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Correlations of rock-physics model inputs are important to know to help design informative
prior models within integrated reservoir-characterization workflows. A Bayesian framework
is optimal to determine such correlations. Within that framework, we use velocity and
porosity measurements on unconsolidated, dry, and clean sands. Three pressure- and
three porosity-dependent rock-physics models are applied to the data to examine
relationships among the inputs. As with any Bayesian formulation, we define a prior
model and calculate the likelihood in order to evaluate the posterior. With relatively few
inputs to consider for each rock-physics model, we found that sampling the posterior
exhaustively to be convenient. The results of the Bayesian analyses are multivariate
histograms that indicate most likely values of the input parameters given the data to
which the rock-physics model was fit. When the Bayesian procedure is repeated many
times for the same data, but with different prior models, correlations emerged among the
input parameters in a rock-physics model. These correlations were not known previously.
Implications, for the pressure- and porosity-dependent models examined here, are that
these correlations should be utilized when applying these models to other relevant data
sets. Furthermore, additional rock-physics models should be examined similarly to
determine any potential correlations in their inputs. These correlations can then be
taken advantage of in forward and inverse problems posed in reservoir characterization.
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INTRODUCTION

Correlations of input parameters in a rock-physics model is always of concern, particularly when amodel
contains multiple inputs. Analysis of those correlations, however, is often performed in trial-and-error
fashion when visually fitting a model to data. In doing so, any quantitative links among the input
parameters could be overlooked inadvertently. The purpose of this work is to identify significant
correlations among model parameters. This process is done for established rock-physics models. Three
are pressure-dependent models, and three are porosity-dependent models, each used in conjunction with
well characterized and controlled laboratory data. The model parameters are tested within a Bayesian
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framework where the models drawn from the posterior are used to
identify most likely parameters or combinations of parameters when
quantitatively fitting the models to data. This aspect is important
within the context of reservoir characterization, and the analyses
demonstrated here would allow us to define informative prior
distributions within relevant workflows.

Many examples consist of a Bayesian formulation or framework
to estimate rock properties and/or facies from seismic or other
geophysical data. A short list includes Buland and Omre (2003);
Spikes et al. (2007); Bosch et al. (2010); Rimstad et al. (2012); Ray
et al. (2013); Kemper and Gunning (2014); Jullum and Kolbjørnsen
(2016); de Figueiredo et al. (2017); Grana et al. (2017); de Figueiredo
et al. (2018); Grana (2018); de Figueiredo et al. (2019); Grana (2020);
and Nawaz et al. (2020). In all these efforts, the end goal is to obtain
an estimate and the associated uncertainty of some facies and/or
rock-property distributions from subsurface data. Moreover, these
efforts must address disparate spatial scales and measurement types
that must be reconciled to provide the estimate and associated
uncertainty of subsurface rock properties (e.g., Ba et al., 2013; Pang
et al., 2019; and ; Pang et al., 2021). These methods include the
explicit use of a rock-physics model within the formulation or not
(e.g., Avseth et al., 2005; Mavko et al., 2020); and Grana et al., 2021).
The work we present here is different and unique because it directly
examines the fit of rock-physics models to controlled laboratory data
with the intention to determine correlations among the input
parameters. Prior and posterior models are the underpinning of
the approach, but the related information regarding linkages among
the parameters is the primary emphasis. The results suggest which
model might be easier or better to use than the others in a qualitative
sense. Importantly, the results include previously unknown
correlations for the three pressure-dependent and three porosity-
dependent rock-physicsmodels under consideration. This work is by
nomeans exhaustive in terms of the examination of multiple models
or data sets. The results for the rock-physics models studied here
should be used with other relevant data. Furthermore, the method
should be applied to othermodels and appropriate data to determine
correlations among their inputs.

Conventional inversion techniques based on local
optimization methods are prone to being trapped in local
minima of the objective function closest to the starting model.
In those techniques, uncertainty is estimated using the covariance
matrix computed at the optimal (local) model. First, this
approach gives incorrect estimates when the optimization
becomes trapped in one of the local minima. Second, even if
the optimization can find the globally optimal solution,
covariance-based uncertainty estimates would be incorrect in
that the uncertainties would be underestimated (e.g., Sen and
Stoffa, 1996). The approach taken here is a sampling approach in
which we carry out exhaustive sampling. Therefore, our approach
is not prone to becoming trapped in local minima.

MATERIALS AND METHODS

Data
We use the published data set from Zimmer (2003) and Zimmer
et al. (2007a); Zimmer et al. (2007b), comprised of clean, dry,

unconsolidated sands. Laboratory measurements consisted of
compressional-and shear-wave velocities and porosity as a
function of pressure for 15 different samples. Eight of those
samples were reconstituted sands, named Gulf of Mexico,
Pomponio, Santa Cruz Dry 1, Santa Cruz Dry 2, Sa Big Dry,
SA Small Dry, Galveston Bay, and Merritt. Figure 1A is a plot of
all those data sets of P-wave velocity (VP) as a function of
pressure (P). The velocity of each sample increases with
increasing pressure, but at a different rate. Of the eight
samples, we selected two, the Galveston Bay (black points in
Figure 1B) and Merritt samples (gray points), to demonstrate the
pressure-dependent version of this method. The reason to choose
these two data sets is that they represent two distinctVP-P trends.

FIGURE 1 | (A) Plot of P-wave velocity as a function of pressure for all the
reconsolidated sand samples. The two used in the study here are the
Galveston Bay data (black points) and the Merritt data (gray) points. In (B) the
Galveston Bay and Merritt are replotted and overlain on them are the
Robertson model (solid black line), Fam-Santamarina (red), and Hardin-
Blandford (green). All three have a similar qualitative fit to the two data sets.
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Figure 1B contains data from those two samples plus models
reproduced from Zimmer et al. (2007a).

For the porosity-dependent models, we use all data from all
reconstituted sands and glass beads. Figure 2A shows the
compressional modulus (M) as a function of porosity (ϕ) for
all 15 samples. The glass beads were of various sizes and size
distributions (GB stands for glass beads). The terms Big, Small,
and Tiny refer to sizes of the glass beads, GB35 stands for 35%
Tiny mixed with larger bead sizes, and Broad means a wide range
of bead sizes. Figure 2B is the same data as in Figure 2A except
the color code is the log10 of pressure. Last in Figure 2C, all the
data are plotted in gray. For the Bayesian and sensitivity analysis,

we select a subset of the data. That subset of data used for each
rock-physics model was slightly different (red, green, and blue).
In addition, we select two different subsets that represent different
pressures (lower red, green, and blue points versus the upper
ones). We refer to the lower set as data set 1 and the upper as data
set 2.

Models
Pressure-Dependent Models
Two models are used to represent VP as a function P for dry
measurements (Zimmer et al., 2007a). The Robertson et al. (1995)
model (R) is

VP � (A − Be)(P

pa
)

n/2

. (1)

In Equation 1, P is the measured effective pressure (equal to
confining pressure for the dry samples), pa is the atmospheric
pressure, e � ϕ/(1 − ϕ), the void ratio, where ϕ is the measured
porosity. The fitting parameters are A, B, and n.

The Fam and Santamarina (1997) Model is

VP � OCRkS(P

pa
)

n/2

. (2)

For this model, the pressures are defined as the same as in Eq.
1. The OCR term is the over-consolidation ratio, defined as
OCR � max(P)/P. Fitting parameters are S and the two
exponents k and n.

The Hardin and Blandford (1989) model (HB) in Eq. 3,

M � OCRkSp1−n
a Pn, (3)

is a function of elastic moduli rather than velocity. These moduli
could be the bulk, shear, or compressional moduli. The terms of
pressure and OCR are defined as in Eq. 2. The fitting parameters
are S, k, and n.

Porosity-Dependent Models
Three rock-physics models were used in the Bayesian analysis.
The first two were published in Zimmer et al. (2007b). Those two
models are the modified Reuss

1
M

� fdf

Mdf
+ fQtz

MQtz
(4)

and modified Hashin-Strikman (HS) models

KHS � Kdf + fQtz

(KQtz − Kdf)−1 + fdf(Kdf + 4
3μdf)−1

(5)

μHS � μdf +
fQtz

(μQtz − μdf)−1 + 2fdf(Kdf+2μdf)
5μdf(Kdf+4

3μdf)
(6)

In Equation 4,M is the effective elastic modulus (bulk, shear,
or compressional), Mdf is the dry frame elastic modulus
(measured) at the current pressure, and MQtz is the elastic
modulus of quartz mineral. The fraction of the dry frame

FIGURE 2 | (A)Measured data (compressional modulus M) as a function
of porosity color-coded by sample name. Sa refers to Santa Cruz, and GB
refers to glass bead followed by the size. (B) The same data as in a) except
color-coded by the log10(P) for all 15 samples. For the rock-physics
models used in the Bayesian analysis, slightly different subsets of the data are
necessary to select. An initial model is visually fit, and then data within a 3% of
that model are selected to use with that particular model (modified Reuss,
modified Hashin-Strikman, and soft sand). We use two subsets (C) that
correspond to different pressures and the different models.
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modulus is fdf � ϕ/ϕ0. The ϕ0 term is the porosity specifically
from the current pressure but from the highest porosity sample,
which is the Santa Cruz Dry 2 sample (Figure 2A). Last is the
quartz mineral fraction, fQtz � 1 − fdf. Two parameters
(Mdf and ϕ0) are the fitting parameters that are varied in the
Bayesian analysis. These two parameters are measured as well,
but single values of them correspond to one individual model.
Therefore, the measured values are treated as mean values with
uncertainty around them.

Equations 5, 6 are KHS and μHS, the effective bulk and shear
moduli, respectively, and the equations contain terms equivalent
to those in Eq. 1 except for bulk and shear moduli instead of
compressional modulus. Three terms are the fitting parameters
for this model (Kdf, μdf, and ϕ0).

The third model used for porosity and pressure is the soft-sand
model (Dvorkin and Nur, 1996), which was not used in the
Zimmer et al. (2007b) paper. We introduce it here to demonstrate
the effects of additional input parameters, beyond the number in
the modified Reuss and Hashin-Strikman models. The soft-sand
model combines Hertz-Mindlin (Mindlin, 1949) contact theory
with modified Hashin-Strikman formulations to represent
unconsolidated sands. The Hertz-Mindlin theory expresses the
effective bulk and shear moduli,KHM and μHM, respectively, for a
dry random pack of identical spherical grains at a hydrostatic
pressure, P.

KHM � [C2
n(1 − ϕc)2μ2
18π2(1 − ])2 P]

1
3

(7)

μHM � 5 − 4]
5(2 − ])[

3C2
n(1 − ϕc)2μ2
2π2(1 − ])2 P]

1
3

(8)

Included in these equations are the mineral shear modulus
and Poisson’s ratio (μ and ]), the coordination number or
average number of grain-to-grain contacts (Cn), and the
critical porosity (ϕc), the porosity at which a shear modulus
can be sustained. These equations for the soft-sand model are
used to formulate a type of dry rock, modified Hashin-Strikman
lower bound for porosities from zero to ϕc and separate
calculations at ϕc for the effective elastic moduli. In the

calculations at ϕc, an additional term arises called the shear
stiffness reduction (SSR), which compensates for no friction in
the spherical grain pack. Refer to Dvorkin and Nur (1996) for
these details. The fitting parameters for the soft-sand model are
the P, ϕc, Cn, and SSR.

Bayesian Analysis
We reproduced a subset of the models published in Zimmer et al.
(2007a). We used the Galveston Bay sand sample and fit Eqs 1–3
using the published values for the fitting parameters (Table 1).
Then we applied Bayesian analysis to determine which inputs
into the rock physics model have correlations among them. This
approach includes a quantitative match of model to data. More
specifically (i.e., Ulrych et al., 2001; Tarantola, 2005; Sen, 2006;
Sen and Stoffa, 2013) we compute the likelihood (l(d|m)) with a
given prior (p(m)), whose product is proportional to the posterior
probability distribution (σ(m|d)) or PPD in Eq. 9

σ(m|d)∝ l(d|m)p(m), (9)

Where d is the data vector, and m is the model. The likelihood
function is

l(d|m)∝ exp(−E(m)), (10)

Where

E(m) � (d − g(m))TC−1
D (d − g(m)), (11)

In Equation 11, g(m) is the forward modeling operator on the
model, and CD is the data covariance matrix (assuming Gaussian
noise). The operator g(m) is a rock physics model in this case,
where the inputs into that model are contained in m as a vector.

TABLE 1 | Published values (Zimmer et al., 2007a) of the model parameters for the three pressure-dependent models for the Galveston Bay sample (GB) and the Merritt
sample (M).

Robertson Fam-Santamarina Hardin-Blandford

A (m/s) B (m/s) n S (m/s) n k S (MPa) n k
GB 1,340 1,160 0.369 437 0.229 0.038 1,450 0.445 0.108
M 280 -466 0.510 599 0.221 –0.031 3,522 0.469 –0.019

TABLE 2 | Mean values for the multivariate random Gaussian prior models for data set 1 and data 2 for the three porosity-dependent rock-physics models.

Modified Reuss Modified HS Soft sand

Parameter ϕ0 M (GPa) ϕ0 K (GPa) μ (GPa) P (MPa) ϕc Cn SSR
Data set 1 0.424 1.095 0.424 0.669 0.319 1.280 0.38 6 3
Data set 2 0.406 2.673 0.406 1.503 0.878 9.970 0.38 6 3

TABLE 3 | Number of data points selected for each data set and for each rock-
physics model.

Model Data set 1 Data set 2

Modified Reuss 62 48
Modified HS 84 77
Soft sand 125 96
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The data-model comparison in Eq. 11 is equivalent to a least-
squares fit of the model to the data. Equation 12 is the Gaussian
prior where mprior is the prior model mean, and CM is the prior
model covariance matrix.

p(m)∝ exp [(m −mprior)TC−1
M(m −mprior)] (12)

The number of model parameters (three) is small for each of
the models. Therefore, we find it convenient to sample
exhaustively from the PPD rather than Monte Carlo Markov
chain sampling. In other words, we draw many samples from the

prior and evaluate the PPD for each model using Eq. 9. None of
the rock-physics models are linear. Accordingly, the likelihood
function becomes non-Gaussian, so an analytical solution for the
posterior cannot be computed.

For the pressure-dependent problem, a trivariate Gaussian
random distribution is used as the prior pdf. However, a sufficient
number of models must be drawn, but the time to run a sufficient
number of models must be considered. The number N � 300 was
determined via trial and error to be sufficient that did not require
significant computation time, and this size was used for the three
rock-physics models. In addition to the size of the model, the prior

FIGURE 3 | Bayesian analysis results for the Robertson model. In (A,B) are the bivariate prior model histogram and posterior histogram, respectively, for the joint
A-B pair. The peak of the prior model histogram is at the mean, but the isolated peak in the posterior does not fall at the mean. The model and posterior bivariate
distributions for the A-n pair are in (C,D), respectively. The prior model is a normal distribution by design, but the posterior indicates a very narrow range for n with and
wide range of A values. The B-n pairs in (E,F) resemble those in (C,D).
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meanmodel and covariancematrix are user defined. Themeans were
set to the values inTable 1. The covariancematrices, however, had to
be tested and determined via trial and error. This process was
necessary to ensure that the collection of computed rock-physics
models fell reasonably close to the data andwithout significant scatter
among them. The posterior is a trivariate histogram of size 300 ×
300 × 300. That size comes from calculating a model for every
combination of inputs. We analyze bivariate joint histograms of the
prior model and posterior, so any pair of values must be considered
together rather than one conditional upon the other.

The number of model parameters for the porosity-
dependent rock-physics models is two, three, and four,

where each is a relatively small number. We again sampled
exhaustively the PPD. The prior model is a multivariate
Gaussian random distribution for each rock-physics model.
Via trial and error, the number 2 × 2000 was determined
sufficient for the modified Reuss model, where the 2 is number
of inputs, and 2000 is the length of the prior model. For the
modified HS model, the size 3 × 750 was deemed sufficient.
Last, for the soft-sand model, 4 × 125 was found to be a
sufficient number. Because of the exhaustive sampling, the size
of the posterior for the modified Reuss is 2000 × 2000; 750 ×
750 × 750 for the modified HS, and 125 × 125 × 125 × 125 for
the soft-sand model. For analysis of the results, we examine

FIGURE 4 | Bivariate histograms for the Fam-Santamarina model. (A,B) correspond to the S-n, pair, (C,D) to S-k, and (E,F) to n-k. The posterior histogram for S-n
(B) shows an isolated high-frequency peak away from the mean in (A). In the other two posterior plots, a narrow range of k shows large frequencies for a wide range of S
(E) and n (F).
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bivariate joint histograms computed from the posterior
alongside bivariates of the prior model.

For the porosity-dependent models, the user most also define
the mean of the prior model and its covariance matrix. Table 2
contains the mean values. For the modified Reuss model, the two
values come from the highest porosity sample at that pressure,
which is the ϕ and M from the Santa Cruz Dry 2 sample. The
same type of values provided for the mean for the modified HS
model, where the three values were ϕ, K, and μ from the Santa
Cruz Dry 2 sample. Last, the mean for the soft-sand model
contained the pressure value from the Santa Cruz Dry 2

sample, and the ϕc, Cn, and SSR values were set to the values
based on the initial model (Table 2). The covariance matrices in
each case were determined using trial and error to ensure that the
set of forward rock-physics models were relatively close to the
data and with minimal scatter among the models.

Starting Models and Data Selection
For the porosity-dependent models, the selected data in
Figure 2C had to be chosen for each of the three rock-physics
models. If the data were too far away from the forward models,
the objective function becomes large, and the likelihood and

FIGURE 5 | Model and posterior histograms for the Hardin-Blandford results. The juxtaposition is the same as in Figure 5. Different from the Fam-Santamarina
model, the posterior in (A) shows a narrow range of n and wide range of S. The posterior in (D) shows an isolated peak for the S-k pair. Last the posterior in (F) show a
narrow range of n for a wide range of k.
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posterior values become very small. To select the data, a starting
model was computed using the mean values inTable 2. Then data
were selected based on 3% around the starting model. The data
covariance (CD ) was estimated assuming 5% error in the data.
The starting models are displayed in relevant subsequent figures.
Table 3 contains the number of selected data points for data sets 1
and 2 for the three rock-physics models.

RESULTS

Pressure-Dependent Models
As aforementioned, the first step is to reproduce the models from
Zimmer et al. (2007a). Figure 1B shows the fit of Eqs 1–3 to the
Galveston Bay (black points) and Merritt (gray points) data. The
solid black lines are the R model fits to the Galveston Bay and

FIGURE 6 | (A)Most likely values of A and B color coded by n for 100 trials of the Robertson model on the Galveston data. Correlation is evident among the three
parameters. (B) contains the Galveston Bay data (points), a selection of prior models (gray), and MAP models (gray) from the 100 trials for each most likely value of A, B,
and n from (A). The plots in (C) contains most likely values for the Fam-Santamarina model; in (D) are a selection of prior models (blue), and the 100 MAP models (gray).
Last, the corresponding plots for the Hardin-Blandford model are in (E,F).
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Merritt data. Red and green dashed lines are the FS and HB
models, respectively, fit to the two data sets. Table 1 contains the
fitting coefficients from Zimmer et al. (2007a) for the three
models.

We applied the Bayesian formulation for the three models to
the Galveston Bay data. The length of the Galveston Bay data
vector was 58x1, and CD was estimated assuming 5% error in the
data, which is typical of in these types of laboratory
measurements. For the R model, the three dimensions of the

trivariate normal random distribution corresponded to A, B, and
n. First,m was generated, where the means for the three variables
are the A, B, and n values in Table 1 and a covariance matrix with
diagonal [50 (m/s) 50 (m/s) 0.0002]. Off-diagonal terms were
zero. The size of m was 3x300, so 3003 models were evaluated.

Figures 3A,B contain the prior model and posterior bivariate
histograms, respectively, forA-B. Figures 3C,D correspond to the
bivariate histograms for variablesA-n, and 3E and 3F to B-n. In all
the bivariate histograms for the prior model, one peak is apparent

FIGURE 7 | (A) Scatter plot of most likely values of A and B color coded by n for 100 trials of the Robertson model on the Merritt data. Correlation among the three
parameters is present much like Figure 6A. In (B) are the Merritt data, a selection of prior models (blue), and theMAPmodels (gray) from the 100 trials for eachmost likely
value of A, B, and n. In (C,D) are corresponding plots for the Fam-Santamarina model and the Hardin-Blandford model in (E,F).
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that is close to the mean. These histograms for the prior model are
Gaussian although they might not always appear to be because
the full trivariate has been marginalized in one direction. The
posterior histogram for A-B shows a clear unimodal distribution
peaking at a point different from the prior model mean. The
posterior for A-n or B-n, however, is broad over A (or B) but
shows a narrow range for n. When these posterior histogram for
A and B is displayed in a logarithmic plot, it appears Gaussian, but
the linear plot much more clearly identifies the highest peak. For
the other two posterior histograms on a logarithmic plot, more
than one value of n corresponds to broad ranges of A or B. Again,
the linear plot by far indicates the n value with the highest
frequency.

The same procedure used with the Rmodel was repeated using
the FS and HB models. For both, the size ofm was 3x300, and the
means for m are in Table 1 for S, n, and k. The diagonal of the
covariance matrix for m in the FS model was [43.7 (m/s) 0.0005
0.0011]. For the HB model, the covariance diagonal for m was
[145 (MPa) 0.0004 0.0032].

Figure 4 shows the results for the FS model where the layout is
the same as Figure 3 except for the different variables. Figures

4A,B are the prior model and posterior for the S-n pair,
respectively, 4C and 4D for S-n, and 4E and 4F for n-k. Of
the three posterior histograms, the S-n pair shows one clear peak,
and the other two show a narrow for k with wider ranges for S or
n. Bivariate histogram results for the HB model are in Figure 5.
The prior model bivariate histogram for the S-n pair is in
Figure 5A and the posterior in Figure 5B. The posterior
shows a narrow range for n and a wide range of S
(Figure 5B). In Figure 5C (the S-k pair), the central peak is at
the mean value, and the corresponding posterior (Figure 5D)
shows an isolated S-k pair with high frequency away from the
prior model mean. The histogram in Figure 5F shows a narrow
range of n for a wide range of k.

Next, we ran the three rock physics models for 100 trials with
the Galveston Bay data where m was different for each trial. The
mean and covariance matrices for eachm remained the same, but
the values in the random trivariate normal distribution differed
from trial to trial. In all cases, the model size was 3x300. For each
trial for the R model, the A-B pair corresponding to the highest
frequency was selected using the information in the A-B posterior
histogram in Figure 3B. To obtain n, the A-n posterior histogram
maximum value was used (Figure 3D). Figure 6A exhibits these
results, which indicate correlation among the three variables.
Figure 6B displays the data, a selection of prior models (blue),
and in gray the 100 maximum a posterior (MAP) results from the
R model computed from the points in Figure 6A. The number of
prior models is a small fraction of 1% of the number of computed
models. Figures 6C,D show the corresponding plots for the FS
model. The highest-frequency inputs for Figure 6C came from
Figure 4B for S and n and 5F for k. Figures 6E,F show the same
type of results for the HB model. Inputs for Figure 6E came from
the values of S and k in Figure 5D and n from Figure 5F. Of the
three, the MAP models in Figure 6B overall cluster more closely
to the data than do the models in Figures 6D,F.

We then applied the Bayesian formulation for the three
pressure-dependent rock-physics models to the Merritt data
(Figure 1). The length of the Merritt data vector was 112 × 1,
and CD was estimated based on 5% data error. For the R model,
the means for the three variables are the A, B, and n values in
Table 1 and a covariance matrix with diagonal [50 (m/s) 50 (m/s)
0.0008]. Off-diagonal terms were zero. The size ofm was 3 × 300,
so 3003 models were evaluated. The means for m are in Table 1
for S, n, and k for the FS and HB models. The diagonal of the
covariance matrix for m in the FS model was [59.9 (m/s) 0.0009
0.0001]. For the HB model, the covariance diagonal for m was
[352 (MPa) 2x10−6 9.6−8].

Results for the three rock-physics models applied to the Merritt
data resemble those from the Galveston Bay data. Posterior bivariate
histograms show overall similar features except for different values
for the inputs. For the sake of the space, individual prior and
posterior histograms are not displayed. Figure 7 contains plots
akin to those in Figure 6 where most likely data pairs are
selected for each model from the 100 trials; the corresponding
MAP models and selections of prior models are also plotted with
the Merritt data. Correlations among the R model inputs are similar
for the Merritt (Figure 7A) and Galveston (Figure 6A) data. The
MAP models in Figure 7B come from those points in Figure 7A.

FIGURE 8 |Bivariate histograms for the prior model (A) and posterior (B)
for data set 1 and the modified Reuss model. In this case, the prior model and
posterior are two dimensional. The joint bivariate in b) contains a very narrow
range of ϕ0 for a wide range of Mdf . Other values have a non-zero
frequency but with much lower values than the high-frequency visible range.

Frontiers in Earth Science | www.frontiersin.org January 2022 | Volume 9 | Article 80574210

Spikes and Sen Correlations Among Rock-Physics Inputs

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


The corresponding plots from the FSmodel are in Figures 7C,D; for
the HB model, the plots are Figures 7E,F.

Porosity-Dependent Models
We applied the Bayesian analysis first for the modified Reuss model
to data set 1 (Figure 2C). The mean ofm is in Table 2 along with a
covariance matrix with diagonal [3.818x10−4 0.010 (GPa)]. Off-
diagonal terms were zero. Table 3 shows the number of data points.
Figure 8A is the prior model bivariate histogram, and Figure 8B is
the corresponding posterior bivariate histogram for the modified
Reuss model applied to data set 1. The prior histogram is a random
2D Gaussian, and the posterior shows a narrow range of ϕ0 for a
wide range of Mdf. The z-axis is displayed on a linear scale. If
displayed on a logarithmic scale, other pairs of values have non-zero
frequencies. but the plot on the linear scale much more clearly
identifies the highest frequency value of ϕ0.

Next for data set 1, the Bayesian analysis was run using the
modified HS model. Table 2 contains the mean of m. The
diagonal of the covariance matrix was [2.121 × 10−4 0.017
(GPa) 0.008 (GPa)] with off-diagonal terms set to zero.
Figure 9 contains six bivariate histograms, for three prior
models and three posteriors. With the number of input terms
at three, the prior model and the full posterior are trivariate. Thus,
we marginalize the prior and posterior in one direction to obtain
the bivariates for display. Figures 9A,B are the prior model and
posterior, respectfully, for ϕ0-Kdf. The prior is Gaussian, and the
posterior shows a narrow, isolated value of ϕ0 for a range of Kdf.
In Figures 9C,D, the bivariate histograms correspond to ϕ0-μdf;
Figures 9E,F contain the bivariates for the pair of Kdf and μdf.
Figure 9D is similar to Figure 9B with a narrow range of ϕ0 for a
range of μdf. Last the bivariate histogram in Figure 9F shows a
high-frequency combination of Kdf and μdf.

FIGURE 9 | Example results from the modified HSmodel applied to data set 1. Bivariates for ϕ0- Kdf pairs are in (A,B), ϕ0-μdf in (C,D), and Kdf -μdf in (E) and (F). A
high-frequency peak is present in the posterior in (F). The other two posteriors show a very narrow range for ϕ0 but wide ranges of μdf and Kdf .
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The third porosity-dependent model applied to data set 1 was
the soft-sand model. The diagonal of the covariance matrix was
[0.006 (MPa) 0.002 0.030 0.015] with off-diagonal terms set to
zero. Table 2 contains the mean values for the four variables.
Figure 10 exhibits 12 bivariate histograms, half prior models and
half posteriors. This number comes from computing each pair
from the 4D full posterior. Figures 10A–C are prior model
histograms for the pairs of P with ϕc, Cn, and SSR,
respectively. Beneath those in Figures 10D–F are their
corresponding posteriors. The posterior in Figure 10D shows
a narrow range of ϕc for a wide range of P. In Figures 10E,F, high-
frequency pairs of P-Cn and P-SSR are present, respectively. Prior
model bivariates for ϕc-Cn, ϕc- SSR, and Cn- SSR are in Figures
10G–I and the corresponding posteriors in Figures 10J–L. The
two posteriors of ϕc-Cn and ϕc- SSR show narrow ranges of one
term and a broad range of the other. The posterior in Figure 10L
indicates a high-frequency pair of Cn and SSR.

An additional application for data set 1 was to run 100 trials of
each rock-physics model. Within each trial, a different m was

generated. The mean and covariance matrix were the same each
time, but the randomly generated values for each trial were different.
The results from each trial are the sets of bivariate histograms such as
those in Figures 8–10. Values for inputs at maximum frequencies
were selected from the appropriate bivariate posterior for each trial.
For the modified Reuss, the cross plot in Figure 11A shows little to
no correlation between ϕ0 andMdf. Figure 11B shows the selected
data, the starting model (black), a selection of prior models (blue),
and the 100 MAP models (gray). The high-frequency values for the
points in Figure 11A and thus theMAPmodels in Figure 11B came
from Figure 8B.

Similarly for the modified HS model, Figure 11C shows the
scatter plot of Kdf-μdf color-coded by ϕ0. The Kdf-μdf pair was
extracted from Figure 9F; To determine ϕ0, the maximum
frequency value was selected from Figure 9D. This value
could have been selected from Figure 9B, but the frequencies
in Figure 9D were larger. Clear correlation among all three terms
is evident, which was not clear when looking at only at the
posterior bivariates alone. A subset of prior models, the 100 MAP

FIGURE 10 | Soft-sand model and data set 1 results. Plots (A–C) are the bivariate prior model histograms for P versus ϕc, Cn, and SSR, respectively. Plots (D–F)
contain the corresponding posterior histograms. Prior model histograms for ϕc- Cn, ϕc-SSR, and Cn -SSR are in (G), and their corresponding posteriors are in (J–L).
Several peaks are present in (D). A high-frequency peak is present in (E,F). Multiple peaks are apparent in (J,K) for a narrow range of ϕc and wide ranges ofCn and SSR.
In (L) is one high-frequency peak.
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models, and the selected data are in Figure 11D. Last, results for
the 100 soft-sand trials are in Figures 11E–G. Figure 11E is the
scatter plot of P-Cn, color-coded by ϕc. Figure 11F contains the
selected data, some prior models (blue), and the MAP models.
The plot in Figure 11G is P-Cn, color-coded by SSR. In Figures
11E,G, the three terms are correlated. For the points in
Figure 11A, the P-ϕc pair was selected from Figure 10D, Cn

from Figure 10E, and SSR from Figure 10F.

We applied the Bayesian framework to data set 2 using each of
the rock-physics models. The sizes of m stay the same as they
were for applications to data set 1. The general appearance of the
results for data set 2 is much like the posterior bivariate histogram
for data set 1. Thus, we do not display them here.

Finally, each rock-physics model was applied to data set 2 in 100
independent trials. Each trial introduced a different random m but
with the same mean and covariance matrix. Values of the inputs

FIGURE 11 | The pair of ϕ0 andMdf at the highest frequency was extracted for each of 100 trials using the modified Reuss model with data set 1. Those are plotted
in (A) color coded by the trial number. A clear correlation is present. Using each pair, 100 MAPmodels were computed and are shown in (B) (gray) along with a selection
of prior models in blue and the starting model in black. The same procedure was performed for the modified HS model. In (C) is the plot of ϕ0- Kdf color coded by μdf .
Correlation among the three terms is apparent. Starting, prior, and MAP models for these data points are in (D). Last, 100 trials of the soft-sand model were
computed. In (E), the P-Cn plot is color coded by ϕc. The corresponding MAP models and some prior models are in (F). In (G) is the for P-Cn plot color coded by SSR.
Correlations among the three parameters are observable in (E,G).
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were selected from the posterior histograms as described for the
MAPmodels in 11. Figure 12 contains the scatter plots of the inputs
and the 100 posterior models. Figure 12A shows the lack of
correlation between ϕ0 and Mdf, and Figure 12B shows the
selected data, some prior models, and the MAP models from
those pairs of ϕ0 and Mdf for the modified Reuss application.
Figures 12C,D are the scatter plots and data and models,
respectivley, for the modified HS application. The correlations
among the three parameters are similar to what are shown in
Figure 11C. Figures 12E–G are the plots for the soft-sand

model, where again correlations are apparent among those model
inputs. Figure 12E is color coded by ϕc and Figure 12G by SSR.

DISCUSSION

The results of the Bayesian framework for the all the rock-physics
models indicate correlations among their inputs that were not
known previously. Specific to the R model, all three terms are
correlated (Figures 6A, 7A). These correlations are not apparent

FIGURE 12 | After 100 trials for the three models for data set 2, the highest frequency pairs were extracted as in Figure 11 for data set 1. (A) corresponds to the
extracted values; (B) contains the starting model (black), a subset of prior models (blue), and MAP models (gray) for the modified Reuss. (C,D) contain those for the
modified HS model. (E–G) contain those for the soft-sand model. Correlations are easily identifiable in the modified HS and soft-sand model parameters.
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when looking at the equation of the model, the sensitivities, or by
looking at one set of bivariate histograms (e.g., Figure 3). After
multiple trials each with a different m, the correlation pattern
emerges. These correlations show up with both data sets but of
course with different values for the three terms. Similar
arguments can be made for the FS and HB models. Any given
set of posterior histograms provides for an optimally fit model.
Only after conducting many trials do the correlations among the
inputs become evident. For these three models, all could be recast
as linear in the log-log domain. The data could be plotted in the
that domain as well, and the Bayesian analysis could have been
performed in terms of fitting a line in the log-log domain. We did
not do this because the velocity sensitivity as a function of
pressure cannot be captured fully in the log-log domain.

When the covariancematrix ofmwas tested by trial and error for
the three models, the R model was the easiest among the three
models to find suitable values for the matrix. This situation likely
occurred because A and B are coefficients, and n is an exponent. In
the other two models, S is a coefficient, and n and k are exponents.
The MAP models in Figures 6, 7 indicate this pattern. In Figure 6
especially, the posterior models for the R model clearly are better
matches to the data than for the FS and HB models. In Figure 7,
arguably all three sets of MAPmodels show about the same amount
of scatter at higher pressures. The Merritt data set had nearly twice
the number of data points as the Galveston Bay data set, and many
more points are present at lower pressures, so a slight bias in fitting
exists for the lower pressure data points.

Specific to the modified Reuss model, the two inputs are not
clearly correlated (Figures 11A, 12A). After 100 trials each with a
different m, no correlation pattern becomes clear with both data
sets although different values for the two terms change.
Correlations among the three inputs of the modified HS
model emerged after the 100 trials. Within each trial, the
appearances of the posterior histograms were similar with a
lone high-frequency peak in the Kdf-μdf pair and narrow
value of ϕ0 for a wide range of the others. From trial-to-trial,
the location of the lone peak changed as did the narrow range of
ϕ0. Thus, some correlation could be inferred from the histograms
but not as clearly as in the plots in Figures 11C, 12C. Given the
bivariate posterior histograms, the relative significance of the
inputs would be Kdf and μdf first and then ϕ0. With four inputs
into the soft-sand model, the correlations that emerged were not
anticipated. Nonetheless, the patterns in Figures 11, 12 indicate
those correlations. In terms of relative significance, P and Cn

would be first, followed by SSR and last, ϕc However, that order
could be changed. The modified Reuss and modified HS models
could be recast as linear functions through simple substitutions.

However, the same cannot be done for the data, so the Bayesian
analysis must be done in the porosity-modulus domain.

When using these porosity-dependent rock-physics models
with two, three, and four parameters, obviously providing two
inputs versus three or four is easier. These models, used in a
porosity-dependent manner, help to estimate porosities from
velocity not observed in a data set. Of the three, one question
that could arise would be which one is the most reliable? A
potential answer could be inferred from the MAP models in
Figures 11, 12. In both figures for the two data sets, the modified
HS posterior models show the least scatter among themselves.
Extrapolation to lower porosities might be more reliable from this
model relative to the modified Reuss and soft-sand models. That
said, if these models were used in studies that dealt with variable
compositions and fluid saturations, they would need to be
examined in the Bayesian framework with an appropriate
data set.

This study identifies correlations among input parameters of
pressure- and porosity-dependent rock-physics models. The
Bayesian framework provided the means to establish these
correlations. In a seismic-inversion or reservoir-
characterization scheme, these correlations could be used to
construct informative prior distributions. A user of any of the
models examined here should be aware of these correlations.
Exact values of the inputs will vary depending on the particular
data set, but at least some simple templates could be defined to
guide the setting of the values. Additional pressure- and porosity-
dependent models should be examined using the Bayesian
framework because the results obtained here might not be
exactly relevant for other models. Furthermore, other types of
rock-physics models, such as inclusion-based or excess-
compliance models, would have to be examined in a similar
fashion using appropriate data sets.
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