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The detection of transient events related to slow earthquakes in GNSS positional time
series is key to understanding seismogenic processes in subduction zones. Here, we
present a novel Principal and Independent Components Correlation Analysis (PICCA)
method that allows for the temporal and spatial detection of transient signals. The PICCA is
based on an optimal combination of the principal (PCA) and independent component
analysis (ICA) of positional time series of a GNSS network. We assume that the transient
signal is mostly contained in one of the principal or independent components. To detect
the transient, we applied a method where correlations between sliding windows of each
PCA/ICA component and each time series are calculated, obtaining the stations affected
by the slow slip event and the onset time from the resulting correlation peaks. We first
tested and calibrated the method using synthetic signals from slow earthquakes of
different magnitudes and durations and modelled their effect in the network of GNSS
stations in Chile. Then, we analyzed three transient events related to slow earthquakes
recorded in Chile, in the areas of Iquique, Copiapó, and Valparaíso. For synthetic data, a
150 days event was detected using the PCA-based method, while a 3 days event was
detected using the ICA-based method. For the real data, a long-term transient was
detected by PCA, while a 16 days transient was detected by ICA. It is concluded that
simultaneous use of both signal separation methods (PICCA) is more effective when
searching for transient events. The PCA method is more useful for long-term events, while
the ICAmethod is better suited to recognize events of short duration. PICCA is a promising
tool to detect transients of different characteristics in GNSS time series, which will be used
in a next stage to generate a catalog of SSEs in Chile.
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INTRODUCTION

Transient deformation is broadly defined as deformation that is not associated with traditional
earthquakes (e.g., Dragert et al., 2001), manifested by a departure from the steady interseismic
landward motion in GNSS time series (see Bürgmann, 2018 and many references therein). Such
unusual motions may be evidence of a slow, transient aseismic release of stresses along a fault,
commonly known as slow slip events (SSEs) which can involve centimeters to tens of centimeters of
fault movement over days to years. Aseismic deformation transients have been observed in many
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subduction zones worldwide, including Japan (Hirose et al.,
1999), Alaska-Aleutian (Freymueller et al., 2002), Guerrero,
Mexico (Lowry et al., 2001), Hikurangi, New Zealand (Wallace
and Beavan, 2006), and Chile (Klein et al., 2018). Given the now
numerous examples of slow slip worldwide in subduction zones,
it is currently thought that slow slip can be accompanied by a
series of small earthquakes or tremors, or even loading adjacent
locked sections, potentially considered as precursory activity,
when a larger seismic event follows (e.g., Ruiz et al., 2014;
Schurr et al., 2014; Socquet et al., 2017). Thus, there is a
growing interest in the geodetic community for detecting
transient deformations and automating the process, given their
role in seismic hazard assessment. However, identification of
transients in GNSS time series is difficult, as are intermixed with
other (typically larger) tectonic signals, as well as those related to
hydrological loading effects, instability or modification of GNSS
monumentation and common noises such as reference frame
realization errors, thus requiring sophisticated signal processing
techniques (e.g., McGuire and Segall, 2003).

Although various techniques have been developed for
automated detection of transients in GNSS time series (e.g.,
Riel et al., 2014), it is still non-trivial to robustly detect such
events and thus characterize their nature. Trajectory models
composed of sub-models that represent secular trends, annual
oscillations, jumps in coordinate, and postseismic decays are
traditionally used to characterize GNSS-derived displacement
time series (e.g., Bevis and Brown, 2014). These models
characterize reasonably well the main sources of displacements
affecting GNSS stations. However, the trajectory model is based
on known permanent functions, with predefined information,
such as the time of jumps (i.e., discontinuities in the time series)
due to antenna changes or earthquake occurrence, and the decay
time of post-seismic deformation following great earthquakes.
Thus, making it difficult to identify transient motions of
unknown magnitude and duration, since their patterns may be
not obvious and possibly hidden in the noise within the residuals
of the trajectory models. Bedford and Bevis (2018) updated the
trajectory model to be able to identify multi-transients as the sum
of two or more decaying functions with different characteristic
time scales and identical onset times. In this approach, all non-
stationary, secular and noise shift signals are fitted by the sum of
two or more simple exponential decay functions, which
characterize transient signals. Crowell et al. (2016) proposed
using the relative strength index (RSI), a financial momentum
oscillator, for single-station automated transient detection, which
provides information on the spatial extent and duration of those
events. Other techniques to extract the signal corresponding to
transient motions in GNSS series include the use of different
filters based on physical models that take into consideration fault-
slip evolution (e.g., the network inversion filter NIF; McGuire and
Segall, 2003, and the Network Strain Filter NSF; Ohtani, et al.,
2010). The NIF and the NSF are based on a time domain
(Kalman) filter that analyzes all data from a network
simultaneously exploring stochastically a combination of a
secular velocity, slip on faults, benchmark motions, reference
frame errors, and estimation errors. GNSS networks time series
can be decomposed into a set of temporally varying modes and

their spatial responses using the principal component analysis
(PCA) or independent component analysis (ICA) (e.g., Dong
et al., 2006; Kositsky and Avouac, 2010; Gualandi et al., 2016).
These are multivariate statistical data techniques that do not
require physical models of processes to detect any transient
motion on GNSS position time series. Time-series analysis
shows that spatially correlated noise, described as common
mode error (CME), affects regional networks (Dong et al.,
2006), which can be easily confused with transient events
when single-GNSS stations are analyzed. Along with the noise
affecting the determination of station positions, the robust
detection of millimeter magnitude transients is affected by
data gaps in many stations, local non-tectonic deformation as

FIGURE 1 | Tectonic setting and GNSS-derived velocities between
2018 and 2021 along the subduction zone of Chile. The coseismic slip from
earthquakes that occurred in 2010, 2014 and 2015 are shown.The blue
arrows are the velocities with respect to South America (labeled in mm/
yr; 1σ error ellipses are shown), obtained using the trajectory model of Bevis
and Brown (2014). The positions of the 3main SSEs registered in Chile (Schurr
et al., 2014; Ruiz et al., 2017; Klein et al., 2018) are shown (in red).
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well as the distance between GNSS stations and slip source. All
these factors imply that there is still room for improvement in the
transient detection techniques, testing the pros and cons of
different methods, and re-analyzing some documented
transient events with the aim to improve their characterization
and interpretation.

SSEs are considered important because of their impact on
energy release in the seismic cycle of large earthquakes. Slow
earthquakes have a wide range of temporal and spatial behaviors;
they can last from days to several decades and affect the upper
(updip, e.g., Wallace et al., 2016; Davis et al., 2015) and lower
(downdip; e.g., Dragert et al., 2004; Radiguet et al., 2016; Klein
et al., 2018) limits of the seismogenic zone, delineating the extent
of the locked fault portion. Slow earthquakes can be symptoms of
decoupling in the seismogenic zone and being induced or
triggered by seismicity (e.g., Ruiz et al., 2014; Schurr et al.,
2014). Over periods of several years these events can be
recorded as temporal and spatial variations in the degree of
locking (e.g., Frank, 2016). On finer time scales (days to
months), observations of SSEs are more complex, being
associated with mixed anomalous seismicity (Bedford et al.,
2015; Jolivet and Frank, 2020). A reliable identification of such
events at different spatial and temporal scales in seismic and
geodetic data will provide new insights into the physics of strain
accumulation and release at subduction zones, as well as for
developing new seismic hazard monitoring techniques.

The GNSS network in Chile offers a good spatial coverage
(>120 continuous stations, Baez et al., 2018) spanning more than
a decade of observations (Figure 1). However, the long Chilean
megathrust is one of the only subduction zones where only few
SSEs have been documented. So far, only one SSE (potentially
lasting several years) in a mature seismic gap (Klein et al., 2018)
and two other cases associated with foreshock activity before
major events have been described (e.g., Ruiz et al., 2014; Schurr
et al., 2014; Ruiz et al., 2017; Socquet et al., 2017; Ruiz et al., 2019).
Hence, the upcoming challenge is being able to quantify SSEs of
low magnitude in a more automated and robust way so that we
can better mosaic how the main subduction fault in Chile is
evolving over time.

In this manuscript, we present the Principal and Independent
Components Correlation Analysis (PICCA) algorithm, a
combination of PCA and ICA techniques that allows
automatic detection of transient events in a network of GNSS
stations. We first provide a detailed description of our detection
method. Then, to calibrate our method, we build synthetic
surface-displacement time series for slow slips of various
durations, including realistic realizations of uncertainties,
velocities, and seasonal motions (Carr Agnew, 2013) for the
GNSS network in Chile. Subsequently, we demonstrate the
detection capability of our method to automatically identify
previously documented slow slip events in Chile. Finally, we
discuss the efficacy of our method for accurately identifying the
location, onset time and duration of SSEs in Chile.

Chile’s subduction zone was struck by three major events
within only 5 years: The 2010 Maule (MW � 8.8), 2014 Iquique
(MW � 8.1) and 2015 Illapel (MW � 8.2) earthquakes (Figure 1).
These earthquakes induced a complex deformation field with

continental-scale spatiotemporal variations in magnitude and
direction of surface displacements. GNSS station velocities in
2018–2021 (based on time series from Nevada Laboratory
Geodetic Lab, Blewitt et al., 2018, see Figure 1;
Supplementary Figure S1 in the Supplementary Material)
show that the current deformation along the margin is driven
by the different phases of the seismic cycle. Thus, it is possible to
recognize the interseismic deformation patterns in many areas of
the margin, such as in northern (29°S–18°S), central (33.5°S–32°S),
and southern (39°S–45°S) Chile. Near the rupture zones of the
2015 and 2010 earthquakes, the postseismic effect induces forearc
rotations and a deformation that propagates as far as Argentina.
These complex displacement patterns make it difficult to
recognize possible movements by analyzing cumulative
displacement vectors.

In Chile, recurrent SSEs (over periods of several years) have
not been clearly detected as in other subduction zones. The most
robust signals attributable to SSEs have been detected in the form
of precursory processes. The best record of SSEs in Chile is the
transient uncoupling of the plate interface and its related
foreshock sequence leading up to the 2014 (MW 8.1) Iquique
earthquake (Schurr et al., 2014; Ruiz et al., 2014). GNSS stations
may have accelerated 8 months before the main shock (Socquet
et al., 2017), but the largest and most prominent transient signal
lasted 15 days until the onset of the mainshock, reaching a
cumulative displacement of ∼15 mm. The spatial and temporal
proximity to the mainshock, as well as the migration pattern of
the foreshock events, suggest that the foreshocks and main event
were mechanically coupled. The 2015 Illapel earthquake showed
similar unusual activity but with a more subtle signature, with an
increase in eastward motion after the 2010 Maule earthquake
(Melnick et al., 2017; Bedford and Bevis, 2018). A slow GNSS-
derived motion towards the trench was detected 2 days before the
2017 MW 6.9 in Valparaiso (Ruiz et al., 2017). Nearby stations
recorded a cumulative displacement of less than 10 mm in this
precursory phase. However, the high noise in the time series and
the complexity of the signals make such low magnitude signals
easily hidden and difficult to detect automatically. The first SSE
registered in Chile that is likely a recurring phenomenon,
corresponds to a transient deformation signal detected
between 2014 and 2016 using survey and continuous GNSS
observations in the Atacama region (26°S–29°S, Figure 1)
(Klein et al., 2018). Here, a deep slow slip event produces a
signal at the GNSS sites characterized by uplift and horizontal
trenchward motions. Moreover, similar transient signals were
registered in 2005 and 2009 by a few continuous GNSS stations
operating since 2002 suggesting recurrent occurrences of SSEs
in such region (Klein et al., 2018). A recent analysis reported a
vast continental 1,000 km-scale region alternating its sense of
motion over a period of several months before the 2010 Chile
earthquake (Bedford et al., 2020). This strange reversal of
ground motion was also preceding the 2011 Tohoku-oki
earthquake. GNSS monitoring prior to 2010 in Chile offers
only sparse data. Therefore, precludes detailed and robust
analysis preceding this event. Nevertheless, new data and
longer times series will allow us to test the results of
Bedford et al. (2020).
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METHOD: THE PRINCIPAL AND
INDEPENDENT COMPONENTS
CORRELATION ANALYSIS ALGORITHM
For an automatic spatiotemporal detection of transient events in a
network of GNSS stations, we implemented a novel method—The
Principal and Independent Components Correlation Analysis
(PICCA) algorithm - that optimally combines PCA and ICA
techniques. The PICCA maximizes the correlations between the
GNSS time series and the components estimated by Principal and
Independent component analysis (PCAand ICA, respectively) in order
to find the ones that best represent anomalous motions. This method
allows for the spatial and temporal detection of the transient event by
selecting the most representative PCA/ICA component and therefore
identifying the onset time, duration and GNSS site where the transient
occurs. In the following, we describe the two methods that were used
for signal separation and their integration in our detection algorithm.

Principal Components Analysis
PCA is a linear dimensionality reduction technique that seeks
projection of the data into uncorrelated (and orthogonal)
directions of highest variability (Chatfield and Collins, 1980;
Stone, 2004). It computes the principal components (PCs), which
are the basis vectors of directions in decreasing order of variability.
Thus, the first PC provides a basis vector for the direction of the
highest detected variability. Then, the second PC provides the basis
vector for the next direction orthogonal to the first PC, and so on
follows the sub-component decomposition. Computation of PCs
involves estimating the covariance matrix of the data, its eigenvalue
decomposition, sorting of eigenvectors in the decreasing order of
eigenvalues, and finally, a projection of the data into the new basis.
Considering that our measured data consist of daily time series of a
GNSS network, we can defineX as the datamatrix ofmxn, wherem is
the number of stations of the network, and n the number of days of
the time series. This matrix X contains only one of the three spatial
components of the GNSS data (East, North or Up).

Thus, Xij corresponds to the value of X for the i-th station (i �
1. . .m) and the j-th day (j � 1. . .n). Accordingly, we can define the
mx1 vector xj as the observations on the j-th day for all the m
stations. To obtain the covariance matrix of X we must first
compute the mean vector of the data as:

�x � 1
n
∑n
j�1

xj (1)

and the mxm covariance matrix C is defined by:

C � 1
n − 1

∑n
j�1
(xj − �x)(xj − �x)T (2)

Let λ1, λ. . .λm, be the eigenvalues of C ordered so that λ1≥
λ2≥. . .≥ λm, and let v1, v2. . .vm be the correspondingly ordered
eigenvectors. We can define the mxm eigenvector matrix W as:

W � ⎡⎢⎢⎢⎢⎢⎣ vT1
«
vTm

⎤⎥⎥⎥⎥⎥⎦ (3)

then the spatial PCs for the j-th day are given by:

yj � W · (xj − �x) (4)

where yj is a mx1 vector representing the value of the PC for the
j-th day at each GNSS station. The resulting PCs can be expressed
for each day j � 1. . .n as a mxn matrix Y, where the first row
corresponds to the first PC, the second row to the second PC, and
so on, for each day with data in the GNSS time series. PCA is
usually used to reduce the dimensionality of the data as well as for
filtering noise, by discarding the PCs associated with the lowest
eigenvalues. This can be done choosing a dimension d<m and
projecting the data onto v1, v2. . .vd, giving the approximation:

Wd � ⎡⎢⎢⎢⎢⎢⎣ vT1
«
vTd

⎤⎥⎥⎥⎥⎥⎦0ŷk � Wd · (xk − �x) (5)

for k � 1. . .n, and ŷk is a dx1 vector, resulting in a dxn matrix Y,
where the rows correspond to the d first PCs. To partially recover
the original data we can calculate:

x̂k � WT
dŷk + �x (6)

where X̂ is the recovered filtered data, considering only d PCs. In
this work, we use the estimated PCs as possible sources of
transient information. Also, PCA was used to detrend the
data, that is, recovering it from all PCs except the first
component, which in most cases contains the secular trend
components of GNSS time series, as observed in our analysis
of Chilean GNSS data.

Independent Components Analysis
The PCA technique has been used inmany fields, including GNSS
time-series analysis (Dong et al., 2006; Kositsky and Avouac,
2010). However, PCA finds signals which are Gaussian and
uncorrelated, which means that if the transients we are
looking for are not Gaussians in nature, it is most likely that
PCA will not be able to represent the transient with only one PC.
This problem can be handled using a complementary technique,
the ICA, capable of decomposing the original data into non
Gaussian signals (Gualandi et al., 2016). In simpler words, while
PCA decomposes the GNSS time series into a set of orthogonal
spatial and temporal components, ICA does so into components
that are statistically independent, without requiring mutual
orthogonality. Generally, it is assumed that each measured
signal depends on several distinct source signals. Moreover,
each measured signal is essentially a linear mixture of these
source signals. In many cases, these source signals are of
primary interest, but they are interlaced within the set of
measured signals, or signal mixtures. The problem of
unmixing signals is known as blind source separation (BSS),
and ICA (Comon, 1994; Hyvärinen and Oja, 2000; Stone, 2004) is
a specific method for performing BSS. The solution of a BSS
problem is a set of source signals that explain, using a linear
mixture, the available measures. This problem refers to when
neither the source signals nor the mixing structure are known,
and can be written in matrix form as:
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X � A · S (7)

where X is the matrix of measured signals x1. . .xm; S is the matrix
of source signals s1. . .sm; and A the mixing matrix of the sources.
Assuming that matrix A is invertible, we can writeW � A −1, then
Eq. 7 can be rewritten as:

S � W ·X (8)

The goal is then to estimate the coefficients Wij from matrix
W. A solution to this problem can be found by considering the
statistical independence of the source signals. In this work, we
apply the algorithm called FastICA (Hyvärinen and Oja, 2000), in
which the key to the solution is the use of the central limit
theorem. This theorem establishes that the distribution of a sum
of independent random variables tends toward a Gaussian
distribution. To estimate one of the independent components
(ICs), let us consider a linear combination:

y � wT ·X � ∑wi · xi (9)

where w is a vector to be determined. If we make a change of
variables z � AT·w then:

y � wT ·X � wT · A · S � zT · S � ∑ zi · si (10)

Thus, y is a linear combination of the sources si. Using the
central limit theorem, we can observe that y (or zT·S) is more
Gaussian than any si and it becomes least Gaussian if it equals one
of the si. Therefore, the task of ICA is to find a vector w that
maximize the nongaussianity of y � wT·X. This vector w will
necessarily correspond to a vector z with only one nonzero
component, that is, y � wT·X� zTS corresponds to one of the
independent components.

The main difference between ICA and PCA is that PCA
decomposes a set of signal mixtures into a set of uncorrelated
(orthogonal) signals, whereas ICA decomposes a set of signal
mixtures into a set of statistically independent signals. Assuming
that we are looking for transients that can be gaussians or non
gaussians, we used in this work both techniques, in order to find
the best performance for different kinds of transients, first with
synthetic GNSS data and then with real data from different
regions of Chile.

The Principal and Independent Components
Correlation Analysis Algorithm
This detection algorithm searches for the principal or
independent component - from PCA or ICA, respectively
-that best represents the transient event that potentially exists
within the GNSS time series. This search is performed by means
of the temporal correlation between each time series and each
estimated PC or IC based on the following hypothesis: the
information of a transient, if it exists, is contained in at least
one of the estimated PCA or ICA components. Therefore, the
highest correlations between the time series and the PCA or ICA
components are obtained when these components contain
information of a transient event. A block diagram of the
Correlation PCA/ICA-based algorithm is shown in Figure 2,

which is explained in detail hereafter. The input data is composed
by the daily GNSS network stations time series. This data is
structured in a matrix X, with rows corresponding to the different
stations in the network and the columns to the daily samples that
span the full extents of the time series. The pre-processing stage
(Stage 1 in Figure 2) is to apply PCA, calculate the first d PCs and
recover the time series from these d PCs except the first one, that
contains the secular trend or station velocity, obtaining the
detrended time series for subsequent correlation with the PCs
or ICs. Then, we apply ICA to obtain the corresponding ICs to
correlate with the time series. As well as with PCA, we define d
sources for the estimation in the ICA. We note that the
correlations with the time series must be calculated using
either PCA or ICA, so to obtain the results from both
techniques, we apply the method twice, for PCA and for ICA,
respectively.

With all the signals preprocessed and estimated, we calculate
the correlation coefficient between them (Stage 2 in Figure 2). Let

FIGURE 2 | Block diagram of the Principal and Independent
Components Correlation Analysis (PICCA) method for transient detection.
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X̂ be the mxn matrix whose rows correspond to the detrended
GNSS time series, and columns to each day of the given time span.
Also, we can define a dxn matrix S, which contains the d PCs or
ICs over the n days of the time series. The correlation will be
calculated for sliding windows of length R days, so that:

ρkl(p, q) � 1
R − 1

∑R
j�1
⎛⎝Skp(j) − μ(Skp)

σ(Skp) ⎞⎠⎛⎝X̂lq(j) − μ(X̂lq)
σ(X̂lq) ⎞⎠

(11)

where ρkl(p,q) is the correlation coefficient between time windows Skp
and X̂lq. Time indexes p � 1. . .n-R and q � 1. . .n-R, thus, we have a
(n-R)x(n-R) matrix ρkl of correlations for every kl combination. The
window Skp corresponds to the k-th PC or IC (k � 1. . .d) in time
window from p to p + R; and X̂lq to the l-th station time serie (l �
1. . .m) in time window from q to q + R. Also, μ and σ are the mean
and the standard deviations of time windows Skp and X̂lq. To
summarize all this new data, a new dxm matrix Hρ is generated
(Stage 3 in Figure 2), containing only the highest correlations from
every ρkl. Also, two new dxm matrices are obtained: a dxm array
containing the p value (time index) for the highest correlation from
every ρkl, and another dxm array containing the q value (time index)
for the highest correlation. With this information, a search for
transient information is performed for each PC or IC analyzed,
that is, for each row of matrix Hρ (Stage 4 in Figure 2).

The search procedure consists of:

1. Search for the maximum value of the matrix row and set a
threshold (relative to this maximum value) to consider all the
correlation values above this threshold in the row. All stations
with correlations below it are discarded.

2. Verify that for every result of the previous step the time index p
must be equal or “almost” equal to the q value. This is referred
to consider the effect of noise in the PCs or ICs and time series,
so the better match can be biased by a few days. Therefore,
another threshold must be defined for the difference between p
and q. If the criterion is not achieved, that result is discarded.

3. For the stations selected in the previous step, those with similar
time index values should be grouped together. This is done using
the k-means clustering algorithm, by iterating over the number of
clusters from an initial k � 2 clusters until we find a cluster whose
time indexes have a standard deviation below a given threshold,
which was set to 10 (days). The clusters that have standard
deviations above this threshold, are discarded.

4. Select the cluster with the highest number of stations. Return
to step 1 and repeat for the next PC or IC from Hρ. This ends
when it is completed for all the PCs or ICs.

5. For each PC or IC and their corresponding clusters, select the
component which cluster has the highest number of stations
and the lowest standard deviation between their time indexes
(Stage 5 in Figure 2).

6. In the selected cluster, a spatial consistency check is performed
(Stage 6 in Figure 2). We used a simple criterion to discard
stations in the selected cluster that might be far from the rest of
the stations of the cluster. This is done discarding stations that
are at a distance from the spatial centroid of the cluster greater

than twice the average distance of all stations in the cluster to
its centroid.

The resulting cluster is composed of stations that are spatially
consistent, with a time index that corresponds approximately to the
onset time of the transient, and with a duration related to the sliding
window length R. This method was tested on synthetic GNSS data
and then applied on real and documented slow slip events in Chile.

Performance Evaluation
To evaluate performance of the method, different values of R
must be applied, in order to obtain a set of different detection
results that can be evaluated through performance indexes. We
use known a priori information that includes the onset time of the
transient and the group of stations containing significant
transient information in the region of the simulated slip. Thus,
we can evaluated the error between the real onset time and the
detected onset time, as well as the inclusion of the detected
stations in the predefined group of stations. A normalized
time error index is defined by:

Terr � |ti − tid|
n

(12)

and two known indexes are also used as spatial performance
evaluation:

Precision � Tp

Tp + Fp
Recall � Tp

Tp + Fn
(13)

where ti is the onset time, tid is the onset time detected and n the
number of days of the time series. TheTerr index evaluates the error in
the transient onset time detection, normalized by the total number of
days in the time series. Precision and Recall are used in binary
classification algorithms to evaluate the performance of the results.
Since we are developing a method to detect (or not detect) transients
in time and space, we can see the problem as a binary classification, so
it is possible to evaluate the performance of our method using these
two indexes. Here, Tp is the number of true positive cases, that is, the
number of stations that contain transient information and,
consistently, are correctly detected; Tn is the number of true
negative cases, namely, the number of stations that do not contain
transient information and are not detected. Similarly, Fp is the
number of false positive cases, in other words, the number of
stations that do not contain transient information but are
detected; and Fn the number of false negative cases, that is, the
number of stations that contain transient information but are not
detected. Thus, Precision evaluates the ability to detect true positive
cases over all the positive cases detected, and Recall evaluates the
ability to detect true positive cases over all the real positive cases.

SYNTHETIC GNSS TIME-SERIES
ANALYSIS

Synthetic Data
We use synthetic and observed GNSS data in order to develop
and test the PICCA algorithm. Synthetic GNSS time-series were
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generated based on the model proposed by Carr Agnew (2013).
This model defines the position for the i-th station (i � 1. . .m) and
the j-th day (j � 1. . .n) as:

Xi(tj) � ⎡⎢⎣(tj − t0)vi + ri(tj) + yi(tj) + ci(tj) +∑Lj
l�1

αliH(tj − tli)
+∑Ε

ε�1
Giεsε(tj)⎤⎥⎦ ·Di(tj)

(14)

where v is the velocity, r is the individual noise per station, y the
seasonal component and c is the common mode noise. The first
sum corresponds to the jumps or offsets in the data, however, for
this work they were not considered in the analysis to simplify the
complexity in the use of the proposed method. The second sum
corresponds to tectonic displacements due to slips at Ε different
fault patches. We generated Green’s functions for the upper
boundary of the slab using the Slab 2.0 geometry (Hayes et al.,
2018). We use a geometry in Cartesian coordinates for the fault
extending from 18°S to 45°S. This may distort the geometry due to
the sphericity of the earth. However, the modeled slow
earthquakes extend over a fault zone ∼300 km long, so at this
scale the use of Cartesian coordinates is appropriate. The mesh
was discretized into 1,667 triangles and the surface displacements
(at each station in the continuous GNSS network) were estimated
using the TDdispHS, which is a triangular dislocation analytical
code (Nikkhoo and Walter, 2015). These static displacements
were temporally distributed to simulate slow earthquake events of
varying duration and magnitude. The function used for this
temporal distribution is given by:

s(τj) � (1 + τaj)b − 1 (15)

where we choose a � 2, b � −0.5 and the time τj varies from j �
1. . .h, where h is the transient duration in days. In these synthetic
tests, only one transient event occurring in a given time window
was used and its daily offsets were added to the other components
(Eq. 14) to generate the time series. Finally, D corresponds to a
binary function that indicates whether i-th data is available or not
(1 or 0 respectively). In order to simplify the application of the
PCA and ICA separation methods, this function was considered
to always have a value of 1. Thus, the model proposed in this work
for the synthetic series is reduced to the following form:

Xi(tj) � (tj − t0)vi + ri(tj) + yi(tj) + ci(tj) + Gisi(tj) (16)

An example of this model is shown in Figure 3, where a
synthetic signal is generated from the five components presented
in Eq. 16. The sets of synthetic data generated in this work are
based on 150 GNSS stations (Figure 4) from the Nevada Geodetic
Laboratory, and the three components of displacements (East,
North and Up) were used. We created three synthetic datasets of
daily observations, in which we used different configurations for
the duration and magnitude of a slow earthquake event. The first
data set (Transient No. 1) consists of a 3 years span (1,095 days)
time series, with a tectonic slip of 0.05 m and a magnitude ofMW

7.2, distributed in 150 days and starting on day 501 (Figures 3, 4).

The second data set (Transient No. 2), with time series of 3 years
span (1,095 days), a fault slip of 0.03 m and a magnitude of MW

7.0, distributed in 14 days and starting on day 1,082, simulating a
precursor activity of an earthquake; and in the third data set
(Transient No. 3), time series of 1-year span (365 days), with a
slip of 0.03 m and a magnitude of MW 7.0, distributed in 3 days
and starting on day 363, simulating a “fast” precursor activity.
The complexity of the velocity field together with the noise and
seasonal motions causes the 150 days-long transient signal to be
hidden in the 3 years time window (Figure 4C), even for stations
close to the transient event. So, even an obvious transient might
not be apparent with a cumulative displacement map.

Results for Synthetic GNSS Time-Series
We applied the Maximum Correlation PCA/ICA-based
algorithm to analyze the three synthetic datasets. For both
PCA and ICA, 10 components were estimated
(Supplementary Figure S2 in the Supplementary Material).
We estimated the correlation matrix ρkl (Eq. 11) between each
PC or IC time window and the original time series for each
station. Figure 5 shows an example of the matrix ρkl of
correlations for 2 cases of kl combination, stations IMCH and
MAUL, using synthetic data. In Figure 5A, the highest
correlation is obtained from PC 2 and the station IMCH time
series window that starts on day 487. However, in Figure 5B,
there are no matches between time indexes for the highest
correlations, which also are lower than the values found in
Figure 5A. The application of the method is shown in
Supplementary Figures S3A, S3B in the Supplementary
Material. In this figure, results for Transient No. 1, stage by
stage, are shown based on the block diagram of Figure 2.

To analyze the results of the PICCAmethod on synthetic data,
different values of R were considered, from 10 to 200 days, with a
step of 10 days, The minimum number of days of R was selected
considering the frequency of noise in the data. In Figure 6, two
plots are shown for each case: the left plot is a two y-axis graph,
where the left y-axis correspond to the values of the three indexes,
Precision, Recall and Time error, from 0 to 1, while the right
y-axis correspond to the component number, from 1 to 10. The
values of the indices were calculated from the spatial and
temporal results, and the plotted component is the resulting
component for each value of R. The right plot corresponds to
an histogram of these components for all the values of R. Table 1
shows the components from PCA and ICA that contain
observable transient information for every case, showing the
ability of the method to choose the component that better
represents the transient analyzed.

Transient No. 1 (Figure 6A) presents a maximum Precision
and Recall for values of R of 90 and 100 days, and between 130
and 170 days. The histogram shows that PC 2 is the most selected
component over the values of R, and is consistent to the Precision
values, demonstrating that the component selection is correct.
Also, we can observe that the time error is very low for that
component selection. In Transient No. 2 the results for PCA are
more ambiguous (Figure 6B), since PC 2 (incorrect component)
had as many matches as PC 5 (correct component). However, the
method is still capable of obtaining correct results for low values
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of R, where performance indexes present good results. For ICA
(Figure 6C), the results are more clear, the most selected
component is IC 6 and the best performances are for an R
between 20 and 70 days. For Transient No. 3, similar results
as those from transient No. 2 are obtained: PCA-based method
(Figure 6D) results in more matches with the incorrect
component (PC 3), while in ICA-based method (Figure 6E)
the most selected component is IC 2, in a correct match, specially
for lower values of R, consistently with the performance indexes.
This suggests that PCA and ICA have different performance
depending on the duration of the transient event.

From the performance evaluation, we chose the results with best
performance and summarized them in Table 2. In this table we
present details of transient event characteristics (duration, time
analyzed) and detection results such as event onset time, duration
and stations detected, for the PCA and ICA methods. For Transient
No. 1, the correlations in matrix Hρ for every PC and every station
(Figure 7A) show that the time series of stations IMCH and PECL
have the highest correlations with the PC 2, while time series from
station MAUL has low correlation (as shown in the time plot of
Figure 7B). It is noted that from matrix Hρ it is quite difficult to
visually establish the PC that effectively contains the transient.
However, matrix Hρ is calculated only in Stage 3 of the method
(see Figure 2), with 3 processing stages remaining to obtain the final
result, namely, the clustering stage to detect the groups of similar time
indexes, the component selection stage and the final spatial
consistency stage (Supplementary Figure S3B in the

Supplementary Material shows an example where these
remaining stages can be more clearly understood). Time series
with high correlation (Figure 7C) correspond to stations closer to
the area where the simulated slip has its maximum magnitude
(Figure 4B). The same analysis using ICA fails to detect
correlations that would indicate the stations close to the transient
event as well as its onset time. For Transient No. 2, results for the
ICA-based method are shown in Figure 8. Clearly, the highest
correlations are obtained from IC 6 and time series from stations
IMCH, PECL, and others. Time series from station QTAY has low
correlation, which is evident in the time plot in Figure 8B. The
highest correlation was for the window that starts on day 1,073. In
Figure 8C, time series with highest correlation clearly corresponds to
the stations in the areawhere the simulated slip occurs. In this dataset,
the PCA analysis provides similar results to ICA. The onset time of
the transient event is found as the beginning of the window with the
highest correlation. However, to estimate the duration of the event it
is necessary to find the optimal width of the time window R, which
cannot be estimated a priori. Results for Transient No. 3 are shown in
Supplementary Figure S4 in Supplementary Material.

REAL GNSS TIME-SERIES ANALYSIS

Documented Slow Slip Events
Once our method was calibrated and tested with synthetic data,
we used GNSS time series that recorded the three main transient

FIGURE 3 | Examples of synthetic GNSS time series generation. The different components that are added together to construct the time series are shown. This
example shows the EW component of a time series. Three years time series for stations SAAV (A) and OSOR (B) are shown, with an accumulated fault slip of 0.05 m
during a transient of 150 days. The transient signal corresponds to the GNSS displacement, estimated from the slip model. The resulting signal (bottom) consists of the
weighted sum of the first five components shown in each figure.
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FIGURE 4 | Horizontal synthetic displacements. (A) Triangular grid used for the generation of Green’s functions and cumulative slip distribution of a synthetic SSE,
to estimate displacements at GNSS stations (green vectors), signal that is added to the other components to generate the synthetic series. Blue points are station
locations of the network. (B) Accumulated displacements for the entire network in the 150 days of the transient duration. (C) Accumulated displacements for the entire
network in the 3 years of the time series.

FIGURE 5 | Example of correlation (ρkl, colored from -1 to 1) between PC 2 and the original time series for two stations using every time window from synthetic
Transient No. 1. In (A) the plot shows a high correlation between PC 2 and the time series of station IMCH (k � 2 and l � 61). In (B) plot shows a low correlation between
PC 2 and the time series of station MAUL (k � 2 and l � 75).
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events in Chile to assess the ability of the PICCA algorithm to
detect these events automatically. In doing so, we select three
time-windows and locations: Iquique area, spanning between
February 4, 2013 to April 1, 2014. We focused on detecting
precursory transient movements in the days before the April 1,
2014 earthquakes, which is the most prominent transient signal
prior to this event (Schurr et al., 2014); The second location is
Valparaíso, spanning between March 25, 2016 to April 24, 2017.
We attempt to detect the intense precursory activity documented
2 days before (e.g., Ruiz et al., 2017; Ruiz et al., 2018; Caballero
et al., 2021) the MW 6.9 earthquake in Valparaíso. The third
location is Copiapó, spanning between January 1, 2014 to
September 12, 2015, where a long-term transient was detected
between 2014 and 2016 (Klein et al., 2018). In the analyses, we use

only the time series measured in the EW direction. Only in the
case of the Copiapo event, we use the vertical signal. However,
within the results shown in the following section, the inferred
values for the directions not analyzed (i.e., N-S for Iquique and
Valparaiso, and additionally E-W for Copiapo) are extrapolated
from our analysis, taking the time windows detected by PICCA
and extracting the detrended displacement in that period.

Results for Real GNSS Time-Series
As well as with synthetic data, we apply the method for different
values of R, as we can see in Figure 9. Performance indexes and
the number of the resulting component selected were plotted for
all the values of R, and histograms of the selected components are
shown for each data set. Also, Table 1 is used to validate the
results.

For the Iquique data set, the PCA-based method is not capable
of generating consistent results (see Figure 9A). The component
selection failed for most of the values of R, with only one correct
result obtained for R � 20 days, which is consistent with the
transient duration. Although this result is correct and consistent
with the transient duration, the method is not reliable using PCA.
On the other hand, the ICA-based method presents a high
consistency between the correctly selected component (IC 2)
and the performance indexes (Figure 9B). The results have a high
performance for values of R from 10 to 100 days, similarly to the
results from the ICA-based method for synthetic data of 15 days
slip (Transient No. 2). In the second data set, corresponding to

FIGURE 6 | Performance evaluation for synthetic datasets. Indexes values for different window length R (left) and histogram of component selection (right). (A)
Results for 150 days slip, PCA-based method. (B) Results for 15 days slip, PCA-based method. (C) Results for 15 days slip, ICA-based method. (D) Results for 3 days
slip, PCA-based method. (E) Results for 3 days slip, ICA-based method.

TABLE 1 | Components of PCA and ICA that contain transient information, for
synthetic and real events.

Component with
transient information

Transient event PCA ICA Best performance

Synthetic No. 1 2 - PCA
Synthetic No. 2 3, 5, 6, 8 6 ICA
Synthetic No. 3 2, 4, 5, 6 2 ICA
Real: Iquique 6, 7 2 ICA
Real: Valparaíso - 2 ICA
Real: Copiapó 3 - PCA
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Valparaíso, the ICA-based method does not perform stable in
function of R (Figure 9C). Only two values of Rwere able to select
the correct component (IC 2), with only one of these values, R �
20 days, with high performance. We also can observe that the
most selected component was IC 10, for larger values of R,
however, the onset time estimated differs substantially from
the real onset time of the transient. Finally, for the Copiapó

event, most of the component selection were correct (PC 3),
obtaining a high performance, specifically for higher values of R,
consistently with the several-months duration of the transient
(Figure 9D).

From these performance results, we summarize the best results
in Table 3. For the Iquique region (see all the principal and
independent components from Iquique dataset in

FIGURE 7 |Results for PCA-basedmethod for data set No. 1. In (A), we plot the highest correlations (Hρ) for every PC and every station. In (B), PC 2 and detrended
time series IMCH, PECL and MAUL are plotted marked in (A). The red lines correspond to the detected time window, while the green line is the onset time in the
simulation. In (C), vectors of displacements in the detected time window are plotted.

TABLE 2 | Best results for synthetic time series.

Time series
length
(days)

Transient event PCA-based method ICA-based method

No. Zone Onset
time
(day)

Duration
(days)

Total
slip (m)

Onset time
detected
(day)

R
(days)

Detected stations Onset time
detected
(day)

R
(days)

Detected
stations

1 1,095 1 501 150 0.05 487 100 B914, BN08, HLPN,
IMCH, PECL, PLVP,
SAAV

- - -

2 1,095 1 1,082 14 0.03 1,074 20 ANG8, BN08,
HLPN, IMCH, PECL,
PLVP, SAAV

1,073 20 B914, HLPN,
IMCH, PECL,
PLVP, SAAV

3 365 1 363 3 0.03 345 20 IMCH, PECL, SAAV 345 20 HLPN, IMCH,
PECL, SAAV
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FIGURE 8 | Results for ICA-based method for data set No. 2. In (A), we plot the highest correlations (Hρ) for every IC and every station. In (B), IC 6 and detrended
time series IMCH, PECL and QTAY are plotted (marked in (A)). The red lines correspond to the time window, while the green line is the onset time in the simulation. In (C),
vectors of displacements in the detected time window are plotted.

FIGURE 9 | Performance evaluation for real datasets. Indexes values for different window length R (left) and histogram of component selection (right). (A) Results
for Iquique dataset, PCA-based method. (B) Results for Iquique dataset, ICA-based method. (C) Results for Valparaíso dataset, ICA-based method. (D) Results for
Copiapó dataset, PCA-based method.
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Supplementary Figure S5 in the Supplementary Material), we
can observe that the highest correlations are given by IC 2 and
time series from stations ATJN, CGTC and IQQE (Figure 10A).
The corresponding time series (red lines in Figure 10B) show the
detection window, from day 392 (March 2, 2014), including the
precursor activity that starts on day 406 (March 16, 2014). As we
can note in Figure 10C, these time series with high correlation
correspond to the stations closer to the 2014 earthquake rupture

zone and possibly where the pre-earthquake slow slip occurred.
GNSS-derived cumulative displacements show a consistent
trenchward pattern (with magnitudes>10 mm) for the
transient event window. The direction of motion associated
with this SEE is consistent with the distribution of seismicity
(extracted from NEIC, Masse and Needham, 1989) in the time
window analyzed, indicating that this SEE is related to this
seismic activity (Bedford et al., 2015).

TABLE 3 | Best results for real time series.

Time series length Transient event PCA-based method ICA-based method

Onset
time
(date/
day)

Final
time
(date/
day)

Duration
(days)

Zone Onset
time
(date/
day)

Duration
(days)

Onset time
detected
(date/day)

R
(days)

Detected
stations

Onset time
detected
(date/day)

R
(days)

Detected
stations

04/02/13 01/04/14 422 Iquique 16/03/14 16 09/03/14 20 ATJN, BN01,
CGTC, IQQE

02/03/14 30 ATJN, BN01,
CGTC, IQQE1 422a 406a 399a 392a

25/03/16 24/04/17 396 Valparaíso 22/04/17 2 - - - 04/04/17 20 BN05, QTAY,
TRPD, VALN1 396a 394a 376a

01/01/14 12/09/15 620 Copiapó 19/07/14b 730c 07/09/14 330 BN03, COPO - - -
1 620a 200a 250a

aDays from the first considered date in the time series as in Figures 10–12.
bApproximate date (Klein et al., 2018).
c2 years approximately (Klein et al., 2018).

FIGURE 10 |Results for ICA-basedmethod for Iquique data set. In (A)we plot the highest correlations (Hρ) for every IC and every station. In (B), IC 8 and detrended
time series from stations ATJN, CGTC, and IQQE are plotted (marked in (A)). The red lines in (B) correspond to the detected time window, while the green line is the onset
time of the precursor activity. In (C), vectors of displacements in the detected time window are plotted. Seismicity extracted from the National Earthquake Information
Center (NEIC) catalog (Masse, and Needham, 1989) in the analyzed period is shown by dots colored by magnitude.
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For the Valparaíso region, Figure 11A shows high correlations
between IC 2 and time series from stations BN05, VALN and
QTAY. Because of the size R of the window in relation to the
duration of the transient, the onset time detected is far before the
real onset time, however, the transient is included in the window,
thus, correctly detected. The cumulative movement in the time
window reaches 5 mm, with a consistent pattern of motions
towards a zone with high seismicity activity in the analyzed
time period. On the third real dataset, in the Copiapó region,
the Up component was analyzed, following the finding of Klein
et al. (2018). This transient is a long-term deformation (possibly
several months) that has not an accurate onset time, so we
established that the day 200 of the time series was the onset
time, only as a reference for the calculation of the time error and
compare results. In Figure 12A we can observe that the highest
correlations are given by PC 3 and time series from stations BN03
and COPO. Despite the large amount of noise and gap in the data,
as we can see in Figure 12B, the method was capable of detecting
2 stations from this region with displacements consistent with the
previous studies (Figure 12C). During the analyzed period, no
seismic activity was recorded that could be related to the
occurrence of an SSE. The horizontal displacements are of
very low magnitude, and it remains to be seen whether this is

a phenomenon related to a slow earthquake or an unusual
deformation affecting the vertical component. Whatever its
origin, our method is able to detect this signal, which affected
the Copiapó area.

Summarizing, similar results can be observed in both synthetic
and real data. For long-term transients (150 days or more), the
PCA-based method was able to find the components with
displacement information, while the ICA-based method
performs better for shorter duration events (15 days for example).

DISCUSSION

PCA and ICA techniques have already been used in GNSS data
processing. The most commonly used PCA methods are spatial
filtering to detect and remove commonmode error (CME) (Dong
et al., 2006); and the PCA inversion method (PCAIM) (Kositsky
and Avouac, 2010), which is an inversion strategy that uses the
principal components of the surface displacements to model slip
on the analyzed network. Dong’s method assumes that the CME
is present in the top few principal components of a detrended set
of stations, however, it can be easily confused with a transient
event. Bottiglieri et al. (2007) used ICA to extract periodic signals

FIGURE 11 | Results for ICA-based method for Valparaíso data set. In (A) we plot the highest correlations (Hρ) for every IC and every station. In (B), IC 2 and
detrended time series BN05, VALN and QTAY are plotted (marked in (A)). The red lines correspond to the detected time window, while the green line is the onset time of
the precursor activity. In (C), vectors of displacements in the detected time window are plotted. Seismicity extracted from the National Earthquake Information Center
(NEIC) catalog (Masse, and Needham, 1989) in the analyzed period is shown by dots colored by magnitude.
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that could contain local deformations, however, as ICA does not
provide absolute amplitudes, it fails to find a component that
directly contains a local deformation. Subsequently, Gualandi
et al., 2016 proposed a new method called variational bayesian
ICA (vbICA) that separates the sources and manages to
characterize them in a better way than the PCA and ICA
methods. Gualandi et al. (2016) method is an improvement to
traditional methods such as PCA and ICA, with multiple possible
applications, among which is the spatial and temporal detection
of transients. This raises, as a future work, the use of this
technique as an additional method to the one proposed in this
work, in search of the best solution according to the methodology
proposed here. In our proposed methodology, we do not pose any
prior assumption regarding within which component (principal
or independent) the transient event may be contained, but rather
the transient event is searched for within all the estimated
components.

The combined analysis of both synthetic time series and those
observed by GNSS instruments that recorded three slow
earthquake events, shows that the PICCA algorithm can
successfully detect transient signals affecting a network of

GNSS stations. For efficiency purposes, we used as little data
as possible, thus we analyzed only the East component of the
times series for the synthetic and GNSS-derived displacements,
except for the case of the SSEs in Copiapó, where we analyzed the
Up component to compare our results with those previously
obtained by Klein et al. (2018). As our method was able to detect
the transients using a single component, it is computationally
efficient, especially in data processing speed. Experimentally, we
find that there is a trade-off between the quality of the results and
the computational efficiency of the algorithm. Therefore, the
dimensionality of the data should be gradually increased,
evaluating the results in terms of minimizing uncertainty, over
caring too much about increasing the processing speed.

It should be noted that when using synthetic data, the
parameters we are looking for (transient events) are already
known; therefore, it is possible to evaluate the quality of our
results, and thus the performance detections of our algorithm.
That is why in this study, we analyze GNSS-derived time series
related to transient events already characterized (Ruiz et al., 2014;
Ruiz et al., 2017; Klein et al., 2018), which have different
properties (magnitude, onset time, duration, location),

FIGURE 12 | Results for PCA-based method for Copiapó data set, applied to the vertical (Up) component of the time series. In (A) we plot the highest correlations
(Hρ) for every principal component and every station. In (B), PC 3 and time series from stations BN03 and COPO are plotted (marked in (A)). The red lines correspond to
the detected time window, while the green line is the onset time of the precursor activity. In (C), vectors of displacements in the detected time window are plotted, for both
vertical and horizontal components. Seismicity extracted from the National Earthquake Information Center (NEIC) catalog (Masse, and Needham, 1989) in the
analyzed period is shown by dots colored by magnitude.

Frontiers in Earth Science | www.frontiersin.org December 2021 | Volume 9 | Article 78805415

Donoso et al. SSE Detection Using the PICCA

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


allowing us to analyze the pros and cons of our detector in such
cases. It is worth mentioning that this known information was
used exclusively for the development and evaluation of the
method, and was not included as prior information in the
detection procedure.

In order to carry out the evaluation of the quality of the results,
we defined some basic parameters based on concepts from
machine learning techniques. For instance, we used the Precision
and Recall indexes to spatially evaluate the positivity of the selected
stations, which allowed us to assess whether the stations affected by
transient events were well or poorly detected. However, an accuracy
index was not used, since for all cases, the set of stations affected by
the earthquakes was much smaller than the unaffected stations,
i.e., we had an unbalanced test set, which directly affects the
accuracy, that is defined according to the total of the test set. The
obtained results indicate that the PICCA algorithm can automatically
detect the spatial distribution of the stations affected by a transient
event and the onset time of a transient event. However, the automatic
detection of the duration of a transient event is a function of thewidth
of the time window R, which is a difficult parameter to obtain
automatically. Hence, R is the least accurately estimated parameter.
However, as seen in our analyses, the transient signal is always within
or part of the window R. The performance analysis indicates that the
method allows a straightforward finding of the region (selected by a
set of stations) affected by the transient and its approximate temporal
location.

It could be observed in Figures 6, 9 that if Precision and Recall
are high, and obviously, Time error is low, the closer R is to the
duration of the transient. In these cases the histogram will
indicate a higher frequency for the component containing the
transient. In the histograms shown in Figures 6, 9, it can be seen
that in some cases, there is a direct relationship between high
performance and the component with the highest frequency. This
suggests that by selecting the component with the highest
frequency, it will be the component that contains the most
information of the transient signal. However, there are cases
in which this criterion cannot be applied, such as the results of the
ICA-based method for long duration transients or the results of
the PCA-based method for short duration transients. Thus, PCA
and ICA have different performance depending on the duration
of the transient events. Therefore, our results demonstrate that
PCA is better for detecting long duration transients, while ICA
behaves better for the detection of shorter transients. Therefore, a
next step for further improving the PICCA algorithm,
corresponds to develop a criteria to discriminate
unambiguously (or as best as possible) between the transients
detected by PCA or ICA, i.e., to try to determine whether the
transient is of long or short duration. So far, we have shown that
the method is able to detect transients based on PCA and/or ICA
and allows us to characterize their application.

The PICCA algorithm located temporally and spatially the
three transient events previously documented in Chile.
Precursor transient events typically show a clear trenchward
signal consistent with the decoupling of a portion of the plate
interface. It appears that these decoupling events may be a
common signal before major earthquakes in Chile, which has
not been widely observed yet due to the lack of dense GNSS

networks. Transient events of a few days and low magnitude,
such as the one offshore Valparaiso, are more difficult to
characterize with our method, due to the noise contained in
the time series. Even though the transient has a greater
magnitude than the noise, it has a frequency and duration
very similar to the noise, or rather, contained in the noise
spectrum. This implies that the transient can generate high
values when correlated with time windows containing mostly
noise, without transient information. Moreover, being real
signals, they may contain signals with greater complexity for
which we have no information, and that may be the cause of
such inaccurate results. Of course, such complexities are not
present for synthetic signals. The Copiapo transient event is
well detected by analyzing the vertical series. However,
horizontal data in the selected time window for the transient
event show very low horizontal displacements (<5 mm),
making doubtful the existence of a slow earthquake and
rather indicating some seasonal effect affecting mainly the
vertical component. However, Klein et al. (2018) using more
data from GNSS campaign measurements show that there is an
effect on the horizontal displacements during this transient
event. Therefore, longer time series and denser networks of
stations registering the statistical aspects of the transient event,
that differentiate it from noise, will help to better describe this
phenomenon.

Finally, the PICCA detection algorithm can be applied to any
network of GNSS stations using data from an entire network.
The versatility of PICCA also allows the analysis of other
geodetic data, such as InSAR or tiltmeter time series. One of
the strengths of the PICCA detector is the ability to use only a
single spatial component of the GNSS time series. Thus, despite
working with less information, it is possible to obtain
satisfactory results and greater computational efficiency.
However, the idea of performing an analysis including the
three components of the GNSS positional time series
(PICCA-3D) should be further explored. Another strength of
PICCA is that by combining PCA with ICA, we can cover a wide
range of SSEs, from short transient events of a few days to long
transients of months or even years. However, the main
limitation of our approach lies in the automatic choice of R.
To our knowledge, there is no optimal and fully automated way
to find R, although the results guide how to do it in an iterative
manner. Thus, we do a separate search of R for SSE of a duration
of days and SSE of several months. As the SSE duration is
unknown, a wide range of R values must be evaluated. For slow
SSEs, we apply the PCA and search for a value of R for which the
PC has been selected the most times (from the histograms). The
same approach would be made for SSE of shorter duration,
applying ICA. Due to the low signal-to-noise ratio, transient
events of a few days and low magnitude, such as the Valparaíso
2017 SSE, are challenging to characterize. This leads us to define
a maximum resolution, i.e., the minimum number of days to
ensure a satisfactory result, depending on the magnitude of the
signal with respect to the noise. In the case of the synthetic SSE
we analyzed, the minimum number of days to detect the
transient signal was 3 days. In the case of the SSE from real
data, the smallest window was 5 days.
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CONCLUSION

The PICCA algorithm combines known techniques, such as PCA
and ICA, to simply detect slow transient events within a network
of GNSS stations. The hypothesis was that the information of a
transient, if it exists, is contained in at least one of the estimated
components, either principal or independent components. This
hypothesis was proved, since for all the cases analyzed, it was
possible to extract the spatial and temporal information of the
transient events, for at least one window of width R.

Using the information already known from the transients
analyzed, it was possible to evaluate the performance of the
method, as a function of the window width R and the selected
stations. Positive recognition indexes as Precision and Recall were
defined, plus a temporal error index. The two recognition indexes
are widely used in machine learning models to evaluate
classification results. In that sense, this method can also be
seen functionally as a classification method, since for each
station of the analyzed network a category is obtained, in this
case “transient” or “no transient”. These concepts are
fundamental for a later study to generate a model that allows
detecting and recognizing different types of transients under
supervised training from a database of synthetic and real time
series.

As a next step in this research, a way to estimate the optimal R
should be determined. It is also necessary, for a robust validation,
to performmore tests with synthetic time series, including a wider
variety of transients with different intensity, duration, onset time
and geographic location. The PICCA algorithm defines a
methodology intended to be a complementary tool for the
detection of transients in time series of geodetic observations.
We are particularly interested to use it with Chilean data, in order
to contribute in the knowledge about the subduction megathrust
physical processes governing earthquake generation. Thus,
further supporting the investigation of these natural events,
which in this country are of great importance for life and culture.
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