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Drainage basins are fundamental elements of the earth’s surface, and quantifying their
geomorphic features is essential to understand the interaction between tectonics, climatic,
and surface processes. In this study, 40 basins of the Greater Khingan Mountains were
selected for hypsometric analysis using a 90-m Shuttle Radar Topography Mission digital
elevation model. The hypsometric integral values range from 0.13 to 0.44, with an average
value of 0.30, and most hypsometric curves exhibit remarkable downward concave
shapes. This feature indicates that most drainage basins and the landscape of the
Greater Khingan Mountains are approaching the old-age development stage,
consistent with the present moderately stable tectonic activity. The spatial distribution
of the x values is characterized by unambiguously higher values on the western flank than
those on the eastern flank in the middle and southern segments of the Greater Khingan
Mountains. We interpret this as an indicator of the disequilibrium across the main divide.
The interpolation of the erosion rates and channel steepness for the catchments on both
sides of the Greater Khingan Mountains revealed westward divide migration, which is
consistent with the lower x values, a higher slope, and local relief observed along the
eastern flanks. Considering the long-term tectonic evolution pattern between the Greater
Khingan Mountains and Songliao Basin, the landscape decay and slow westward divide
migration were mostly driven by the inherited Cenozoic tectonics and precipitation gradient
across East Asia.

Keywords: Greater Khingan Mountains, geomorphology, hypsometric integral, x analysis, erosion rates, divide
migration

INTRODUCTION

Rivers and drainage basins are the most basic components of geomorphic systems, and the tectonic,
climatic and surface processes collaborate to shape their landscape. (Molnar and England, 1990;
Willett et al., 2006; Liu-Zeng et al., 2018). Common factors influencing geomorphic features include
bedrock type, tectonics, climate, and individual geomorphic events such as river capture (He et al.,
2019; Johnson, 2020). Tectonic uplift can increase the terrain slope and provide more potential
energy for river erosion. The precipitation change caused by climate change since the Cenozoic can
also affect the river erosion efficiency. Furthermore, due to the different lithologies of bedrock, the
erosion coefficient and slope index associated with the bedrock river erosion model will be different,
affecting the landform of rivers and basins (Chen et al., 2014; Su et al., 2016). Therefore, distinct
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FIGURE 1 | (A) Location of the study area in East Asia; (B) Hillshade of
90 m digital elevation model produced from the Shuttle Radar Topography
Mission, blue lines show major rivers, white lines show major drainage divides.

features will develop under the same tectonic and climatic
conditions. Since the 1990s, with the development of space
earth observation and new dating technology, analyzing the
relationship among  climate, topography, denudation,
deposition, and rock deformation in active orogenic belts by
quantitatively studying topographic and geomorphic evolution
has gradually become one of the frontiers and hot fields in earth
sciences (Lv et al., 2014; Liu-Zeng et al., 2018). Digital elevation
model (DEM) data and geomorphic parameters were usually
utilized to quantitatively reveal the morphology feature, such as
extracting the stage of geomorphological evolution within the
tectonic active area, especially in the peripheral region of Tibetan
Plateau (Zhang et al., 2008, 2011; Hu et al., 2010; Yang et al., 2015;
Yang J. et al.,, 2020; Yang R. et al., 2020; Su, et al., 2015, 2017, Li
et al,, 2019; Ma et al,, 2019). But such studies are still lacking to
understand the landscape evolution across different regions
rather than the Tibetan Plateau. However, recent researches
on geometric indexes (such as channel steepness index and x
plots) were reported on postorogenic landscapes, including the
Appalachian Mountains, the Ozark dome of the North American
Craton, and the Cape Mountains of South Africa. And these
studies have explained how knickpoint migration and
channel-hillslope coupling, strong rocks, and asymmetric
drainage divides as an important factor in tectonically-inactive
(i.e., post-orogenic) orogens for the maintenance of transient
landscapes (Gallen et al., 2011; Miller et al., 2013; Beeson et al,,
2017; Scharf et al., 2013), which is significant for us to extend our
knowledge aside from the actively-uplifting Tibet. In Northeast
Asia, the Greater Khingan Mountains are located in the Xing’an
East Mongolia block (Figure 1). Previous studies indicate that the
Greater Khingan Mountains are stable in tectonic activity and the
Quaternary tectonic deformation has been relatively weak (Deng
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etal., 2002,2003; Zhang et al., 2002,2003). What are the features of
geomorphic development in a region with a stable tectonic setting
and what geomorphic parameters can be used to express
geomorphic features of tectonically stable areas? What are the
main factors affecting the developmental characteristics? The
answers to these questions will be helpful to understand the
process and trend of long-term geomorphic evolution in
tectonically stable areas. Based on the river system of the
Greater Khingan Mountains as the breakthrough point, 40
river basins were selected as research objects using the spatial
resolution of a 90-m Shuttle Radar Topography Mission (SRTM)-
3 DEM, we have gone through some quantitative calculations,
such as slope, hypsometric integral values, x plots, and a typical
swath profile analysis to reveal the watershed geomorphic
characteristics of the Greater Khingan Mountains, a relatively
tectonically stable region in the mainland. Based on tectonic
evolution, lithology, and precipitation, the main controlling
factors of this geomorphic development are analyzed and
discussed.

GEOLOGICAL SETTING

The NNE-SSW-trending Great Khingan Mountains is located
in the western Frontier of Northeast China. It is bounded by
the North China Platform North Margin fault in the south, the
Mongolian-Okhotsk fold system in the north, and the
Nenjiang fault and the Songliao Basin in the east, which
determines the small width and steep topography of the
eastern flank of the Great Khingan Mountains. However,
the western boundary of the Great Khingan Mountains is
fuzzy, because the Great Khingan Mountains belongs to the
eastern segment of the Tianshan-Xingmeng fold system
extending from east to west tectonically, and there is no
distinct tectonic boundary to the west. Therefore, the
western flank of the Great Khingan Mountains is much
wider and slower than the eastern flank topographically
(Liu et al., 2004; Fang et al., 2008).

Tectonically, the mountains lie on the junction of the Siberian
and North China Plates and are Meso-Cenozoic mountains
developed on the Caledonian, Early Hercynian, and Late
Hercynian fold belts (Liu et al., 2004; Fang et al., 2008; Qian
et al, 2013; Xiang, 2014). In the Paleozoic, the Paleo-Asiatic
tectonic domain controlled it, and after Mesozoic, the Pacific and
Tethys tectonic domains mostly influenced it (Fang et al., 2008;
Wu, 2013). Since the Mesozoic era, the magmatic activity in the
area has been intense and Jurassic continental intermediate-acid
volcanic rocks and Yanshanian intermediate-acid intrusive rocks
have been exposed in large areas. Since the Late Mesozoic era, a
tectonic pattern dominated by NW- and NE-trending faults has
been formed and the volcanic rocks are distributed along the NE-
trending fault. The Cenozoic tectonic activities mostly inherited
the Mesozoic faults and developed multiple Cenozoic faults along
the NE direction. These inherited faults controlled the
distribution of Cenozoic volcanoes and volcanic rocks in the
Great Khingan Mountains (Wu, 2013; Yin et al,, 1980; Li et al,,
2012).
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METHODS

Topographic Analysis

We analyzed topographic features from SRTM DEM. Two types
of data, namely, SRTM-1 with a 30 m spatial resolution and
SRTM-3 with a 90 m spatial resolution, have been widely used in
the study of tectonic geomorphology (Liu et al., 2006; Wang et al.,
2013; Su et al., 2015,2016). Considering the large selection scope
of this study, SRTM-3 data can fully meet the study of
macrogeomorphic characteristics in the Greater Khingan
Mountains with a resolution of 90 m.

Slope and Local Topographic Relief

Slope and local topographic relief are macroindices of regional
topographic features. The slope is constructed by calculating
the steepest slope of each DEM pixel. That is, for each pixel, the
pixel with the greatest elevation difference near it is searched.
The slope angle can be determined according to the elevation
difference and horizontal distance between two pixels. Local
topographic relief is the elevation difference between the
highest peak and valley bottom in a specific area and
represents a river or glacier erosive capacity (Deffontains
et al., 1994, 1997; Kiithni and Pfiffner, 2001). In this study, a
square statistical window of 1 x 1 km was selected for statistical
study and the highest elevation matrix was subtracted from the
minimum elevation matrix using the grid calculation tool of
the geographic information system software (Zhang et al,
2011). We will obtain the distribution characteristics of
slope and topographic relief in the Greater Khingan
Mountains using DEM data.

Hypsometric Analysis

Hypsometric analysis constructed by Strahler in 1952 is
considered an effective tool for understanding the stages of
geomorphic evolution and geological development of river
catchment. Using Davis’ erosion cycle theory, Strahler
proposed that the drainage basins were in different
geomorphic evolution stages have different hypsometric
curve and hypsometric integral (HI) value: youth stage
which had a high hypsometric integral value (where HI >
0.6), and a convex upward hypsometric curve; equilibrium or
mature stage which had a secondary hypsometric integral
value (where 0.35 < HI < 0.6), and an s-shaped hypsometric
curve; pereplain (old) or monadnock stage which had a low
hypsometric integral value (where HI < 0.35), and a concave
upward curve (Davis, 1899; Strahler, 1952; Farhan et al,
2016).

A hypsometric curve is the curve obtained by taking the
relative area ratio (a/A) of a basin as the horizontal axis and
the relative height ratio (h/H) as the vertical axis. It is a
geomorphologic parameter used to describe the three-
dimensional volume residual rate of the surface with a two-
dimensional curve, where h is the elevation difference between
a certain elevation and the lowest elevation in the basin, H is the
maximum elevation difference, A is the cross-sectional area of the
lowest elevation of the basin (the total area of the basin projected
on the horizontal plane), and a is the cross-sectional area of a
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certain elevation of the basin (Chen, 2008; Su et al., 2015,2016).
The area under the hypsometric curve is the hypsometric integral
value. In this study, the hydrological analysis module of
ArcGIS10.3 was used to extract the water network. We
selected 20 basins on the eastern flank and 20 basins on the
western flank of the Greater Khingan Mountains. The
hypsometric curve and hypsometric integral value was
acquired using CalHypso Tools, an ArcGIS add in developed
by Pérez-Peifia et al. (2009).

x Plot

During geomorphic evolution, tectonic activity or climate change
can change the channel gradient or the river’s cross-section area,
changing the river’s erosion capacity, adjusting the river’s
hydraulic power, changing the river basin’s erosion and
transport capacity, and, finally, making the whole basin system
gradually tend to equilibrium. For bedrock channels, the
downstream erosion capacity of rivers is related to the
boundary shear stress of bedrock channels induced by flowing
water (Whipple & Tucker, 1999). The downstream erosion rate of
rivers, E, can be expressed as a function of basin area A and
channel gradient S; channel gradient S can be written in a
differential form of elevation and distance, and Formula 1 can
be obtained as follows:

n

0z
E = KA™
0

X

1

In Formula 1, K is the erosion coefficient, m is the area index,
n is the gradient index, Z is the river elevation, A is drainage area,
and x is the river’s traceability distance (i.e., the direction from the
outlet to the watershed). Elevation changes at any point of the
bedrock channel with time can be expressed as the difference
between uplift rate U and river erosion rate E, and Formula 2 can
be obtained (Flint, 1974; Howard et al., 1983).
0z oz
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When the bedrock channel is in equilibrium (i.e., dz/0t = 0)
and uplift rate U and erosion coefficient K remain unchanged in
space, the channel gradient can be expressed as Formula 3.

1
n

N G)
x |KA

By integrating Formula 3 from the outlet x, to x along both
sides of the river, Formula 4 can be obtained. To make the
integral term in Formula 4 have the same dimension as the
river-tracing distance, the reference watershed area A, is
introduced, which can take any value (Perron and Royden,
2013).
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FIGURE 2 | River basins and river profiles in equilibrium and
disequilibrium. The parameter x predicts the steady-state elevation for a given
point on a channel. The basin on the left (aggressor) has lower steady-state
elevation at channel heads and therefore drives the drainage divide

toward the basin on the right (victim) (modified from Willett et al., 2014).

By replacing the integral on the right side of Formula 4 with x
and assigning the elevation Z (x,) at the outlet of the basin to 0,
the formula can be rewritten as Formula 6.

1

Z(x) = X (6)

U
KAY
In the stream power model the channel steepness index is
defined as kg = (%)i, and the channel concave index is defined as
0 = m/n. The normalized steepness index (k,) can be used for
regional comparison when the regional mean concavity index is

determined as a reference concavity value (0,ef). Thus, Eq. 4 can
be transformed into :

kSVl
Z(X)=Z(Xo)+< 3 >x (7)
onef

From Formula 6, the elevation value of each point on the river
can be expressed as a function of x, which only depends on the
upstream basin’s distribution area, thus avoiding the data
deviation caused by elevation noise. Using elevation Z as the
ordinate and X as the abscissa, the plot is called the chi plot
(Figure 2). When A, is 1, the elevation change in the chi plot
(slope in chi plot) represents the same meaning as the normalized
steepness index obtained in the slope-area log-log plot.
Furthermore, Willett et al. proposed in 2014 that the x
difference between the two sides of the divide can be used to
analyze the dynamic migration process of the divide, explain the
large-scale river capture event, and describe the drainage system’s
evolution process. River capture changes the watershed area,
causing abnormal changes in the X value. Therefore, the
abnormal changes in the X value can reflect river capture and
divide migration. When the water system on both sides of the
divide is unbalanced, the x values of the two sides are different.
The divide will migrate from the side with the lower y value to the
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side with the higher x value. Finally, the x value difference
between the two sides of the divide decreases and the drainage
system evolution reaches equilibrium (Figure 2) (Willett et al.,
2014).

In this study, ChiProfiler (Gallen and Wegmann, 2017) was
used to calculate the x values. The parameters were set as
follows: m/n = 0.45, A, = 10 km? (the minimum catchment
area at the river source was 10 km?). To ensure that the outlet
possesses the same elevation of all basins, we selected a base
plane of 300 m. According to the analysis methods and steps
developed by Snyder et al. (2000) and Kirby et al. (2003), we
extracted the river elevation and watershed area (A) from
DEM, selected a 1km moving window for smoothing, and
calculated the river gradient (S) every 20 m vertical elevation
difference at first. Then we obtained the normalized steepness
index (k) (the y-axis intercept) and the channel concave
index(0) (the slope of the straight line) by inversion and
regression according to the formula logs = — 6 Loga +
logks. In order to compare different river channels in the
region, We determined 0,.f = 0.45 (Snyder et al., 2000; Kirby
etal., 2003). Finally, the average normalized steepness index of
each sampling basin is calculated.

1°Be Basin-Averaged Erosion Rates
To reveal the spatial distribution characteristics of erosion rates in
the structurally relatively stable region of the Greater Khingan
Mountains, we selected 12 rivers on both sides of the
north—central section of the Greater Khingan Mountains in
July 2018. We collected modern river sand samples with
diameters of 0.25-0.75 mm at their outlets. Preparations of the
samples and '’Be/’Be ratios were measured at the Xi'an
Accelerator Mass Spectrometry (AMS) Center, China. First,
the quartz minerals were extracted using an acid solution and
the heavy liquid method and treated with 1% HF and 1% HNO;
4-5 times to extract pure quartz. After purification, the 9Be
carrier was added to quartz particles. HF and HNO;
digestions were used, and HCIO,4 was used to remove fluoride.
Be was separated by an anion exchange resin and added to
ammonia to obtain Be(OH), precipitation, which was
transferred to a quartz crucible and burned in a muffle
furnace at 900°C to generate BeO, and mixed with Niobium
powder to press the target sample. Finally, AMS was used to
measure the '°Be concentration (Zhang et al., 2012a, 2012b;
Corbett et al., 2016; Dong et al., 2016; Dong et al., 2017).
After obtaining the '°Be concentration, we used Formula 8 to
calculate the basin-averaged erosion rates (Granger and Schaller,
2014; Hu et al., 2021).

C= (8)

where C is the '°Be concentration measured (atoms/ g), P is the
average '’Be generation rate in the sampling basin (atoms/g/yr),
\ is the decay constant of '°Be (4.997 x 1077/a) (Chmeleff et al.,
2010), A is the decay length of cosmic rays in rocks (~160 g/cm?)
(Gosse and Phillips, 2001; Marrero et al., 2016), and ¢ is the
basin-averaged erosion rates we must obtain. To obtain the
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FIGURE 4 | Hypsometric curves of the average topographic development curve in the Greater Khingan Mountains (A); hypsometric integral (HI) and mean values in
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basin-averaged erosion rates using the above formula, we must
first calculate the average '°Be generation rate of the sampling
basin. We calculate the 'Be generation rate of each point in the
basin through the standard generation rate of 4.0 atoms/g/yr at

high latitude and low altitude (Borchers et al., 2016) and
altitudinal scale effect (Lal, 1991; Stone, 2000) and then
obtain the generation rate of the entire basin through average
processing (Vermeesch, 2007). The topographic self-correcting
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TABLE 1 | Sample locations and corresponding basin-wide erosion rates.

aSample Lat Lon Mean Drainage 1oge 1oge Mean basin
No °N) (E) Elev (m) Area (km?) Concentration (10* at/g) Erosion rate (mm/kyr) Ksn (M®9)
W_1 49.44 121.10 836.06 208.11 38.54 + 5.64 16.37 £ 2.35 19.56
W_2 49.76 120.13 829.06 1,632.93 67.63 + 5.86 8.48 + 0.78 20.46
W_3 50.72 120.32 855.78 1,270.56 42.98 + 8.92 14.05 + 3.05 28.60
W_4 50.81 121.52 886.86 17.58 46.44 + 3.89 13.29 + 1.16 26.56
W_5 51.26 121.31 980.48 300.81 54.48 + 2.19 12.15 + 0.51 23.91
W_6 52.05 122.07 900.08 716.36 42.86 + 3.70 14.65 + 1.32 30.90
W_7 52.44 122.53 791.36 288.92 37.20 + 2.60 156.55 +1.13 28.35
W_8 52.88 122.82 653.75 343.44 39.20 + 2.01 13.12 + 0.71 24.08
E 1 47.57 122.14 708.30 1839.28 31.21 + 4.09 16.90 + 2.31 32.40
E 2 48.57 122.15 801.18 48.38 32.94 + 4.03 17.42 + 2.22 38.07
E 3 52.32 124.51 810.33 10,931.40 35.26 + 4.54 16.70 + 2.24 33.36
E_4 50.25 124.26 451.34 35.93 37.62 + 5.06 1147 + 1.64 17.17

AW- and E-depict the samples were collected from drainage basins on the western and eastern flanks, respectively.

regularity within the basin was obtained using previous tools
(Codilean, 2006).

RESULTS AND DISCUSSION

Hypsometry and Geomorphic Evolution

To quantitatively explore the stages of geomorphic evolution
in the Greater Khingan Mountains, we acquired the
hypsometric curve (Figure 3A) and HI index (Figures
3B,C) of 40 basins. The HI values range from 0.13 to 0.44,

with an average of 0.30. From Figure 3, the HI values of most
basins are less than 0.35. Only some basins on the southeastern
and northwestern flanks approach 0.4, and the basins’
hypsometry curves are concave, with only some basins
being s-shaped.

We analyzed the average topographic development
characteristics in the Greater Khingan Mountains following
the definition of the hypsometry curve (Figure 4). As shown
in Figure 4 the hypsometry curve of the Greater Khingan
Mountains is a concave upward curve, it is similar to the
hypsometry curve of most basins. The average HI value of
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FIGURE 6 | Erosion rate of the Greater Khingan Mountains, basin colors
show erosion rates calculated from channel steepness, green lines are basin
boundaries and dots are sample locations. Black lines are the main drainage
divides.

both flanks in the Greater Khingan Mountains is 0.30. HI values
indicate the volume residual rate of the basin under the joint
influence of tectonism and denudation. So we proposed that the
geomorphic evolution stage of the Greater Khingan Mountains is
in a pereplain (old) stage. Because the Greater Khingan
Mountains are in the inland, affected by West Pacific tectonic
domain in the Cenozoic; however, because it is far away from the
subduction zone, it has a weak tectonic movement response. In
addition, the surface water system is developed with strong
weathering.

Significance of x Values for Watershed

Stability
The spatial distribution of the X value in the Greater Khingan
Mountains (the solid black line for the main divide) was shown in

Geomorphology of Greater Khingan Mountains

Figure 5A. No obvious change in the x value occurs from the north
to the south in the eastern flank, but the x value in the western flank
is lower in the north and higher in the south. Across the main divide,
the x values are higher in the western flank than in the eastern flank
and the difference in the two flanks increases gradually from the
north to the south. The difference in the X values across the main
divide indicates that the river system is in a state of disequilibrium
and divide migration and river capture must reorganize the river
system to achieve a state of equilibrium.

In the chi plot (plotted with elevation Z as the ordinate and x as
the abscissa), the longitudinal profile of equilibrium river channels
displays a straight line passing through the origin (Figure 2). Due
to local structural and climatic disturbances, such changes can be
identified from the chi plot to observe whether the river
longitudinal profile deviates from the steady linear state (Willet
tal. 2014). We selected a typical area in the southern Greater
Khingan Mountains, with a maximum difference in x values across
the main divide. We then made a chi plot of the Taoer River and
Halaha River (Figure 5D). As seen in the graph, the Taoer River
and Halaha River channels present near-linear profiles, indicating
that the two rivers are in a quasiequilibrium state, coinciding with
the hypsometric analysis results. The HI value of the Taoer River is
0.29 and that of the Halaha River is 0.26. However, the x value of
the Taoer River is less than that of the Halaha River on the same
elevation. According to Willett et al (2014), channel x values can
predict divide migration. When there is a difference in x values on
both sides of a divide, a difference in erosion occurs on both sides,
and the side with a small value has a high erosion rate, forcing the
divide migrate to the other side (Willett et al,, 2014; Yang et al,
2015; Beeson et al., 2017; Mudd, 2017). Therefore, the main divide
in the middle and south sections of the Greater Khingan
Mountains is unstable and will migrate westward.

Erosion Rates in the Greater Khingan

Mountains

Basin-averaged erosion rates calculated based on '’Be
concentrations in our study are from 848 + 0.78 to 16.90 +
231 mm/kyr, with a slight difference between basins (Table 1;
Figure 6). The 12 basins are mostly distributed in the middle and to
the north of the Greater Khingan Mountains, including 8 basins in
the western flank, with an average erosion rate of 13.33 mm/kyr,
and 4 basins in the eastern flank, with an average erosion rate of
15.63 mm/kyr. Our results revealed that the basin-averaged erosion
rates of the eastern flank of the Greater Khingan Mountains are
slightly higher than that of the western flank.

We interpolated the erosion rates and channel steepness for
the catchments on both sides of the Greater Khingan Mountains.
Figure 7 shows a positive correlation between the erosion rates
and channel steepness.

Probable Drivers of Divide Migration

The present geomorphic form is the result of the interaction of
internal and external geological forces in various geological
historical periods. Two phases of topographic evolution in the
Greater Khingan Mountains existed since the Cenozoic,
especially the early period of the Late Pleistocene and the late
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FIGURE 7 | Linear and nonlinear fitting between catchment-averaged
erosion rates (y-axis) and steepness indices (x-axis). The results of fitting
indicate a better relevance in linear fitting than nonlinear fitting.

period of the Early Pleistocene tectonic uplift shape the main
landform of the Greater Khingan Mountains today. (Geology and
Mineral Resources Bureau of Inner Mongolia, 1991). During
geomorphic evolution, climate and surface erosion cannot be
ignored and have the same significance as tectonic movements in
both intensity and quantity. In this study, the geomorphic
evolution stage of the Greater Khingan Mountains is in a
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pereplain (old) stage according to the result of the hypsometry
analysis. However, from the spatial distribution of the x values,
the main divide of the southern Greater Khingan Mountains is
unsteady and will migrate westward. However, the models
applied to tectonic research using these geomorphic
parameters are imperfect. They cannot integrate tectonic
activity, climate precipitation, lithologic characteristics, and
many other factors and cannot distinguish the influence of
varied factors on divide migration only from the current
geomorphology finally formed (Chen et al., 2014). Therefore,
based on topographic factors extracted from the Greater Khingan
Mountains, this study comprehensively analyzed regional
topographic characteristics, precipitation conditions, and
lithologic characteristics to obtain the driving factors of the
Greater Khingan Mountains divide migration.

Regional Terrain

To achieve regional terrain information in this study, based on
DEM data to calculate the slope and local topographic relief
(Figures 8A,B), the results showed no obvious change in the
spatial distribution of the slope and local topographic relief in the
eastern flank, slightly higher in the middle. The slope and local
topographic relief of the western flank are high in the north and
low in the south.

To further describe and compare the general topographic feature
differences between the eastern and western flanks of the Greater
Khingan Mountains as well as the northern, middle, and southern
sections, two longitudinal swath profiles (50 km wide and 1,350 km
long) and three transverse swath profiles (100 km wide and 600 km
long) were established (Figure 1). For each swath profile, the
minimum, mean, and maximum elevations were extracted in a
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FIGURE 8| Slope map of the Greater Khingan Mountains (A). Local topographic relief map of the Greater Khingan Mountains (B). Average annual rainfall map of the
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50 km-wide rectangular swath and projection in a vertical plane in
the midline around the rectangular section (Figures 9A,B).
Similarly, along the transverse swath profiles, within a 100-km-
wide corridor with profile extraction minimum and average and
maximum elevation (Figure 10). In the swath profile, the maximum
elevation information represents the highest mountain summit of
river erosion residue in the rectangular area, whereas the minimum
elevation information represents the lowest river erosion residue in
the rectangular area (Li et al., 2006; Zhang, 2006). The river cutting
depth is the height difference between the highest peak elevation and
the lowest riverbed left in the river erosion. The results showed that
the three transverse swath profiles display a small topographic
difference in the eastern flank in the northern section and no
significant difference can be observed with respect to the depth
of the river cutting between the two flanks. The topographic relief
and river cutting depth of the eastern flank in the middle and
southern sections are larger than those of the western flank. A
quantitative comparison of the slope and local relief of the eastern
and western flanks is presented in Figures 9C,D. The results showed
that the slope of the eastern flank of the Greater Khingan Mountains
ranges from 6° to 10%; the northern part is lower, whereas the
southern part is slightly higher. The slope of the western flank is
between 1" and 67 the northern section is higher, whereas the
southern section is significantly lower. The local topographic
relief of the eastern flank of the Greater Khingan Mountains is
approximately 600 m, the northern section is lower, and the middle
and southern sections are slightly higher. The local topographic relief
of the western flank is between 100 and 550 m, the northern section
is higher, and the middle and southern sections are
significantly lower.

Studies have shown that the average slope and local
topographic relief predict the erosion rate in midlatitude
basins. The mean slope, local topographic relief, and erosion
rate have a linear relationship. Therefore, a higher local
topographic relief and steeper slope might result in higher
erosion (Ahnert, 1970; Safran et al., 2005; Pan et al., 2010).

Although the basin erosion rate measured using cosmogenesis
nuclide 10Be did not cover the entire study area, the correlation
analysis between the average erosion rate of the 12 basins
obtained and the average channel steepness index displayed a
strong linear correlation (Figure 7). Therefore, the erosion rate of
the 40 basins in the study area can be calculated according to the
average channel steepness index of the basin (Figure 6). The
spatial differences in the slope, topographic relief, and erosion
rates of the Greater Khingan Mountains are consistent. The slope,
topographic relief, and erosion rates in the middle and southern
parts of the Greater Khingan Mountains are higher in the east and
lower in the west. Furthermore, from the swath profiles, the
southern river in the eastern flank has a lower local erosion base
level (the river in the eastern flank from the north to the south
into the Heilongjiang, Nenjiang, and Liaohe rivers). However, all
rivers in the western flank into the Erguna River, the upstream of
the Heilongjiang River. Nenjiang River, and Liaohe River flow
from north to south, whereas the Erguna River flows in the
opposite direction. Therefore, obvious differences are observed in
the elevation of the rivers flowing into the main river from the
eastern and western flanks of the same divide, causing higher
erosion of the eastern flank in the middle and south sections.

Precipitation

Rivers are the most active geological external forces shaping the
landform and changing the appearance of the earth. Precipitation
conditions are related to the runoff of rivers, which can change the
hydrological conditions and sediment supply of river basins and,
therefore, the strength of river erosion capacity (Whipple, 2009; Chen
etal., 2014). In this study, WorldClim2 data were used to characterize
rainfall characteristics in the Greater Khingan Mountains and discuss
its impact on divide migration. WorldClim2 is based on data from
9,000 to 60,000 weather stations from 1970 to 2000 using thin-plate
splines. High-precision global precipitation and temperature data are
interpolated using elevation, distance to the coast, and three
covariables (maximum and minimum table temperatures and
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cloud cover) derived from satellites as variables, the highest spatial
resolution meteorological data in the Greater Khingan Mountains
currently (https://worldclim.org/; Ficka and Hijmans, 2017).

From Figures 8C, 9E, 8F, the average annual precipitation is high
in the north and low in the south. No significant difference occurs in
the average annual precipitation on the eastern and western flanks of
the northern section, and the average precipitation is 450-600 mm/a.
The average annual precipitation on the western flank of the middle
and southern sections is significantly lower than that on the eastern
flank. The average precipitation on the western flank of the middle
and southern sections is 200-400 mm/a. The annual precipitation on
the western flank of the southern section is 200-300 mm/a. The
average precipitation on the eastern flank of the south-central section
is 400-550 mm/a. Therefore, the main divide of the south—central
section of the Greater Khingan Mountains coincides with the equal
precipitation line of 400 mm. To the east of the divide is a semihumid
monsoon climate zone, and to the west is a semiarid continental
climate zone. This is consistent with the spatial distribution of the x

Geomorphology of Greater Khingan Mountains

value. The annual average precipitation gradually reduced from the
north to the south. The x value gradually increased from the north to
the south, and the average annual precipitation and x value
differences also increase gradually from the north to the south.
The average annual precipitation is the dominant factor of
different erosions across the divide in the middle and southern
Greater Khingan Mountains. However, studies have highlighted
that the change in precipitation in mountainous areas is positively
correlated with river channel concavity, that is, channels with high
erosion rates caused by different rates of precipitation often have high
concavity (Bookhagen and Burbank, 2006; Zaprowski et al., 2005;
Schlunegger et al., 2011). Our results show that the channel concave
values on the eastern and western flanks of the Greater Khingan
Mountains are similar without significant differences (Figure 11).
Although there are significant differences in the precipitation on the
eastern and western flanks of the Greater Khingan Mountains, the
maximum precipitation on both flanks is no more than 600 mm/a,
which is much smaller than the average annual precipitation observed
in previous studies, such as in the Southern Himalayas, the Eastern
Cordillera, and the eastern American high plains (Bookhagen &
Burbank, 2006; Zaprowski et al., 2005; Schlunegger et al., 2011). We
propose that the prerequisite for a positive correlation between
channel concavity and precipitation is that precipitation in this
region reaches above a threshold, although there is no exact value
of this threshold in existing studies. Therefore, more abundant
precipitation on the eastern flank of the middle and southern
sections of the Greater Khingan Mountains promotes the
westward migration. Because the Greater Khingan Mountains are
in a tectonically stable region, tectonic may be the main factors
influence the erosion, relief, and divide migration in early time, and
precipitation has gradually become the main factor. In addition,
precipitation is the current state, and it is difficult to recover the past
climate conditions quantitatively, so the contribution of precipitation
in a long time scale is not excluded.

Lithology

Under the same tectonic background and precipitation conditions,
rocks with different mineral compositions have different erosion
resistances. Due to the lack of measurements of the strength of
various rock types in the field, we used rock types formed in different
ages to discuss their influence on erosion rates. The strata in this study
area include Precambrian metamorphic basal layers dominated by
gneiss, granulite, and schist; Paleozoic shallow micrometamorphic
volcanic sedimentary rock dominated by schist, sand-slate, marble,
and andesite; and Mesozoic, Jurassic, and Cretaceous strata
dominated by continental intermediate-acidic volcanic rocks and
continental clastic rocks. Jurassic strata of the Mesozoic are the most
widely outcropped, mainly distributed on both sides of the main ridge
of the northern and the eastern flanks of the middle and southern
sections of the Greater Khingan Mountains. The Cenozoic Neogene
strata are mainly exposed in the western flank of the middle and
southern sections, such as the Hailar Basin, and are scattered in other
areas with semicemented clastic and basic volcanic rocks. The
Quaternary strata are well developed in the region, mainly
distributed in Xing’an, Zhelimu, and Hulunbuir. The lithology is
dark clay, moraine-glacial sediments, and lacustrine strata dominated
by red clay and subclay (Liu, 2004; Geology and Mineral Resources
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Bureau of Inner Mongolia, 1991; Li, 1996). Furthermore, strong
magmatic activities occur in this study area, including the out outings
of Xingkai, Caledonian, Varician, and Yanshanian rocks. Yanshanian
and Hercynian granitic rocks are mainly distributed on the eastern
and western flanks of the northern section, and the corresponding
ultramafic rocks are scattered in the area (Figure 12).

To discuss the influence of lithologic characteristics on divide
migration, we focused on analyzing the lithologic characteristics of
the area using the largest x difference between the two sides of the
middle and southern divides (Figure 5A). In this region, no
significant spatial change occurs in the x values of the eastern
flank but the lithology changes. For example, the E13 basin is
mainly Jurassic medium acidic volcanic rocks, whereas the E10
and E11 basins are not only Jurassic medium acidic volcanic rocks
but also pre-Mesozoic strata and granites. In the E13 and W16 basins
on both sides of the divide, the X value of the E13 basin on the east
side is significantly lower than that of the W16 basin on the west side;
however, the lithology of the W16 basin is not only Jurassic medium
acidic volcanic rocks but also Neozoic semicemented clastic and
basic volcanic rocks. From the analysis of mineral stability, the
erosion resistance of basic volcanic rocks is weaker than that of
medium acidic volcanic rocks. However, the semicemented clastic
rocks have a young sedimentary age, loose rock cementation, and
low erosion resistance. If the lithologic characteristics of the region
are the main factors affecting the erosion rate, the x value of the
eastern basin should be significantly higher than that of the western
basin; however, it is the opposite. This phenomenon indicates that
lithology is not the main factor controlling the X values but other
factors control the migration of the divide in the middle and
southern sections of the Greater Khingan Mountains.

In conclusion, the divide migration in the middle and southern
Greater Khingan Mountains is mainly controlled by topography,
especially slope and local topographic relief, whereas precipitation
conditions push and promote the divide migration. No obvious
evidence that bedrock lithology significantly affects the divide
migration exists. The terrain is mainly formed by tectonic uplift,
although, based on the results of the hypsometric curve and HI

index, the Greater Khingan Mountains of today’s structure is
relatively stable. However, the development of a river terrace
series and an uplifting amplitude survey study shows that the
eastern flank of the Greater Khingan Mountains in the southern
uplift earlier and at a greater rate than the western flank in the
Pleistocene (Chen, 2012; Wu, 2013). This is due to the different
response times of different elements in the basin to the change in the
uplift rate; furthermore, the channel profile is the most sensitive,
which is used to detect the impact of tectonic uplifts on
geomorphology at the Holocene scale. Slope, divide, and the
watershed area are the next factors most sensitive to the uplift
rate (Duvall et al., 2004; Whipple et al., 2007; Burbank&Anderson,
2011; Beeson et al, 2017; Pan, 2019). Therefore, although the
geomorphic evolution stage of the Greater Khingan Mountains is
in a pereplain (old) stage, the divide of the midsouthern sections will
continue to migrate westward until it reaches equilibrium
(Figure 13).

CONCLUSION

Based on the DEM-based topographic analysis and '’Be basin-
averaged erosion rate measurement results of the Greater
Khingan Mountains, we have reached the following conclusions.

i) The geomorphic evolution stage of the Greater Khingan
Mountains is in a pereplain (old) stage. The tectonic
activity of this area is stable, and there is no obvious
difference between the eastern and western flanks.

ii) The spatial distribution of x values is generally higher in the
west flank and low in the east flank and high in the south and
low in the north in case of the western flank, indicating that the
river system in the Greater Khingan Mountains has not been
adjusted to achieve equilibrium; further, the main divide in the
middle and south sections will migrate westward slowly.

iii) The slow westward divide migration is probably in response
to the faster uplift rate at the eastern flank during the
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Pleistocene, and plentiful rainfall is a contributing
factor now.
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