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Uplift of the Gangdese Mountains is important to the evolution of Asian monsoons and the
formation of Tibetan Plateau, but its paleoaltitude before the India-Asia collision (Late
Cretaceous) is less constrained so far. In this study, we investigate whether the geological
records, which are indicators of soil dryness, discovered in East Asia can provide such a
constraint. Through climate modeling using the Community Earth System Model version
1.2.2, it is found that the extent of dry land in East Asia is sensitive to the altitude of the
Gangdese Mountains. It expands eastwards and southwards with the rise of the mountain
range. Comparison of the model results with all the available geological records in this
region suggests that the Gangdese Mountains had attained a height of ∼2 km in the Late
Cretaceous.
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INTRODUCTION

The Tibetan Plateau (TP) topography started to form due to crustal thickening and surface uplift in
the northern margin of the Lhasa terrane (Murphy et al., 1997; Kapp et al., 2007; Leier et al., 2007)
when it collided with the Qiangtang terrane during the latest Jurassic to Early Cretaceous (Dewey
et al., 1988). Then the northward subduction of the Neotethyan oceanic lithosphere formed an
Andean-type continental margin along the southern paleo-Asia, leading to the uplift of the Gangdese
Mountains (England and Searle, 1986). Based on the geological and geochronological results, early
work suggested that the Gangdese Mountains might have risen to 3,4 km elevation just before or
around the India-Asia collision (55 ± 10 Ma; Najman et al., 2010;Wu et al., 2014; Hu et al., 2015), due
to either the north-south shortening of the Lhasa block or the subduction of the Neotethyan oceanic
lithosphere (Murphy et al., 1997; Kapp et al., 2003; Kapp et al., 2005). More recently, based on the
values of oxygen isotope (δ18O), Ding et al. (2014) proposed that the Gangdese Mountains had
reached 4.5 ± 0.4 km at ∼56 Ma, consistent with the earlier results. However, quantitative
construction of the paleoelevation of the Gangdese Mountains before the India-Asia collision,
such as Late Cretaceous, is very rare. Zhu et al. (2017) obtained a crustal thickness of ∼30–70 km
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during the Late Cretaceous for the Gangdese arc based on the
compiled La/Yb ratios, from which a wide range from less than
1 km to greater than 5 km was estimated for the elevation of the
Gangdese Mountains. With an improved method that does not
require making assumptions for the variation of crustal and/or
mantle densities, Hu et al. (2020) concluded that the Gangdese
arc was ∼2.5 km high, but decreased to ∼2 km at ∼75 Ma.

Knowing the altitude of the Gangdese Mountains is important
for understanding the tectonic and geodynamic processes
involved in the interaction between tectonic plates during the
Cretaceous (∼144-66 Ma) and Cenozoic (∼66-0 Ma; Tapponnier
et al., 2001; Ding and Lai, 2003; DeCelles et al., 2007; Wang et al.,
2008; Ding et al., 2014; Wang et al., 2014a; Sun et al., 2015). It is
also important for us to understand the evolution of Asian
monsoon, since it has been demonstrated that the presence of
a mountain range such as the Himalaya alone can sustain the
major characteristics of the present-day Asian monsoons (Boos
and Kuang, 2010; Acosta and Huber, 2020). Recently, Farnsworth
et al. (2019) also demonstrated that the past East Asian monsoon
evolution is mainly controlled by paleogeography. That means
that the Gangdese Mountains, if high enough, should have
already had an impact on the Asian climate during the
Cretaceous (Qiu, 2014). Therefore, a constraint on the
paleoaltitude of this mountain range is needed.

Previous studies have shown that the TP-Himalaya has a
crucial impact on the Asian climate (An et al., 2001; Zhang
et al., 2007; Zhang et al., 2015; Zhang et al., 2018a; Zhu et al.,
2019), especially the Asian summer monsoon (Yeh and Chang,
1974; Hahn and Manabe, 1975; Boos and Kuang, 2010; Wu et al.,
2012b); it also dries the region to the north (Kutzbach et al., 1993;
Wu et al., 2012a). The insulation effects and thermal forcings of
the Gangdese Mountains were probably similar to those of the
TP-Himalaya that uplifted later (Wang et al., 2008) since they
locate at similar latitudes. The climate impact of the TP-Himalaya
has been well studied (Boos and Kuang, 2010; Ma et al., 2014;
Acosta and Huber, 2020) and it has been known that the
magnitude of impact is sensitive to the altitude of TP (Liu and
Yin, 2002; Kitoh, 2004). This sensitivity has been used to
constrain the paleoelevation of TP during Eocene by
comparing the simulation results with the isotope records, i.e.
δ18O (Botsyun et al., 2019). Although the results of their study
were questioned due to the shortcomings of isotope modeling in
climate models (Valdes et al., 2019), it provided a potentially
useful alternative way of reconstructing paleoelevation. If the
climate over surrounding regions is similarly sensitive to the
paleoaltitude of the Gangdese Mountains, then we may be able to
provide a constraint on its paleoaltitude during the Late
Cretaceous by comparing climate modeling results to available
climate reconstructions. Such method has also been used to infer
the paleoaltitude of the Appalachian and Variscan ranges during
the late Permian (Fluteau et al., 2001). In that work, the
reconstructed distribution of aridity/wetness was used as
indicators of climate.

During the Late Cretaceous (more specifically, ∼85-66 Ma is
the time period we focus here), an arid/semi-arid climate in the
low-to mid-latitude Asia is indicated by widespread eolian and
red bed deposits (Jiang et al., 2004; Jiang et al., 2008; Hasegawa

et al., 2012), while humid climate in the mid-to high-latitude Asia
was indicated by floras, coal-bearing strata and oil shale deposits
(Spicer and Herman, 2010; Wang et al., 2013). Such dry/wet
information may be used to broadly constrain the height of the
Gangdese Mountains. To test whether this will work, a series of
modeling experiments in which the Gangdese Mountains are
prescribed at different altitudes have been carried out. The
impacts of the Gangdese Mountains on Asian climate and a
possible constraint on the paleoaltitude of the Gangdese
Mountains are, therefore, obtained at the same time.

MODEL AND EXPERIMENTAL DESIGN

In this study, the Community Earth System Model version 1.2.2
(CESM1.2.2) developed by National Center for Atmospheric
Research (NCAR) is employed. CESM1.2.2 is a general
circulation model including seven components: atmosphere
(CAM4), ocean (POP2), land (CLM4), river runoff (ROF), sea
ice (CICE4), land ice, and ocean wave, which interact with each
other through a coupler (Vertenstein et al., 2013). For the purpose
of the present study, the last two components are not turned on.
In order to resolve the Gangdese Mountains in the model,
relatively high spatial resolution (e.g. 1° in the horizontal
direction) is required. However, the computational cost of
running the fully coupled model (with the first five
components active) at such a high resolution to equilibrium is
formidable. Therefore, we take the strategy by first obtaining the
sea surface temperatures (SSTs) and sea ice distributions using
the fully coupled model at low resolution. Then the sensitivity of
Asian climate to the height of the Gangdese Mountains is tested
with the high-resolution atmosphere model (CAM4 and CLM4),
with the SSTs and sea ice fractions prescribed to those obtained
from the low-resolution fully coupled model.

In the fully coupled experiment (CoupExp), the geography of
∼75 Ma (Figure 1A) modified from Scotese and Wright (2018)
and paleovegetation (Figure 1B) interpolated from Sewall et al.
(2007) are implemented. In CoupExp, CAM4 is run at a
horizontal resolution of T31 (3.75° × 3.75°) with 26 levels in
the vertical. CLM4 is run at the same horizontal resolution as that
of CAM4. POP2 employs a gx3v7 grid which has 116 and 100 grid
points in the meridional and zonal directions, respectively, and 60
levels in the vertical. CICE4 is run on the same horizontal grid as
POP2. ROF with the default resolution (0.5° × 0.5°) routes all
runoff to the oceans. In order to simulate the climatic effects of
the Gangdese Mountains, five sensitivity experiments (i.e.
Gds_0 km, Gds_1 km, Gds_2 km, Gds_3 km, and Gds_4 km)
in total are carried out with the high-resolution (1.25° in
longitude and 0.9° in latitude) atmospheric model. The
topography in experiment Gds_0 km is the same as that in
CoupExp, i.e. the topography along the south margin of the
paleo-Asia is only less than 300 m high (Figure 1A). In the other
four experiments, everything is the same as that in Gds_0 km
except that the altitude of Gangdese Mountains along the south
margin of the paleo-Asian continent is varied from 1 to 4 km with
a step of 1 km (Figures 2A–D). In these four experiments, the
Gangdese Mountains are assumed to extend from approximately
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FIGURE 1 | Paleogeography (A) of 75 Ma modified from Scotese and Wright (2018) and the corresponding paleovegetation (B) interpolated from Sewall et al.
(2007). In (B), the numbers 0 is for the ocean, 1 for the land ice, 3 for the high altitude/latitude evergreen conifer closed canopy forest, 6 for the high altitude/latitudemixed
forest with equal percentage broad vs needle leaf and evergreen vs deciduous, 10 for the closed canopy, broad leaved, moist evergreen forest, 11 for the closed canopy,
broad leaved, dry deciduous forest, 12 for the savanna (dry, low understory with sparse broad leaved overstory), 15 for the high altitude/latitudemoist, open canopy
evergreen forest with shrub understory, 20 for the wet or cool shrubland (evergreen), and 21 for the dry or warm shrubland (deciduous), which is the same as the Land
Surface Model (LSM) vegetation types.

FIGURE 2 | The altitude of the Gangdese Mountains for the experiments Gds_1 km (A), Gds_2 km (B), Gds_3 km (C) and Gds_4 km (D).
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70–90°E along the southmargin of the Paleo-Asian continent; this
latitudinal position is consistent with the paleoaltitude
reconstruction (Liebke et al., 2010; Tan et al., 2010). All
experiments are summarized in Table 1.

The atmospheric CO2 concentration during the Late
Cretaceous is poorly constrained and might have varied within
a large range (Wang et al., 2014b). Fortunately, the aridity over
Asia has been shown to have a low sensitivity to CO2 level
(Farnsworth et al., 2019; Zhang et al., 2019). Therefore, in all

experiments carried out herein, the CO2 concentration is set to
twice its pre-industrial level, i.e. 560 ppmv, which is within the
range of the proxy reconstructions (Wang et al., 2014b). The
concentrations of all other gases and aerosols, including CH4,
N2O, and O3, are set to the pre-industrial level, i.e. the default
values of the CESM1.2.2. The concentrations of CFCs are set to 0.
Though orbital configuration has a great influence on the Asian
climate in Cretaceous (Jiang et al., 2004; Zhang et al., 2019), these
timescales (<0.1 million years) are much shorter than that (1

TABLE 1 | Description of the experimental setup.

Experiments Descriptions

CoupExp The fully coupled experiment at a low resolution of T31_g37
Gds_0 km The atmospheric experiment at a high resolution (1.25°ⅹ0.9°), the topography is the same as that in CoupExp (Figure 1A)
Gds_1 km Same as the experiment Gds_0 km, but the Gangdese Mountains of 1 km are included (Figure 2A)
Gds_2 km Same as the experiment Gds_0 km, but the Gangdese Mountains of 2 km are included (Figure 2B)
Gds_3 km Same as the experiment Gds_0 km, but the Gangdese Mountains of 3 km are included (Figure 2C)
Gds_4 km Same as the experiment Gds_0 km, but the Gangdese Mountains of 4 km are included (Figure 2D)

FIGURE 3 | Comparison of the annual-mean SST between model simulations (this study) and proxy data (Tabor et al., 2016). The proxy data are shown as filled
circles in (A) and blank squares in (B)where the overlying vertical lines represent their uncertainties. In (B), the zonal mean SST from themodel is calculated and indicated
by the red lines, with the pink shading represents the simulated range of the monthly climatology.
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million years) of the tectonic evolution or the uplift of the
Gangdese Mountains. Consequently, the eccentricity is fixed at
0 and the obliquity is set to 23.3°, which is approximately the
average condition over geological timescale. The solar constant is
reduced to 1,351.47 Wm−2, about 0.7% lower than the present-
day solar constant (1361Wm−2; Gough, 1981).

The fully coupled experiment CoupExp has full ocean
bathymetry, and is run for 1,000 model years in order for the
surface climate (e.g. temperature, precipitation and sea ice) to
reach statistical equilibrium. The monthly SSTs and sea ice
fractions averaged over the last 100 years are used as the
boundary condition of the atmospheric sensitivity experiments.
The high-resolution atmospheric experiments equilibrates

quickly and are run for 25 model years, and the last 20 years
of data are analyzed and presented herein.

RESULTS

Drying Effect of the Gangdese Mountains
The Late Cretaceous climate reconstructed from proxies is much
warmer than the present. The annual-mean tropic SSTs could be
greater than 30°C (Wilson et al., 2002; Forster et al., 2007), and the
high-latitude SSTs were above 0°C (Huber et al., 2002; Spicer and
Herman, 2010). In general, the results of the CoupExp
experiment compare well with the SST reconstructions (Tabor

FIGURE 4 | Annual mean precipitation (shaded; units: mm d−1) and vertically integrated water vapor transport (vectors; units: kg m−1 s−1) of experiment Gds_0 km
(A) and their differences between experiments Gds_1 km and Gds_0 km (B), Gds_2 km and Gds_0 km (C), Gds_3 km and Gds_0 km (D), Gds_4 km and Gds_0 km
(E), and Gds_4 km and Gds_2 km (F). In (B–F), only the areas with confidence levels >95% (using the Student’s t-test) are presented for the water vapor transport and
dotted for the precipitation.
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et al., 2016; Figure 3). This gives us confidence in the model’s
ability in simulating the Late Cretaceous climate. However, there
is large disparity among the tropical proxy data (Figure 3B). The
main issue is that some proxy-derived SSTs are much lower than
either others or modeled values, which can be explained at least
by a few factors (Pearson et al., 2001; Zeebe, 2001; Hay, 2011).
Firstly, the early measurements were based on oxygen isotope of
planktonic foraminifera, which are diagenetically altered or
recrystallized in the sediments (Pearson et al., 2001; Hay,
2011). In addition, some studies did not consider the depth
habitat of the planktonic foraminifera used, which may live in
subsurface layer, so the reconstructed tropical SSTs look much
like the modern water temperature at 100 m depth (Hay, 2011).
Moreover, during Cretaceous greenhouse period with much
higher atmospheric CO2 levels, the pH of the sea water is
lower than the present. If this is taken into account, the
paleotemperature reconstructed from the oxygen isotopic can
be adjusted upward by 2–3.5°C (Zeebe, 2001).

The annual precipitation in the interior Asia exhibits a triple
mode, with more precipitation in the low (south of ∼20°N) and
mid (north of ∼40°N) latitudes and less precipitation in the mid-
to low-latitudes (∼20–40°N, Figure 4A). In the low latitudes,
strong water vapor transport from both the Tethyan and Pacific
oceans brings heavy precipitation of >6 mm d−1, while in the
mid-latitudes, the water vapor is mainly brought there by the
westerlies. All three sources of water vapor, i.e. Tethyan Ocean,
Pacific Ocean and westerlies, bring little amount of water vapor to
the region in between those two regions. In this middle region
(mid-to low-latitudes Asia), precipitation is the least in the west
and increases towards the east. The Gangdese Mountains, if
present, are located right on the path of water vapor transport
from Tethyan Ocean to Asia and expected to deprive large
amount of the water vapor. Indeed, the precipitation increases
over the mountain range and its upstream, while decreases
significantly to the north (Figures 4B–F).

Even with a relatively low altitude of 2 km, the Gangdese
Mountains reduce precipitation significantly on the north and
east within a belt of ∼15° width adjacent to the mountain range
(Figure 4C), compared to the case when the mountain range is
absent (experiment Gds_0 km). The effect of the mountain range
on precipitation barely reaches 40°N and has little effect in the
easternmost region of Asia. The most significant reduction of
precipitation occurs to the northeast of the east end of the
Gangdese Mountains, reaching almost ∼3 mm d−1. The
magnitude and the spatial extent of decrease in precipitation
increase with the altitude of the mountains. The pattern of
precipitation change is similar to that obtained in Zhang et al.
(2018a). They investigated the influence of the Himalaya-TP
latitudes on Asian climate and found that precipitation
decreased over the East Asia and inland Asia when the
Himalaya-TP was located south of 20°N.

The aridity indices (AI) widely used in the present and past
climate change (e.g. Feng and Fu, 2013; Liu et al., 2018; Ma et al.,
2021) over Asia are calculated based on the precipitation, surface
temperature, relative humidity, wind speed and surface energy
fluxes from the climate model output. According to this index, a
tongue-shaped arid (A) area extending from the southwest

towards the northeast exists over Asia when there is no
Gangdese Mountains (Figure 5A). Moving outwards from this
arid region, the land surface becomes less dry and gradually
changes to semi-arid and dry sub-humid types. Consistent with
the change of the precipitation (Figures 4B–E), the dry region
expands southwards and eastwards with the altitude of the
Gangdese Mountains (Figures 5B–E). By reaching an altitude
of 2 km, the arid region deviates from a tongue shape significantly
(Figure 5C). Along with the expansion of dry region, the
maximum intensity of dryness also exacerbates; hyper-arid
(HA) region begins to appear when the Gangdese Mountains
are 1 km high (Figure 5B), and its area increases with the altitude
of the Gangdese Mountains (Figures 5B–E).

Paleoelevation of the Gangdese Mountains
Eolian deposits are widely distributed over the mid-to low-
latitude Asia (Jiang et al., 2004; Jiang et al., 2008; Hasegawa
et al., 2012), indicating that the region was arid/semi-arid then
(Fang et al., 2016). In fact, the region was often called the
Cretaceous desert belt (oriented zonally) in Asia (Hasegawa
et al., 2012). The sedimentary records mainly come from eight
basins, namely, Gobi (Gb), Ordos (Or), Tarim (Tr), Sichuan (Sc),
Simao (Sm), Khorat (Kr), Nima (Nm), and Songliao (Sl) basins in
Asia. In the Or basin, eolian dunes were found (Figure 6A;
Hasegawa et al., 2012), suggesting the desert was developed there.
According to Zhang et al. (2021), most of the arid to hyper-arid
land surface in Cretaceous Asia was covered by the desert, so the
climate in the Or and Nm basins corresponds to the arid to hyper-
arid land types. The other four basins, Tr, Sc, Sm and Kr,
containing red-bed (Hasegawa et al., 2012; Figure 6A), which
is less dry than that in the Or basin and likely corresponds to the
semi-arid (SA) to dry sub-humid (DSH) in late Cretaceous land
types. The mudstone and sandstone of the alluvial plains or
seasonal lakes in the Gb basin suggest semi-arid or even wetter
environments (Jerzykiewicz and Russell, 1991). The records in
the Sl basin in the northeast China contain large amount of black
mudstone. Based on the climatologically sensitive deposits,
oxygen isotope, and paleontology, the Sl basin climate was
temperate and humid with relatively abundant rainfall (Wang
et al., 2013), which we consider as the modeled semi-humid to
humid land types.

The aridity of most of the basins turns out not to be sensitive to
the altitude of the Gangdese Mountains (Figure 5), probably
because they are too far away from the mountain range. However,
the aridity of the Sc, Sm and Kr basins is highly sensitive to the
altitude of the Gangdese Mountains. Among the non-sensitive
basins, the simulated wet condition in the Sl basin in all
experiments is consistent with the mudstone records (Wang
et al., 2013), the simulated mixed condition in the Gb basin is
consistent with the mixed types of deposition within that basin
(Hasegawa et al., 2009; Jerzykiewicz and Russell, 1991), and the
arid land type in the Nm basin is also in agreement with the
evaporitic lacustrine and eolian dune-field deposits (DeCelles
et al., 2007). The aridity of the Or basin is underestimated by the
model. There is no plausible reason why the Or basin is not dry
enough in the simulations but one reason could be that the effect
of dust is neglected in our simulations. The semi-direct effect of
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atmospheric dust is that it can absorb sunlight and evaporates the
surrounding clouds, especially those above the dust; the dust can
also increase the number of cloud condensation nuclei, reducing
the size of cloud droplets and increasing the lifetime of cloud
droplets. Both of these effects can reduce the amount of rain.
Another significant deviation between the modeled and proxy-
inferred aridity appears for the Tr basin. This basin is arid in all
simulations (Figure 5), which is a little drier than that indicated
by the prevalent red beds in that region (Figure 6A). However,
the red bed in the Tr basinmight not be treated as robust evidence
of semi-arid to dry sub-humid condition because the region was

likely influenced by a few transgression-regression cycles (Jolivet
et al., 2018; Zhang et al., 2018b).

The qualitative nature of both the modeled and reconstructed
aridity does not warrant a quantitative comparison. Therefore, we
compare them qualitatively in Figure 5F, in which the size of the
filled circles is proportionate to the difference between modeled
AI and reconstructed aridity. The Kr basin requires the Gangdese
Mountains to be higher than 1 km (Figures 5C–E); the modeled
Sm and Sc basins become arid when the Gangdese Mountains
reach 3 km or 4 km (Figures 5D,E), so they require a height of
lower that 3 km. Synthesizing the comparisons gives an optimum

FIGURE5 | Land types of experiments Gds_0 km (A), Gds_1 km (B), Gds_2 km (C), Gds_3 km (D), Gds_4 km (E), respectively, and difference betweenmodeling
results and geological reconstruction in each Basin (F). For the land types in (A–E), H is for the humid type, SH for the semi-humid type, DSH for dry sub-humid type, SA
for the semi-arid type, A for the arid type, and HA for the hyper-arid type, respectively; And each irregular polygon in A-E represents a basin (DeCelles et al., 2007;
Hasegawa et al., 2012;Wang et al., 2013), and abbreviated basin names are as follows: Gb �Gobi, Tr � Tarim, Or �Ordos, Sc � Sichuan, Sm � Simao, Kr �Khorat,
Sl � Songliao, Nm � Nima.
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height of the Gangdese Mountains at ∼2 km, with a maximum
possible range of 1–3 km (Figure 5F). Hu et al. (2020) concluded
that the Southern Lhasa terrain had attained 2.2 ± 0.6 km at
76.53 ± 2.00 Ma based on the whole-rock Sr/Y and La/Yb ratios,
where the age is within the late Cretaceous considered in this
study. They inferred the range of the paleoelevation of the
Gangdese Mountains might be 1.6–2.8 km, consistent with our
estimate.

In this study, only the Gangdese Mountains from the Southern
Lhasa terrane is considered. A proto-Tibetan Plateau including
Lhasa and Qiangtang terranes might have uplifted during the
Cretaceous but its central and northern parts was lower than that
of the Gangdese Mountains (Hu et al., 2020). Previous modeling
studies have shown that the influence of modern Tibet Plateau on
the East Asian monsoon is primarily due to the effect of
Himalayas on its southern edge (Boos and Kuang, 2010;

Acosta and Huber, 2020), which may be analogous to
influence of the proto-Tibetan Plateau and the Gangdese
Mountains. Therefore, ignoring the Lhasa terrane is not
expected to have significant influence the main results of
this study.

DISCUSSION

There have been multiple attempts to reconstruct the
paleoaltitude of the Gangdese Mountains for the post India-
Asia collision period (e.g. Spicer et al., 2003; Ding et al., 2014; Ai
et al., 2019), but to the best of our knowledge, few have beenmade
for the period before their collision, such as the Late Cretaceous.
Since the uplift of Lhasa terrane has been widely reported before
the India-Asia Collisions (Kapp et al., 2005; DeCelles et al., 2007;

FIGURE 6 | The sedimentary records in mid-to low-latitude Asian basins (A), and evolution of the Gangdese Mountains from Cretaceous to Miocene (B). In B, The
dashed line represents the relatively stable stage of the Gangdese Mountains with a medium height from the Early Cretaceous to Late Cretaceous based on our result
and Hu et al. (2020), the dots with error bars from Paleocene to Miocene are from Ai et al. (2019), Currie et al. (2005), Ding et al. (2014), Khan et al. (2014), and Xu et al.
(2018), and the dotted data with arrow represents the least elevation (Zhu et al., 2017) or the highest elevation (Botsyun et al., 2019).
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Kapp et al., 2007; Sun et al., 2015), there is no reason to believe
that the Gangdese Mountains did not rise during that time. Our
results may provide an estimate for the early evolution of the
Gangdese Mountains (Figure 6B).

The ∼2 km altitude of the Gangdese Mountains during the
Late Cretaceous as constrained herein can reconcile some
evidence for their evolution both before and after this period.
During the Early Cretaceous (144–100 Ma), most of the Lhasa
block was low (Murphy et al., 1997), implying a not high
Gangdese mountain range as well. The Lhasa block was
uplifted due to its collision with the Qiangtang block (Murphy
et al., 1997) and/or the subduction of the Neotethyan oceanic
lithosphere (Kapp et al., 2005, 2007). Recent paleoelevation
reconstruction suggested that the paleoelevation of the
Gangdese Mountains was relatively stable at ∼2.5 km during
the Cretaceous, though it decreased to ∼2 km for the
extensional environment (Hu et al., 2020). After that, there are
two different pathways that have been envisioned for its
evolution. In the first pathway, the Gangdese Mountains are
thought to have reached a high elevation of 4–5 km during
Eocene-Miocene (grey line in Figure 6B), while in the other,
they only reached an elevation of <3 km by the latest Oligocene
(black line in Figure 6B).

The whole uplifting history of the Gangdese Mountains,
consistent with the first pathway, may be roughly divided into
three stages (Figure 6B). Stage I is characterized by a relatively
stable paleoelevation between ∼2–3 km before the India-Asia
collision. This relatively stable stage is supported by the
whole-rock Sr/Y and La/Yb ratios (Hu et al., 2020) and a
constant convergence rate between the Indian subcontinent
and the paleo-Asian continent (Wang et al., 2020), suggesting
significant crustal shortening prior to 69 Ma (England and Searle,
1986; Kapp et al., 2007; Leier et al., 2007), probably resulted from
the subduction of the Neotethyan oceanic lithosphere (Murphy
et al., 1997; Kapp et al., 2003, 2005). When the Indian
subcontinent collided with the Asian continent, the Gangdese
Mountains was uplifted to 4.5 ± 0.4 km based on the variation of
δ18O (Ding et al., 2014) and spatial and temporal variations of
crust thickness (Zhu et al., 2017). Thus this uplift was
accomplished in a relatively short time period, and may be
distinguished as a new stage, i.e. Stage II (Figure 6B). After
Stage II, the elevation of the Gangdese Mountains rose further but
at a very slow rate from Eocene to middle Miocene, induced by
the continued convergence of the Indian and Asian plates (Spicer
et al., 2003). This relative quiescent state is referred to as Stage III,
and the Gangdese Mountains reached ∼5 km around early-
middle Miocene (Spicer et al., 2003; Currie et al., 2005; Khan
et al., 2014; Currie et al., 2016; Xu et al., 2018).

In the second pathway, the elevation of the Gangdese
Mountains remained low till the latest Oligocene. By
comparing the modeled and reconstructed δ18O, Botsyun et al.
(2019) suggested that the TP only reached low to moderate
(<3 km) elevations during the Eocene (∼40 Ma). This greatly
reduced the likelihood of the Gangdese Mountains reaching
higher elevation at an earlier time period. Discovery of the
fossil flora, representing deciduous, broad-leaf vegetation,
suggests a temperate, humid environment with paleoelevation

of only 1.5–2.9 km at 23.3 Ma (Ai et al., 2019). This pathway is
represented by a thick black line in Figure 6B. Because the India-
Asia collision occurred in early Paleogene (Hu et al., 2015, Hu
et al., 2016) and continued afterwards, the uplift of the Gangdese
Mountains coming to a halt during this time needs an
explanation if this was indeed true what happened.

CONCLUSION

The climate effect of the Gangdese Mountains is simulated in this
study using the general circulation model CESM1.2.2. The rise of
the Gangdese Mountains causes drying on its immediate
northeast in the downwind direction, and the drying
exacerbates with the altitude of the mountain range.
Therefore, the aridity in the Kr, Sc and Sm basins is sensitive
to the altitude of the Gangdese Mountains and able to provide a
semi-quantitative constraint on the altitude of the Gangdese
Mountains. The aridity index is further calculated for this
region, and its comparison with the sedimentary records
suggests that Gangdese Mountains should be higher than 1 km
but lower than 3 km during the Late Cretaceous, most
likely ∼2 km.
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