following parameters to set up the U-Net network:
learning rate � 1e-4, batch size � 1 and training epoch � 100.

Evaluation Index
Currently, most of the image evaluation methods are widely used
in the fields of medicine and computer vision, and have the
characteristics of high accuracy (Huang et al., 2018; Sudan et al.,
2019; Kromp et al., 2021). This paper uses DSC, VOE and RVD
evaluation indicators to evaluate the segmentation effect of the
model (Dash et al., 2019; Liu et al., 2019). DSC is used to evaluate
the consistency between the segmentation results and the real
results, and is defined as follows:

DSC(G, P) � 2|G ∩ P|
|G| + |P| (3-1)

The VOE calculation method is as follows:

VOE(G, P) � 1 − |G ∩ P|
|G ∩ P| (3-2)

The RVD is defined as follows:

FIGURE 3 | Recognition result graph; (A) Recognition result of small-
scale damage; (B) Recognition results in medium-scale damage; (C)
Recognition results in large-scale damage.
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RVD(G, P) � |P| − |G|
|G| (3-3)

Among them,DSC represents the Dice Similariy
Coefficient,VOE represents the Volumetric Overlap Error,RVD
represents the Relative Volume Difference, G represents the real
result and P represents the algorithm segmentation result. The
closer DSC is 1, the better the segmentation result. The closer VOE
and RVD is 0, the better the segmentation result.

RESULTS

To verify the effectiveness of the proposed method, the
proposed method is compared with the original U-Net
network and the mainstream landslide deformation region
segmentation superpixel algorithm, and the evaluation
coefficients DSC, VOE, and RVD mentioned above are used
to evaluate the segmentation results.

In this study, three small-scale landslide damage images, four
medium-scale landslide damage images, and three large-scale
landslide damage images at different times during training are
randomly selected. The results of the three algorithms in the task of
identifying small-scale landslide damage are shown in Figure 3A. It
can be found that the performance of the improved U-Net model is
better than that of the original U-Net and superpixel algorithm;
The original U-Net model misidentifies the large non-destructive
area as the destructive area, while the superpixel algorithm fails to
distinguish the deformation area of landslide well. Figure 3B shows
the results of the three algorithms in the identification of mesoscale
landslide damage areas. Both the U-Net and the improved U-Net
algorithms can well identify the damaged area in the landslide.
However, the original U-Net method is easy to lose information in
some subtle places, and it is easy to cause misrecognition at the
edge of the damaged area. The superpixel algorithm can hardly
identify the landslide deformation area. To comprehensively
analyze and compare the performance of the three algorithms,
this paper adds a landslide with a larger damage area to test the
algorithm. Figure 3C shows that the U-Net model has obvious
misrecognition and missed recognition in the identification of
large-scale landslide damage areas, and the improved U-Net
model still has a good performance. The traditional landslide
deformation area recognition algorithm still does not perform
well. The specific data is described below.

When small-scale deformation of the landslide occurs, the DSC
evaluation indexes of U-Net, Superpixel and Improved U-Net are
respectively: 0.953, 0.335, 0.978; VOE evaluation indexes are: 0.088,
0.775, 0.043; RVD evaluation indexes are: 0.066, 0.495, 0.032.
When a medium-scale deformation of a landslide occurs, the
DSC evaluation indexes of U-Net, Superpixel and Improved
U-Net are respectively: 0.871, 0.433, 0.893; VOE evaluation
indexes are: 0.084, 0.435, 0.076; RVD evaluation indexes are:
0.089, 0.376, 0.081. When large-scale deformation of the
landslide occurs, the DSC evaluation indicators of U-Net,
Superpixel and Improved U-Net are respectively: 0.933, 0.335,
0.958; VOE evaluation indicators are: 0.031, 0.775, 0.021; RVD
evaluation indicators are: 0.032, 0.495, 0.020.

DISCUSSION

Highlights of Improved U-Net Model
The improved U-Net model is better than the original U-Net and
superpixel algorithm. The reason why the superpixel algorithm
performs poorly in the large, medium and small-scale destruction is
that the algorithm cannot adapt to images with complex
backgrounds, and this is the advantage of the deep learning
algorithm. In the DSC evaluation index, both U-Net and the
improved U-Net model have high indicators. This method uses
a large sample training set to automatically and continuously
identify and extract deformation features in time series from
different deformation scales, the recognition accuracy is high and
the robustness is strong under complex environmental conditions.

Limitations and Outlook
In our study, we automatically identify the landslide physical model
with relatively simple material particle size in the time series. For
some landslide scenarios with complicated background and
disordered particle size (such as mine excavation, tailings dam
etc.) identification has not been studied yet. In the future,
automatic identification of landslide deformation areas in
complex environments will be a major trend.

CONCLUSION

The improved U-Net fully convolutional neural network is used to
automatically identify and extract the deformation characteristics
of the landslide time series. Some conclusions have been drawn:

1) The increase in depth of the neural network and the introduction
of the spatial convolution kernel can effectively extract deep
deformation features and retain more local deformation details.

2) In a large-capacity training set, the improved U-Net method
has a good batch recognition processing effect.

3) Under the situation of multi-scale landslide damage, three
different evaluation indicators verify that the improved
U-Net method has higher recognition accuracy and stronger
robustness than the U-Net method and the superpixel method.
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