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Predicting tropical cyclone (TC) activities has been a topic of great interest and research.
Many existing seasonal forecasting models of TC predict the numbers of TC geneses and
landfalls based on the environmental factors in the peak TC season. Here, we utilize the
mainstream reanalysis datasets in 1979–2005 and propose a statistical seasonal
forecasting model, namely the SYSU model, for predicting the number of TC landfalls
on South China based on the preseason environmental factors. The multiple linear
regression analysis shows that the April sea level pressure over the tropical central
Pacific, the March-April mean sea surface temperature southwest to Australia, the
March 850-hPa zonal wind east to Japan, and the April 500-hPa zonal wind over Bay
of Bengal are the significant predictors. The model is validated by the leave-one-out cross
validation and recent 15-year observations (2006–2020). The correlation coefficient
between the modeled results and observations reaches 0.87 (p < 0.01). The SYSU
model exhibits 90% hit rate (38 out of 42) in 1979–2020. The Antarctic Oscillation, and the
variations of the western North Pacific subtropical high and Intertropical Convergence
Zone could be the possible physical linkages or mechanisms. The model demonstrates an
operational potential in the seasonal forecasting of TC landfall on South China.
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INTRODUCTION

Tropical cyclone (TC) is one of the most devastating natural phenomena in the world. It could lead to
heavy precipitation, flooding, strong winds, and storm surges to the coastal regions (Zhang et al.,
2018), causing great economic and human losses. On average, about 80 TCs form globally per year.
Among the basins, the western North Pacific (WNP) is a region with the most active tropical
cyclogenesis. About one-third of global TCs, 26 on annual average, formed in the WNP during
1975–2011 (Liu and Chan, 2012; Hu et al., 2017), which could make landfall on Southeast Asia and
East Asia. East Asia, including China, Korea, and Japan, etc., accommodates around 25% of the
world’s total population with a large portion dwelling in coastal regions. South China is one of these
regions mostly affected by TCs. Thus, the accurate seasonal forecasting on predicting the seasonal or
annual TC landfall numbers on South China is indispensable for disaster prevention and mitigation.

Many studies have made contributions to the prediction of TC activities in the past decades. In the
early 1980s, the statistical seasonal forecasts of TC activities have been developed in the Australian
(Nicholls, 1979), and dynamical forecast in North Atlantic (Gray, 1984a, b). Subsequently, the
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statistical models of TC tracks (e.g., Hall et al., 2007), and annual
TC frequency (e.g., Fan, 2010; Xie and Liu, 2014) in North
Atlantic and North Indian Ocean (e.g., Wahiduzzaman et al.,
2019) have also been proposed. The statistical forecasts in
different parts of Pacific are also studied. For example,
Nicholls (1992) forecasts for the Australian–southwest Pacific,
while numbers of studies (e.g., Chan et al., 1998; Au-Yeung and
Chan, 2012; Zhang and Villarini, 2019; Chan et al., 2021) work for
the WNP. Apart from the statistical forecastings, the dynamical
and hybrid statistical-dynamical forecastings (e.g., Huang and
Chan, 2014; Ham and Kug, 2015; Zhang et al., 2017; Camp et al.,
2019) have also been introduced. The hybrid models are built
using climate indices as predictors to train the Poisson regression
models. Using climate indices (e.g., subtropical high index) to
build the model is apparent because it is much easier to deduce
the physical linkages. Camargo et al. (2007), Zhan et al. (2012),
and Klotzbach et al. (2019) reviewed the existing models all over
the world. Among the studies above, most of them focus on the
TC activities over the open oceans (e.g., Liu and Chan, 2003;
Wang et al., 2007; Choi et al., 2010), while those focusing on the
TC landfall activities (e.g., Fan, 2009; Goh and Chan, 2010),
which is more beneficial with socioeconomic value, are rather
less. Recently, studies by Gao et al. (2018) and Gao et al. (2020)
identify the relationship between the tropical North Atlantic sea
surface temperature (SST), and the TC landfalls on East Asia
(including mainland China). Furthermore, Zhang and Villarini
(2019) have built a simple model for the TC frequency in the
WNP using only predictors based on SST. They suggested that
using the SST-based predictors gives better predictability than the
atmospheric-based predictors. However, although consistent
increasing trends in frequency and intensity of landfalling TCs
in East China were found, Gao et al. (2020) reviewed that the
reported trends in landfalling TC activity in South China were
divergent. Some studies (Zhang et al., 2012; Li et al., 2017; Zhang
et al., 2019) showed no significant trend in landfalling TC
intensity or frequency in South China. Park et al. (2014)
suggested no trend in landfalling TC frequency, but a
downward trend in landfalling TC intensity in South China,
while Mei and Xie (2016) found a counter upward trend in
landfalling TC intensity in South China. In addition, Lok and
Chan (2017) projected fewer but stronger TCs could make
landfall on South China in the late 21st century.

Notably, although the statistical seasonal forecasting of TC has
therefore been a hot topic for decades, there is still a lot of rooms
to improve. Some of them used a lot of predictors to build their
models which could cause model overfitting and complexity.
What is more, many forecasts are closed-source, internal use only,
and provide little understanding of the physical linkages or
mechanisms (see Klotzbach et al., 2019). Another deficiency of
the existing models is that, numbers of studies mainly make use of
the environmental factors in the peak TC season to make
prediction (e.g., Au-Yeung and Chan, 2012; Wang et al., 2012;
Zhang et al., 2017; Camp et al., 2019), while very less achieve this
using the preseason environmental factors (Chan et al., 2021).
Choi et al. (2010) and Chen et al. (2015) suggested that the North
Pacific Oscillation (NPO) index in spring could be a reliable
predictor for predicting the TC activity over the WNP. Tian and

Fan (2019) utilized the predictors in preceding year (e.g., the
preceding boreal summer SST) and adopted year-to-year
increment method to predict the number of landfalling TCs
on China during June to August. Chan et al. (2021) built a
statistical seasonal forecasting model for predicting the TC
activity over the WNP using the preseason factors including
both the dynamics and thermodynamics factors. Practically, due
to the quasi-periodic or persistent anomalies, or the delayed
memory due to the oceanic processes, some of the preseason
environmental factors could have “memory effect”, suggesting
that their seasonal or annual characteristics are relatively
sustainable and transmittable through certain time periods.
Thereby, through selecting the particular factors in the
preseason, it is plausible to predict the landfall number in the
upcoming TC season.

This study, therefore, aims 1) to establish an effective (not
more than 4 predictors), open-source, and competitive (at least
80% hit rate) statistical seasonal forecasting model to predict the
number of TC landfalls on South China in the upcoming TC
season (May to December) using preseason environmental
factors, and 2) to propose possible physical linkages or
mechanisms advancing the predictability and understanding of
the seasonal forecasting. The paper is organized as follows:
section 2 describes the data and methodology. Section 3 raises
four potential predictors of the model. Section 4 introduces our
statistical seasonal forecasting model with the model validation.
Section 5 proposes the possible physical linkages or mechanisms.
Section 6 summaries the study with discussion.

DATA AND METHODOLOGY

The best-track data from the China Meteorological
Administration, including TC positions, and maximum 2-min
average winds are adopted. The TCs that made landfall on South
China in 1979–2020 are retrieved. Given that the benchmarks of
the number of typhoons (TCs reaching typhoon intensity or
above ≥34 m s−1) from different meteorological centers are
divergent (Chan et al., 2021), only those reaching tropical
storm intensity or above (maximum sustained wind speed
≥17 m s−1) are examined. In this study, South China includes
Hainan, Guangxi, Guangdong, Hong Kong, and Macau. It is
noted that those made landfall on East China or Vietnam at first
and then moved to South China over land are not counted. In
other words, only the “sea-to-land” attacks are focused. Those
“land-to-land” attacks, which are relatively less destructive, are
not considered. In addition, for the TC made several landfalls on
South China counts once only. The TC that skirts along the
coastal line, which has almost the same impacts as the narrow
sense of landfalling TC, is also counted. From 1979 to 2020, there
are 175 TCs made landfall on South China in total, that is, 4.2 TC
landfalls per year on average. Most of them formed over the north
of South China Sea (12–25°N, 105–122°E) and Philippine Sea
(5–20°N, 122–142°E) then moved northwestward (Figure 1A).
They mostly appeared in July, August, and September
(Figure 1B). No TC made landfall on South China in
December in 1979–2020.
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The monthly fifth generation of European Centre for Medium-
Range Weather Forecasts (ECMWF) atmospheric reanalysis of the
global climate (ERA5; 0.25° × 0.25°, 1979–2020), the National
Centers for Environmental Prediction—Climate Forecast System
Reanalysis (NCEP-CFSR; 0.5° × 0.5°, 1982–2020), and the National
Oceanic and Atmospheric Administration—Optimal Interpolation
SST analysis version 2 (NOAA-OISSTv2; 1° × 1°, 1982–2020) are
used for identifying the predictors and examining the possible
physical linkages or mechanisms. These data are the
mainstreams with high recognition and confidence nowadays. It
is noted that two sets of reanalysis data (first: ERA5 from ECMWF;
second: CFSR and OISSTv2 from NOAA) are employed in this
study because this can avoid the uncertainties or arbitrary
conclusions given by the single data source, and hence, increases
the robustness of the model. The meteorological quantities like
zonal wind, meridional wind, geopotential height, temperature,
relative vorticity, sea level pressure (SLP), SST, and relative
humidity in the preseason (i.e., January to April) are examined.
The Antarctic Oscillation (AAO) index and the outgoing longwave
radiation (OLR) data from the NOAA Climate Prediction Center
(NCPC) are also examined in this study.

DelSole and Shukla (2009) pointed out that during the screening
of predictors, numbers of artificial skills could involve in the model.
Therefore, to justifiably train and validate the model, the data before
2006 (24 years +) are used for the model training, while those in the
recent 15 years (2006–2020) are used for the model validation in this
study. The sampling ratio of the training set to validation set is
approximately 2:1. The dozens of candidates from the typical
aforementioned meteorological quantities at typical levels (surface,
lower, mid, and upper troposphere) are selected by picking the high
and significant regions from the correlation maps. Various areas of
any significant regions (area ≥ 50° latitude × ° longitude) are
extracted. The mutual correlations and collinearities between the
predictors are then considered. The combination of four predictors
(see next section) has the highest correlation with the number of TC
landfalls is adopted to build the model. Standardizations of the
predictors (by z-score) are applied in the multiple linear regression
analysis so that all the predictors are in form of indices. To test
whether there exists collinearity between predictors, the Variance
Inflating Factor (VIF) method is performed. If the VIFs (VIF � 1/
(1−ri

2) of predictors are less than 1/(1−Ri
2), where ri is the correlation

coefficient between the selected predictor and observed TC landfalls,
and Ri is the correlation coefficient between the modeled and
observed TC landfalls, then the multicollinearity is weak to affect

the coefficient estimates. In order to further validate the model skills,
the leave-one-out cross validation has also been performed.

POTENTIAL PREDICTORS

In this study, four predictors are optimally selected. They are
the April SLP over the tropical central Pacific (SLPTCP,4), the
March-April mean SST southwest to Australia (SSTSWA,34),
the March 850-hPa zonal wind east to Japan (U850EJ,3), and
the April 500-hPa zonal wind over Bay of Bengal (U500BOB,4).
The corresponding geophysical regions are shown in
Figure 2.

Sea Level Pressure
The regional SLP anomalies have been widely employed to reflect the
teleconnections and oscillations (e.g., AAO, El Niño Southern

FIGURE 1 | (A) Spatial distribution of the genesis locations (red dots) and tracks (black lines) of the TCsmade landfall on South China and (B)monthly distribution of
corresponding landfalling TCs in 1979–2020.

FIGURE 2 | Model predictors. The shaded boxes denote their
corresponding regions.
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Oscillation (ENSO), and NPO) in both the ocean and atmosphere,
which have close relationships with TC activities (e.g., Chen et al.,
2015). In April, the region over the tropical central Pacific (12–6°S,
170°E–173°W, green rectangles in Figure 3) shows a high correlation
(r � −0.65 and −0.52 for ECMWF, and NOAA data, respectively)
between the SLP (hereafter SLPTCP,4) and TC landfalls, suggesting
that the SLPTCP,4 could be an important potential predictor for the
seasonal forecasting model.

Sea Surface Temperature
The SST anomalies over the main development region is known as one
of the necessary thermodynamic factors for TC formation and
development, where it determines the heat flux and moisture flux
exchanges between the sea surface and atmosphere. The remote SST
might impact on TC activities by causing anomalies of upper and lower
tropospheric circulations (Zhan, 2011; Gao et al., 2018; Zhang and
Villarini, 2019). Figure 4 shows that theMarch-April SST southwest to

FIGURE 3 | Correlation maps between the April SLP and the number of TC landfalls using (A) ECMWF (1979–2005) and (B) NOAA data (1982–2005). The dotted
areas indicate where the correlation coefficients are significant at the 95% confidence level. The regions of SLPTCP,4 are specified by the green rectangles.

FIGURE 4 | Correlation maps between the March-April SST and the number of TC landfalls using (A) ECMWF (1979–2005) and (B) NOAA data (1982–2005). The
dots indicate the areas where the correlation coefficients are significant at the 95% confidence level. The regions of SSTSWA,34 are specified by the green rectangles.

Frontiers in Earth Science | www.frontiersin.org January 2022 | Volume 9 | Article 8062044

Zhang et al. Statistical Forecasting of TC Landfall

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


FIGURE 5 | Regression (vector; unit: m s−1) and correlation (shading) of the March 850-hPa wind anomalies on the number of TC landfalls using (A) ECMWF (1979–2005)
and (B) NOAA data (1982–2005). Either zonal wind or meridional wind statistically significant at the 95% confidence level are shown. Shading indicates the areas where the
correlation coefficients of the zonal wind anomalies are significant at the 95% confidence level. The regions of U850EJ,3 are specified by the green rectangles.

FIGURE 6 | Regression (vector; unit: m s−1) and correlation (shading) of the April 500-hPawind anomalies on the number of TC landfalls using (A)ECMWF (1979–2005) and
(B)NOAA data (1982–2005). Either zonal wind or meridional wind statistically significant at the 95% confidence level are shown. Shading indicates the areas where the correlation
coefficients of the zonal wind anomalies are significant at the 95% confidence level. The regions of U500BOB,4 are specified by the green rectangles.

TABLE 1 | Mutual correlation coefficients among the SLPTCP,4, SSTSWA,34, U850EJ,3, and U500BOB,4 in the ECMWF and NOAA data.

ECMWF (1979–2005) NOAA (1982–2005)

SLPTCP,4 SSTSWA,34 U850EJ,3 U500BOB,4 SLPTCP,4 SSTSWA,34 U850EJ,3 U500BOB,4

SLPTCP,4 1 −0.242 −0.394* −0.282 1 −0.010 −0.123 −0.069
SSTSWA,34 1 0.164 0.377 1 0.244 0.316
U850EJ,3 1 0.040 1 0.284
U500BOB,4 1 1

Values with single asterisk represent they are significant at the 95% confidence levels.
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Australia (48–53°S, 110–120°E; indicated by the green rectangles)
positively correlates with the TC landfalls (r � 0.63 and 0.44 for
ECMWF, and NOAA data, respectively). The observable difference
of SST correlations found in Figure 4 is likely due to the heterogeneities
of data sources and resolutions (ERA5: 0.25° × 0.25°; NOAA-OISSTv2:
1° × 1°), and the data periods (ERA5 starts from 1979, while NOAA-
OISSTv2 starts from 1982; see next section). The positive correlation
implies the higher SST in this region (hereafter SSTSWA,34) links tomore
TC landfalls. Thus, it could be a viable predictor to help establishing the
forecasting model via the teleconnection.

Zonal Wind
Although lots of environmental factors (e.g., SST, pressure, and
geopotential height) are commonly employed in various statistical
forecasting models, the zonal and meridional winds, which are the
important components of atmospheric circulations, are seldom
adopted. Here we find that the 850-hPa zonal wind east to
Japan in March (hereafter U850EJ,3; 35–40°N, 140–150°E; green
rectangles in Figure 5) and the 500-hPa zonal wind over Bay of
Bengal in April (hereafter U500BOB,4; 12–17°N, 89–99°E; green

rectangles in Figure 6) have significant correlations and
regressions on the TC landfalls. The correlation coefficients
between the U850EJ,3 and the number of TC landfalls are
respectively −0.51 and −0.61 for ECMWF, and NOAA data,
while those between the U500BOB,4 and TC landfalls are −0.50
and −0.62, correspondingly. The negative correlations suggest that
these two easterly anomalies link to a decrease in TC landfalls.

STATISTICAL SEASONAL FORECASTING
MODEL

Table 1 shows that the mutual correlations among the
aforementioned predictors are weak. These imply the
predictors are mostly independent of each other. Although
that between the SSTSWA,34 and U850EJ,3 in the ECMWF
dataset is a bit higher, the VIF values of all predictors are less
than 4.1 (result of 1/(1−Ri

2); see section 2), suggesting that there
exists no multicollinearity between predictors. The multiple
linear regression analyses further confirm this, in which the
regression coefficients of the four predictors all pass the
significance test (Table 2).

In this study, the multiple linear regression model based on the
ECMWF data is named asModel E, while that based on the NOAA
data is named as Model N. Table 2 shows that both models are
primarily consistent with each other, suggesting that the robustness
of predictors are strong. The correlation coefficients between the
modeled TC landfalls and observed TC landfalls reach 0.85–0.87.
The corresponding root mean squared errors (RMSEs) are close to
1. After performing the leave-one-out cross validation, the
correlation coefficients between the modeled TC landfalls, and
observed TC landfalls become 0.79–0.82, while the corresponding
RMSEs are 1.02 and 1.10 for Model E and Model N, respectively.
These results demonstrate that both models have a competitively
high potential on predicting seasonal TC landfalls on South China.

TABLE 2 | Correlation coefficients, RMSEs, MAEs, intercepts, and regression
coefficients of the Model E and Model N.

Model E (based
on ECMWF, 1979–2005)

Model N (based
on NOAA, 1982–2005)

r 0.87** 0.85**
RMSE 0.95 1.02
MAE 0.59 0.58
Intercept 4.12 4.04
SLPTCP,4 −0.80** −0.52*
SSTSWA,34 0.62** 0.45**
U850EJ,3 −0.51* −0.66**
U500BOB,4 −0.42* −0.69**

Values with single asterisk and double asterisks represent they are significant at the 95
and 99% confidence levels, respectively.

FIGURE 7 | Time series of the observed (black line) and modeled TC landfalls on South China based on the ECMWF (Model E; blue line) and NOAA (Model N; red
line) data. The blue and red shadings indicate the model uncertainties (denoted by ±1 of corresponding RMSE in Model E and Model N, and then rounded to the nearest
integers, respectively). Note that the modeled results before 2006 are based on the model training, those after are for the model validation.
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Figure 7 shows that the modeled landfall number matches
well with the observations in 1979–2005. The errors are generally
within ±1. The mean absolute errors (MAEs) of Model E and
Model N are 0.59 and 0.58, respectively (Table 2). Notably,
besides the leave-one-out cross validation, the models are
further validated by the recent 15-year (2006–2020)
observations. The corresponding absolute errors are ≤2.

To bring the results from research into practice and
application, a new model, namely the Sun Yat-sen University
(SYSU) model, is proposed. The SYSU model takes both the
Model E andModel N into consideration. The prediction range of
the SYSU model is defined as the maximum range of both the
modeled landfall numbers ±1 of their corresponding RMSEs, and
then rounded to the nearest integers. Visually, it is exactly the all-

inclusive shadings shown in Figure 7. Once the observed landfall
number falls within the prediction range, we call the model hits.
Figure 7 shows that the SYSU model exhibits a 90% hit rate in
1979–2020 (38 out of 42). This is promising for a statistical model
which only utilizes 4 preseason factors.

POSSIBLE PHYSICAL LINKAGES OR
MECHANISMS

In order to figure out the possible physical linkages or
mechanisms of the model, based on the standardized
predictors, the corresponding meteorological quantities in the
extreme high years (>1) and low years (<−1) are investigated

TABLE 3 | Extreme high years (>1) and low years (<−1) of four predictors based on the respective standardized values of predictors in 1979–2020.

Extreme high years Extreme low years

SSTSWA,34 1980, 1983, 1989, 2003, and 2020 1982, 1987, 2000, 2015, and 2019
SLPTCP,4 1983, 1998, 2007, 2010, 2012, and 2020 1980, 1986, and 1995
U850EJ,3 2000, 2002, 2005, 2013, and 2014 1983, 1989, 1995, 2008, and 2017
U500BOB,4 1982, 1990, 1997, 1998, 2018, and 2020 1989, 1999, 2000, 2001, and 2008

FIGURE 8 | Composite differences of (A) April, (B) May, (C) June, (D) July, (E) August, and (F) September mean SLP (shading; unit: Pa) and 850-hPa wind
anomalies (vector; unit: m s−1) between the extreme high and low years of SLPTCP,4. Pink rectangles in (D–F) specify the anomalous eastward shift of subtropical high
that highly associates with the positive phase of AAO.
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(Table 3). Examining the composite difference between the
extreme high and low years can magnify the signals which
help the identification. Meanwhile, incorporating what have
found in previous studies, three possible physical linkages or
mechanisms are proposed.

Antarctic Oscillation
The Antarctic Oscillation (AAO), a dominant low frequency
mode of atmospheric variability in the Southern Hemisphere,
also known as Southern Annular Mode, is suspected to be a
possible mechanism affecting landfalling TC activity. The AAO
index could be measured by the zonal mean SLP difference

between 40°S and 65°S (Gong and Wang, 1999). Fan et al.
(2003) studied the annual variations of AAO and the
distribution of correlation coefficient between AAO index and
monthly mean SLP anomalies in eachmonth, and proposed series
of conclusions. From January to December, the areas of negative
correlation are basically the same, located from 60°S to 90°S.
During austral winter, the areas of positive correlation could
expand from 50°S to 30°N, and even to 60°N during June, July, and
August. These suggest that the impacts of AAO could persist and
even enhance from boreal spring to summer. Yuan et al. (2021)
further found that the AAO in boreal spring can influence the
zonal wind and meridional circulation in the Northern

FIGURE 9 | Composite differences of (A) April, (B) May, (C) June, and (D) July mean SLP (shading; unit: Pa) and 850-hPa wind anomalies (vector; unit: m s−1)
between the extreme high and low years of SSTSWA,34. Green dash rectangles in (A–D) indicate the seasonal shift of anomalous westward or southwestward shift of
subtropical high that highly associates with the negative phase of AAO.
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Hemisphere, leading to the southeasterly and ascending motion
anomalies, and thus, the precipitation anomaly in North China
during boreal summer. In this study, we find that the correlation
coefficient between SLPTCP,4 and April AAO index is about 0.56,
while the correlation coefficient between SSTSWA,34 and March-
April AAO index is −0.42. The results suggest that these two

predictors are highly associated with the positive and negative
phases of AAO, respectively.

Ho et al. (2005) and Wang and Fan (2007) suggested that the
AAO would lead to anomalous anticyclonic circulation over the
WNP during boreal summer. During positive phase of AAO, the
subtropical high in the WNP is weaker and retreats eastward

FIGURE 10 |Height-latitude cross sections of the composite difference of anomalousmeridional circulation (A:123–128°E;B: 110–120°E; unit: m s−1) between the
extreme high years and low years of (A) SLPTCP,4 in July, August, and September and (B) SSTSWA,34 in June, July, and August. Vertical velocity is multiplied by 100. The
pink (purple) dash rectangle specifies the anomalous downdraft (updraft) in the 5–13°N (10–25°N) band in positive SLPTCP,4 (SSTSWA,34).

FIGURE 11 |Composite differences of (A)March, (B) April, (C)May, (D) June, (E) July, and (F) August mean 850-hPa geopotential height (shading; unit: gpm) and
850-hPa wind anomalies (vector; unit: m s−1) between the extreme high and low years of U850EJ,3. Green rectangles in (D–F) indicate the anomalous eastward shift of
subtropical high over the WNP in positive U850EJ,3.
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(pink rectangles in Figures 8D–F), leading to an unfavorable
condition for TC activity in the proximity of South China, but
favorable for TC passage or landfall to East China and Japan. On
the contrary, during the negative phase of AAO, the subtropical
high is stronger over the WNP and extends westward (Figure 9).
In addition, a seasonal southwestward shift of anomalous
anticyclone from April to July (green dash rectangles in
Figures 9A–D) takes place. These two together favor more
landfalling TCs on South China.

Meanwhile, Wang and Fan (2007) and Choi et al. (2010) also
suggested that AAO might impact on the WNP TC activity
through the teleconnection of meridional circulation anomaly
from the middle latitudes in the Southern Hemisphere to the

tropical WNP. As the region of SSTSWA,34 has similar longitude
range with that of South China Sea, the way how the AAO
modifies the later meridional circulation could be another
possible mechanism. The composite difference of anomalous
meridional circulation shows that there is an anomalous
downdraft in 5–13°N during July to September (pink dash
rectangle in Figure 10A), which highly associates with the
positive phase of AAO and is unfavorable for convective
activity over Philippines Sea. On the contrary, the anomalous
updraft in 10–25°N during peak TC season (purple dash rectangle
in Figure 10B) is favorable for convective activity over the north
of South China Sea. These results are highly consistent with Choi
et al. (2010).

FIGURE 12 | Composite differences of (A) April, (B) May, (C) June, (D) July, (E) August, (F) September, and (G) October mean 500-hPa geopotential height
(shading; unit: gpm) and 500-hPa wind anomalies (vector; unit: m s−1) between the extreme high and low years of U500BOB,4. Pink rectangle in (G) indicates the cyclonic
anomaly in positive U500BOB,4 which is not favorable for TC landfalls on South China.

FIGURE 13 | Composite differences of (A) April, (B) May, (C) June, (D) July, (E) August, (F) September, and (G) October mean OLR anomalies (shading; unit:
W m−2) between the extreme high and low years of U500BOB,4.
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Subtropical High
The composite differences of the 850-hPa geopotential height and
wind anomalies between the extreme high years and low years of
U850EJ,3 show that there exists a persistent anomalous anticyclone
southeast to Japan and an anomalous cyclone to its west in the June,
July, and August (green rectangles in Figure 11). These imply there is
an anomalous eastward shift of subtropical high over the WNP in
positive U850EJ,3. As TC generally moves along the western and
southern periphery of the WNP subtropical high, the anomalous
eastward shift could steer more TCs towards East China, and Korea,
or Japan in positive U850EJ,3. Although how the U850EJ,3 propagates
signals and affects the subtropical high activity from March to the
peak TC season in theWNP remain unclear, it shows a strong linkage
with the variation of subtropical high that is physically indicative of
the TC landfall on South China. There might be signal
transformation and/or propagation process (es) from the boreal
spring. For example, Hu et al. (2020) performed 10-year high-pass
filteringmethod to show significant signals of heat flux duringMarch
and April over theWNP, which results in anticyclonic anomaly over
low latitudes of the WNP and impacts on the East Asia monsoon
onset in May. Though it is not suitable to employ high-pass filtering
in real-time forecasting because this requires the data beyond the time
series (Wheeler andHendon, 2004), it provides an idea to understand
the processes. More investigations are warranted.

Intertropical Convergence Zone
About 80% of TCs form and develop in ITCZ (Chen and Ding,
1979). The position and intensity of ITCZ are important in TC
activities (Zhang et al., 1995; Liu et al., 2007; Liu et al., 2009; Cao
et al., 2015). It has been found that the stronger ITCZ favors more
cyclogenesis, and vice versa. Figure 12 shows that there is the
persistent positive geopotential height anomaly in 0–30°N from
April to October, suggesting that during positive U500BOB,4, the
convection over ITCZ is weaker, and thus unfavorable for
cyclogenesis activity. This is evident by the persistent positive
OLR (proxy of convection) anomaly over low latitudes west of
150°E (Figure 13). Meanwhile, the persistent anomalous westerly
in the proximity of South China is not favorable for TC landfalls.
In addition, the westerly and northwesterly associated with the
anomalous low (pink rectangle in Figure 12G) could be
detrimental to TC landfalls on South China in October.
Although how the U500BOB,4 results in or impacts on the
persistence of ITCZ activity from preseason to late season are
unclear, it demonstrates an evident linkage with the variation of
ITCZ intensity that is physically indicative of the TC landfalls on
South China. More work on this is also needed.

SUMMARY AND DISCUSSION

In this study, an effective, open source, and competitive statistical
seasonal forecasting model, namely the SYSU model, for predicting
the annual TC landfall (reaching tropical storm intensity or above) on
South China is proposed. Different frommost of the existing seasonal
forecasting models that consider the peak-season environment, we
make use of preseason environmental factors to build the model. The
April SLP over the tropical central Pacific, theMarch-April mean SST

southwest to Australia, the March 850-hPa zonal wind east to Japan,
and the April 500-hPa zonal wind over Bay of Bengal are found to be
the key predictors. Themodels based on the ECMWF (Model E) and
NOAA (Model N) reanalysis data show high correlations with the
observations (r � 0.85–0.87, p < 0.01). Here, we combine the
predictions from Model E and Model N to establish the SYSU
model. The advantages of this approach can minimize the
uncertainties and risks introduced by the single source of data,
and thus, increases the robustness of the model predictability. The
SYSU model is justifiably validated by the leave-one-out cross
validation and recent 15-year observations (2006–2020). It exhibits
90% hit rate in 1979–2020 and demonstrates a promising potential in
the seasonal forecasting of TC landfall on South China.

Deduced from the four predictors and previous literature, the
AAO, and the variations of subtropical high and ITCZ over the
WNP are proposed to be the possible physical linkages or
mechanisms underlying the SYSU model. The main idea is that
these predictors highly relate to the changes in atmospheric
circulation (i.e., steering and convective activity) over South
China Sea and the WNP in the TC season via sequences of
thermodynamic and dynamic teleconnections. Although these
possible linkages and mechanisms are yet not systematically
validated, they are physically meaningful and evidently indicative.
In this study, the proposed physical linkages andmechanisms are the
auxiliary aiming to demonstrate the possible physics behind the
model. Doing comprehensive mechanism validations requires a lot
of sophisticated modeling work and are left for future study.

Nomodel is perfect. Although the SYSUmodel proposed in this
study shows potentials in the seasonal forecasting of TC landfall on
South China, there are always rooms to improve. For instance, why
the model misses in 1993, 2009, 2013, and 2017 (see Figure 7)?
There may be better predictors and matrices to improve the
accuracy, but it requires further research. Last but not least, we
would officially implement and keep updating this model targeting
to provide the seasonal forecasting products for the public access
and monitoring by every mid of May in the near future.
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