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Late Cenozoic drying of the Asian inland has not only exerted a profound impact on the regional environment but also affected global climate as an important source of global atmospheric dust. Continuous and accurately dated sediment records from the Asian interior are pivotal to a better understanding of the evolutionary history of Asian inland drying and the associated driving mechanisms. In this study, we present a continuous record of climate change in the Asian interior spanning the past 7.3 Myr, reconstructed by the redox evolution of a paleolake in the western Qaidam Basin, NE Tibetan Plateau. The paleolake redox conditions are linked to the oxygen concentration of lake bottom water and lake level, and were revealed by the manganese (Mn) concentration in the carbonate fraction (leached by the diluted acetic acid) of the carbonate-rich lacustrine sediments retrieved from two drill-cores (SG-1 and SG-1b). The reconstructed regional climate in the western Qaidam Basin shows long-term fluctuations, consistent with the secular evolution of the coeval global climate, especially the sea surface temperature variation in the high latitude North Atlantic. Three transitions of the paleolake hydrochemical system occurred at 6.2, 5.3, and 2.6 Ma, with a short drying stage at 6.2–5.3 Ma and prolonged Quaternary drying since 2.6 Ma. We argue that drying of the Asia interior has been dominantly forced by global cooling, in particular, the high-latitude cooling of the Northern Hemisphere.
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INTRODUCTION
As the largest temperate arid region, the Asian inland has attracted broad interest due to its strong impacts on regional and global climate change. The Asian inland drying is generally regarded as a coupling consequence of land-sea-atmosphere interaction, which could be dated back to the early Eocene (e.g., Li et al., 2018) and significantly enhanced since the late Oligocene-early Miocene (Guo et al., 2002; Sun et al., 2010a; Lu et al., 2019; Sun et al., 2020b). The driving mechanism appears to correspond closely with the uplift of the Tibetan Plateau (e.g., Manabe and Terpstra, 1974; Kutzbach et al., 1989; An et al., 2001; Guo et al., 2002), the retreat of the Para-Tethys Sea (Ramstein et al., 1997; Fluteau et al., 1999; Zhang et al., 2007; Meijer et al., 2019), and global cooling with Cenozoic development of bipolar glaciations and continental ice sheets (e.g., Ding et al., 2005; Dupont-Nivet et al., 2007; Sun et al., 2014; Li et al., 2018; Fang et al., 2019) or a combination of them (e.g., Guo et al., 2002; Lu et al., 2019). Especially during the Neogene-Quaternary, the regional drying and eolian dust activity have been greatly enhanced in the Asian interior (e.g., Rea et al., 1998; Guo et al., 2002; Sun and Liu, 2006; Kent-Corson et al., 2009; Sun et al., 2010a; Zhuang et al., 2011; Li et al., 2014; Guo et al., 2018; Jia et al., 2021). However, intensive tectonic activity since the late Oligocene-Early Miocene in the northern Tibetan Plateau and the Central Asian orogenic belt (Li et al., 2014; Lu et al., 2018; Wang et al., 2020; Yang et al., 2021 and reference therein) yields much coarser lithology with frequent changes in sediment facies in basin sequences, which hinders a better understanding of the full range of aridification and its driving force using the basin sediment records.
The Qaidam Basin, an inland arid area in the northeast Tibetan Plateau, is dominantly under the influence of the middle-latitude westerlies, with its southeast corner being impacted by the East Asian monsoons (Figure 1), thus providing the ideal area to reveal tectonic-climate linkages in terms of aridification of the Asian interior. The up to 10–15 km thick Cenozoic fluvial-lacustrine deposits in the basin contain crucial information on the evolution of the paleoenvironment and paleoclimate in the basin. Previous studies reconstructed the regional climate evolution using a variety of proxy records, e.g., pollen (Lu et al., 2010; Miao et al., 2011; Cai et al., 2012; Miao et al., 2016; Koutsodendris et al., 2019; Jia et al., 2021), biomarker (Zhuang et al., 2014; Zhuang et al., 2019; Sun et al., 2020c; Wu et al., 2019; Wu et al., 2021), clay minerals (Fang et al., 2016; Ye et al., 2016; Ye et al., 2018; Fang et al., 2019; Ye et al., 2020), and geochemical records (e.g., Zhuang et al., 2011; Yang et al., 2013a; Yang et al., 2013b; Yang et al., 2014; Yang et al., 2015; Yang et al., 2016; Song et al., 2017; Bao et al., 2019; Han et al., 2020; Song et al., 2020). However, the late-Miocene-Quaternary is a transition period of the Qaidam Basin from a dominant fresh-brackish lake environment in mid-Miocene to a widely spread salt lake and dry land in the Quaternary (e.g., Guo et al., 2018). Continuous, high-resolution and well-dated lake sediment records are pivotal to revealing the transformation of regional climates.
[image: Figure 1]FIGURE 1 | (A) Topographic map of the Tibetan Plateau and Central Asia indicating the Qaidam Basin area. (B) Map of the Qaidam Basin and adjacent region showing the surrounding mountains, major structures, and the study area (modified from Zhang et al., 2012a). (C) Geologic map of the study area in the western Qaidam Basin showing the locations of the SG-1b and SG-1 drill-sites (red asterisks) (modified from Zhang et al., 2012b).
We present a long-term hydrochemical record of the western Qaidam paleolake covering the past ∼7.3 Myr, based on analysis on two accurately dated drill-cores (SG-1 and SG-1b). Dissolved manganese (Mn) concentration in lake water reacts strongly to changes in redox conditions of lake bottom water and the lake level fluctuations in a closed basin (Yang et al., 2013a). Dissolved Mn in lake water can be incorporated in the authigenic carbonate minerals, thus leaving the hydrochemical imprint into the past sediment archives. Previous studies have revealed that Mn in carbonates (diluted acetic acid dissolved fraction) of SG-1 lake sediments (2.8–0.1 Ma) in the western Qaidam Basin is a sensitive indicator of paleolake evolution and regional climate (Yang et al., 2013a). We thus integrated new data of carbonate Mn concentration from the SG-1b core (7.3–1.6 Ma) with the previous SG-1 Mn records to reconstruct a continuous history of paleolake and climate evolution in the western Qaidam Basin since 7.3 Ma.
MATERIALS AND METHODS
The Qaidam Basin, with an average elevation of 3000 m, forms the largest inland basin on the northeastern Tibetan Plateau. The basin is surrounded by the East Kunlun Shan to the south, the Qilian Shan to the northeast, and the Altyn Mountain to the northwest (Figure 1). The closed basin contains more than 10,000 m thick Cenozoic fluvial and lacustrine deposits derived from the surrounding mountains (Xia et al., 2001). The western Qaidam Basin has a hyper-arid environment, with mean annual precipitation less than 100 mm and potential evaporation greater than 2000 mm, and the surface is covered with a strongly indurated decimeter-thick salt crust.
The SG-1b drilling campaign was performed at the top of the Jianshan Anticline in the western Qaidam Basin, 100 km northeast of Lenghu Town, and about 20 km east of the SG-1 borehole (Zhang et al., 2014a, Figure 1). The drilling extended 723m in depth with an average recovery rate of 93%. The sedimentary sequence is mainly featured by deep-water, fine-grained lacustrine sediments comprising clay, clay-silt, siltstone, and calcareous mudstone (Zhang et al., 2014b). From 723 to 232 m, the sediments are characterized by well-bedded grey and/or blue-grey clay or mudstone. The sediments in the upper 232 m are characterized by grey (or dark grey) and blue-grey clay, clay-silt, and siltstone, with small amounts of gypsum crystals or thin gypsum layers (Figure 2, Zhang et al., 2014a; Lu et al., 2015). The SG-1b drill-core was dated at about 7.3–1.6 Ma with magnetostratigraphy (Zhang et al., 2014b), refined by orbital tuning in the period of 3.3–2.1 Ma (Kaboth-Bahr et al., 2020). The sediment accumulation rate in the SG-1 core is almost three times higher than in the SG-1b core (Figure 2), probably because the SG-1 drill-site is located close to the depocenter while the SG-1b core was recovered on an anticline (Zhang et al., 2014a).
[image: Figure 2]FIGURE 2 | (A) SG-1b core lithology and magnetostratigraphy (after Zhang et al., 2014b). (B) Variations in mean grain size fractions in the SG-1b (derived from Lu et al., 2015). (C) Photographs of selected sliced cores between 723 m and 0 m (∼7.3–1.6 Ma). (D) Depth–age plot for the cores SG-1 (Zhang et al., 2012b) and SG-1b (Zhang et al., 2014a) based on the correlation of the polarity sequence with the geomagnetic polarity timescale of Gradstein et al. (2004).
Leaching experiments of loess suggest that 1M acetic acid (HOAc) mainly dissolves the Mn (II) of carbonate rather than manganese oxide (Liu et al., 2002; Liang et al., 2009). Meanwhile, leaching experiments of soil and loess show that the dissolution of clay by 1M HOAc is very weak (Yang et al., 2000; Liu et al., 2002). We thus used the 1M HOAc to leach the sediments in order to obtain the Mn(II) concentrations in the lacustrine sediments. We didn’t use a two-step procedure (water and HOAc leaching) like in the previous study of the SG-1 core (Yang et al., 2013a); instead, we used 1M HOAc leaching to directly react with bulk sediment. Therefore, the carbonate fraction and water-soluble salts are both incorporated in the HOAc leachates of the sediments. One reason for the modified leaching procedure is that only a small amount of gypsum occurred in the upper part of the SG-1b core, while evaporite minerals are abundant in the SG-1 core. Another reason is that multiple leaching experiments showed that a negligible amount of Mn exists in the water-soluble salts of the lacustrine sediments (Yang et al., 2016). Accordingly, diluted acetic acid leaching in our study can extract Mn only from carbonates, which could be well compared with the Mn concentration in the SG-1 core (Yang et al., 2013a).
A total of 619 bulk samples of the SG-1b core were selected for geochemical analysis. Samples were oven-dried at 40°C and ground into fine powder (<200 mesh). Approximately 0.5 g of each sample was leached by 10 ml 1M HOAc at room temperature for 24 h to extract Mn in the carbonate fraction of the samples. Concentrations of Mn, Ca, Mg, and Sr in the acetic acid leachate were analyzed by inductively coupled plasma-optical emission spectrometry (ICP-OES) (Leeman Labs Prodigy-H). Replicate analyses showed a relative standard deviation for all cations of less than 2%. All of the above treatments and measurements were conducted at the Institute of Tibetan Plateau Research, Chinese Academy of Sciences (ITP-CAS), Beijing. To obtain the major minerals (especially carbonate minerals in the core), we chose seven representative samples of SG-1b core for X-ray diffraction (XRD) analysis using a Rigaku D/MAX-2000 diffractometer (Cu, Kα, 1.5406 Å, 40 kV, 100 mA, 3–35°, step 0.02°, 10°/min) at the Micro Structure Analytical Laboratory, Peking University.
RESULTS
The XRD results show that major minerals in the sediments of SG-1b core include quartz, albite, orthoclase, carbonate minerals (calcite, aragonite, dolomite, and ankerite), mica or illite, and chlorite (Figure 3). There is a minor amount of evaporite minerals, e.g., halite, gypsum, and celestite in the core except for abundant gypsum and halite observed in sample 1.1 m at the top of the SG-1b core.
[image: Figure 3]FIGURE 3 | X-ray diffraction patterns of sedimentary minerals from representative samples of the SG-1b core. Note that mica minerals and illite are marked as illite.
Figure 4 shows the results of Mn, Ca, Mg, and Sr concentrations from the HOAc leaching of the SG-1b core sediments (data can be found in Supplementary Material). The concentration of Ca in acetic acid leachates (CaHOAc) mainly represents the calcium carbonate and some Ca-bearing salt minerals (e.g., gypsum) content in the sediments. The small amount of gypsum that only occurs in the upper 232 m suggests that a small amount of Ca is likely from the calcium sulfate. Consequently, the measured Ca concentrations reflect the calcium carbonate content below 232 m and an upper limit of the calcium carbonate content above 232 m. The average CaHOAc is around 10.43%, with slight fluctuations throughout the drill-core, yielding a rough estimate of 25% CaCO3 in the SG-1b core sediments. CaHOAC shows no long-term trend and remains at a relatively high level. The Mg/Ca and Sr/Ca ratios generally remain at ∼0.08 and 0.0085, respectively, and only fluctuate in some layers (Figure 4). MnHOAc values range from 40.7 μg/g to 1315.6 μg/g, with an average of 366.8 μg/g. The MnHOAc variation reveals an upward decrease above ∼240 m and a long-term relative stable content with several fluctuations below ∼240 m (Figure 4). The Mn/Ca ratios present a likewise variation as the Mn content along the whole core.
[image: Figure 4]FIGURE 4 | Depth profiles of Mn, Ca, Mg, and Sr variations of acetic acid leachate (HOAc) in the SG-1b core. (A) Ca concentrations in the HOAc leachate (CaHOAc); (B) The ratio of 1000*Mn/Ca in the HOAc leachate; (C) Mn concentrations in the HOAc leachate (MnHOAc); (D) The ratio of Mg/Ca in the HOAc leachate; (E) The ratio of 1000*Sr/Ca in the HOAc leachate; (F) Mean grain size from Lu et al. (2015); (G) Observed magnetic polarity sequence of the SG-1b core and its correlation with the Geomagnetic Polarity Time Scale (GPTS, Gradstein et al., 2004) (Zhang et al., 2014a). The lithology column is simplified according to Zhang et al. (2014b). Thin lines indicate the raw data for (A–F). Bold solid lines in the records provide 13-point running averages for (A–F).
DISCUSSION
Mn in Carbonate as a Redox Proxy
Manganese is a metallic element reacting sensitively to changes in reduction-oxidation (redox) conditions. Redox conditions of bottom water in a closed lake are generally associated with the lake level. In arid regions, the lake level in a closed catchment is highly sensitive to changes in rainfall (Narisma et al., 2007). Numerous studies have studied the redox behaviour of Mn in lakes (e.g., Dean et al., 1981; Davison, 1993; Hamilton-Taylor and Davison, 1995; Wetzel, 2001). In brief, Mn (II) is soluble in reduced phases while Mn (IV) is insoluble in oxidized phases, both of which are the main valence states of manganese in lake environment and readily converted into each other in the vicinity of a redox boundary (Davison, 1993; Wetzel, 2001). However, Mn (IV) is easily reduced but Mn (II) is not readily oxidized, which can lead to a large field of stability for dissolved Mn (II) (Maynard, 2004). Moreover, Mn sulfide is very soluble in reducing environment (Algeo and Maynard, 2004), and dissolved Mn is not readily taken up by any organic or mineral phase (Huerta-Diaz and Morse, 1992). The above Mn properties result in a diffuse and homogeneous distribution of Mn (II) throughout the lake water body (Hamilton-Taylor and Davison, 1995), thus providing an ideal tool to reflect the lake hydrochemistry in a broad area. The Mn (II) can be sequestered by carbonate formation from low Eh to slightly oxic conditions (Calvert and Pedersen, 1993; Hild and Brumsack, 1998; Caplan and Bustin, 1999; Stevens et al., 2000; Maynard, 2004; Tribovillard et al., 2006). Hence, Mn concentration in carbonate is sensitive to lake-water redox conditions linked to the oxygen content of the bottom water and water depth (e.g., Schaller and Wehrli, 1997; Stevens et al., 2000). Mn concentration in carbonate has successfully been used in the SG-1 core to address the lake redox conditions and regional climate at long-term and glacial-interglacial scales (Yang et al., 2013a; Yang et al., 2016).
Controlling Factors
Provenance change along with detrital Mn input unlikely controls MnHOAc variations. Mn-rich bedrocks, such as rhodochrosite- or pyrolusite-rich rocks, are not found in the surrounding mountains of the western Qaidam Basin (RGMRGD, 1985). Exposed rocks in the catchment area are variable, with many intermediate and acid rocks. These are mainly grey gneiss, siliciclastic rocks, dolostone, quartzite, phyllite, marble, carbonatite, peridotite, serpentinite, augite, diorite, and granite of Precambrian to Early Cretaceous ages (Zhang, 1987; Wang et al., 2008). Carbonate analyses of the nearby Lenghu and Ganchaigou lacustrine sediments show that the average proportions of detrital carbonates to total carbonates are 11 and 13%, respectively (Hanson, 1999; Graham et al., 2005). Therefore, any Mn signal inherited from detrital carbonates should be relatively small. The lack of Mn-rich rocks in the catchment suggests that the provenance change that potentially follows regional uplift in the western Qaidam Basin cannot exert a dominant control on Mn concentration in lake water and carbonates, although anticline development following the uplift since 3.6 Ma could alter the clastic sedimentation (Lu et al., 2015).
Diagenesis of carbonate minerals can significantly alter Mn concentrations in carbonates during recrystallization. The Mn partitioning coefficients for sedimentary carbonate minerals are larger than 1, and Mn is thus preferentially incorporated into crystals rather than solutions (Brand and Veizer, 1980; Rimstidt et al., 1998). Lithological investigation of the SG-1 core (Wang et al., 2012) and the SG-1b core (Lu et al., 2015; Lu et al., 2021) didn’t show an obvious diagenetic imprint for carbonate minerals. Carbon and oxygen isotopic results from sedimentary carbonates in the SG-1 core (Han et al., 2014) and in Neogene lacustrine strata from adjacent areas, such as Lenghu and Laomangnai (Kent-Corson et al., 2009), demonstrate that the carbonate minerals are only diagenetically altered to a minor degree if any.
The high contents of carbonate minerals in the SG-1b core suggest that, similar to the SG-1 core (Yang et al., 2013a), the paleolake water was saturated with calcium carbonate. It means that sufficient bicarbonate existed in the paleolake during which Mn concentrations in carbonate phases will be in proportion with dissolved Mn in lake water, thus not relying on the amount of carbonate. It can be supported by the similar changes between Mn/Ca ratio and Mn concentrations (Figure 4). Furthermore, despite the location difference of the two cores within the basin sedimentation system (Zhang et al., 2014b), the well-matched MnHOAc variations and concentrations in the overlapped duration (2.8–1.6 Ma) of the two cores also confirm a homogeneous dissolved Mn distribution throughout the lake water body. Based on these observations, MnHOAc in the SG-1b core (7.3–1.6 Ma, this study) and in the SG-1 core (2.8–0.1 Yang et al., 2013a) could be integrated to reconstruct the evolution of dissolved Mn concentrations in the paleolake of the western Qaidam paleolake since 7.3 Ma (Figure 5).
[image: Figure 5]FIGURE 5 | Integrated MnHOAc record of the SG-1b and SG-1 drill-cores since 7.3 Ma in the Qaidam Basin compared with other records. (A) Global marine benthic foraminiferal δ18O record (‰) (Zachos et al., 2001). (B) Alkenone-derived sea surface temperature (SST) record from the North Atlantic Ocean at ODP Site 982 (Herbert et al., 2016). (C) Stacked high latitude SST anomalies in North Hemisphere (Herbert et al., 2016). (D) MnHOAc record over the past 7.3 Myr (raw data, grey lines for the SG-1b core and light blue-green lines for the SG-1 core; red and black lines are 100- and 400-kyr smoothing of the raw data, respectively). (E) Artemisia content of the SG-1b and SG-1 cores (Koutsodendris et al., 2019). (F) Summer monsoon index in the Chinese Loess Plateau (Sun et al., 2010b). (G) Mass accumulation rate (MAR) of eolian dust at Site 885/886 in the northern Pacific Ocean (Rea et al., 1998).
Dissolved Mn concentration in the paleolake is mainly supplied by weathering of Mn-bearing minerals from the source area and further modulated by the lake bottom water redox conditions. To be more specific, as Yang et al. (2013a) proposed, the high MnHOAc concentration in the integrated record represents an increased input of dissolved Mn and Mn oxide-hydroxide from the source area with an intense reducing capacity that transformed Mn oxide-hydroxide to dissolved Mn(II). This scenario reflects a high lake level, probably with a stable thermocline and oxygen-deficient bottom water in a warm and humid climate. Conversely, the low MnHOAc concentration represents a decreased input of dissolved Mn and Mn oxide-hydroxide from the source area with a weakened reducing capacity that transformed Mn oxide-hydroxide to dissolved Mn(II). This scenario thus indicates a low lake level together with a less developed thermocline, probably well mixed and oxygen-deficient bottom water in a cold and dry climate. In this sense, the MnHOAc concentrations present long-term fluctuations of regional climate.
Driving Mechanism
Comparisons of the integrated MnHOAc record from the SG-1b core (this study) and SG-1 core (Yang et al., 2013a) with the benthic δ18O record (Zachos et al., 2001) and alkenone sea-surface temperatures (SST) of the North Atlantic Ocean (Herbert et al., 2016) show that the variation of MnHOAc is in general agreement with the global change and the climate of the high-latitude Northern Hemisphere (Figure 5). This becomes evident from the scatter plot of the MnHOAc record with benthic δ18O and OPD 982 Site SST (Figure 6). The integrated MnHOAc record is especially more synchronous with the North Atlantic Ocean SST (Figure 5), suggesting that the reduction of westerlies moisture caused by high-latitude cooling of the Northern Hemisphere directly affects the aridification of the Qaidam Basin. In addition, cooling in the Northern Hemisphere could also lead to cooler and drier conditions in the Qaidam Basin through enhancement of the Siberian High (Porter and An, 1995; Fang et al., 1999). A cooler and drier climate would reduce catchment Mn input from the catchment and elevate the oxygen content in lake bottom water, thus collectively leading to a decline in contents of dissolved Mn in lake water and MnHOAc in carbonate. However, it should be noted here that cooling since the late Miocene occurred synchronously in both hemispheres (Herbert et al., 2016). Given the close relationship among the high-latitude SST (especially in the North Atlantic), the formation of deep water, and the deep water δ18O (e.g., Zachos et al., 2001; Lozier, 2010), we here don’t distinguish the high latitude cooling in the North Hemisphere from a global context.
[image: Figure 6]FIGURE 6 | Cross-plots of the MnHOAc content in the SG-1 and SG-1b cores with the SST in ODP Site 982 (A) and benthic δ18O (B) since 7.3 Ma (ages are indicated by colour code). Power fits (LnY=BX + A) of MnHOAc versus SST and δ18O, yield correlation coefficients of 0.707 for (A) and −0.707 for (B), respectively (p < 0.0001). SST and δ18O data were interpolated at the same resolution as MnHOAc.
In order to detect possible nonlinear dynamical transitions in the regional climate record in the Qaidam Basin and to facilitate an evaluation of the underlying regulating driving mechanism(s), we performed a recurrence analysis (Marwan et al., 2007) of the MnHOAc time series (Figure 7). The recurrence plot is a binary plot, in which periodic processes are expressed as areas with higher-density points (i.e., longer lines and less isolated recurrence points), while chaotic/stochastic climate fluctuations are expressed by only isolated recurrence points or very short lines. Transition/shifts between different states can capture key transitions of system regime. The recurrence analysis has been successfully used to determine the climate state transitions using high-resolution proxy records, e.g., the Cenozoic climate (Westerhold et al., 2020) and the Quaternary climate in the Qaidam Basin (Han et al., 2020). The result of recurrence analysis of the integrated MnHOAc record shows three major transitions at 6.2 Ma, 5.3 Ma, and 2.6 Ma. Compared with the dry/wet cycles as suggested by the MnHOAc record (Figure 7), the 6.2 Ma marks the initiation of a short drying stage between 6.2–5.3 Ma, which accords with the concomitant rise in benthic δ18O and decline in SST in North Atlantic (Figures 5A,B). The 5.3 Ma change, i.e., at about the Miocene/Pliocene boundary, is a transition stage from the prior drying stage to the subsequent wetting stage in the Qaidam Basin, which is consistent with global warming at that time (Figure 5). The system change at the Pliocene/Quaternary boundary (2.6 Ma) marks the onset of prolonged and extensive Quaternary drying in the Qaidam Basin, which is contemporaneous with the intensification of the North Hemisphere glaciation. The three major transitions determined by the recurrence analysis thus indicate the major dry/wet changes in the Asian interior. All these transitions well match the global climate and the high latitude climate of the North Hemisphere, implying that global change modulated the Asian inland climate since 7.3 Ma at long-term scales.
[image: Figure 7]FIGURE 7 | Plots of MnHOAc 100-kyr sliding window means (top) and recurrence analysis of MnHOAc variation (bottom) for the integrated SG-1 and SG-1b data, showing major climate transitions during the past 7.3 Myr. Red arrows show the three major transitions at around 6.2 Ma, 5.3 Ma and 2.6 Ma, which correspond to the major boundaries between dry and wet stages as suggested by the MnHOAc data in the upper panel. The blue arrow marks the beginning of the Pliocene drying since ∼3.6 Ma.
Further spectral analysis of the MnHOAc concentrations shows significant periodicities at 23, 41, 100, and 405 kyr (Figure 8), which are consistent with the orbital cycles in benthic δ18O record (Zachos et al., 2001) and in OPD 982 Site SST (Lawrence et al., 2009). In particular, the enhanced eccentricity band at 405 and 100 kyr during the Quaternary compared with the dominant obliquity band before 2.7 Ma (Figure 8) confirms an orbital change at the Mid-Pleistocene Transition (MPT, 1.2-0.8 Ma) from ∼40 to ∼100 kyr (e.g., Clark et al., 2006). Therefore, global change and northern hemisphere high latitude processes could modulate the Asian inland climate at orbital time scales, which is also supported with other studies of high-resolution Quaternary records in the SG-1 core (e.g., Han et al., 2020).
[image: Figure 8]FIGURE 8 | Spectral analysis of the carbonate Mn record after 2.7 Ma (A) and before 2.7 Ma (B). Green and blue dashed lines are 90 and 95% significance levels, respectively.
The MnHOAc results also record a dramatic environmental turnover from ∼3.6 to 2.6 Ma, during which the regional climate shifted from the dominant wetting stage to the prolonged Quaternary cooling (Figure 5). This climate turnover since 3.6 Ma could be witnessed by the rise in the Artemisia content of the pollen record (Koutsodendris et al., 2019) (Figure 5E) and the rise in eolian accumulation rate in the North Pacific (Rea et al., 1998). This 3.6 Ma-event is a widely observed drying event in East and Central Asia (Ge et al., 2013), but corresponds to an East Asian monsoon enhancement as shown by the summer monsoon index in the Chinese Loess Plateau (Figure 5F, Sun et al., 2010b; Nie et al., 2014; Ye et al., 2018). This Asian inland drying coupled with East Asian wetting is a typical environmental impact of the uplift of the northern Tibetan Plateau (e.g., An et al., 2001; Zhang R. et al., 2012; Tada et al., 2016). There is abundant observational evidence of the tectonic movements in the northern Tibetan Plateau at ∼3.6 Ma. The anticline development since 3.6 Ma was also suggested by the grain-size records of the SG-1b core (Lu et al., 2015). During 3.6–2.6 Ma, huge conglomerate layers widely formed in the basins at the northeastern edge of the Tibetan Plateau, such as the Qaidam basin (Fang et al., 2003), Linxia basin (Fang et al., 2003), Guide basin (Fang et al., 2005a), Jiuxi basin (Fang et al., 2005b). Hence, the rapid drying at ∼3.6 Ma in this study is probably caused by the Tibetan Plateau uplift superimposed on the global cooling.
In addition, the westward retreat of the Para-Tethys Sea seems unlikely to affect the regional drying in the Qaidam Basin since 7.3 Ma, although it is thought to have caused the Asian interior aridification from the middle Eocene to the Eocene-Oligocene transition at ∼34–33 Ma based on evidence from the Xining, Tajik, and Tarim Basins (Bosboom et al., 2014; Carrapa et al., 2015; Sun et al., 2016; Kaya et al., 2019; Meijer et al., 2019; Sun et al., 2020a) and the modelling work (see Ramstein et al., 1997; Zhang et al., 2007). The Para-Tethys and the Neo-Tethys seas before the late-Miocene has retreated to a place (e.g., Zhang et al., 2014a; Sun et al., 2021) that cannot have a significant impact on the Qaidam Basin. In particular, the moisture barrier of the mid-latitude westerlies has established before the late-Miocene, for example, the Pamir uplift (e.g., Blayney et al., 2019; Wang et al., 2020).
CONCLUSION
The integrated MnHOAc records since 7.3 Ma from the two deep drilling cores (SG-1b and SG-1) in the Qaidam Basin revealed the evolution of Qaidam paleolake and regional paleoenvironmental change during the late Cenozoic. The region climate exhibited long-term fluctuations, similar to the global change, especially the North Atlantic high latitude sea surface temperature. Three transitions of the paleolake hydrochemical system occurred at 6.2, 5.3, and 2.6 Ma, which deliminate a short drying stage at 6.2–5.3 Ma and a prolonged Quaternary drying stage since 2.6 Ma. This Quaternary drying may be related to the enhanced aridification of the Asian interior since 3.6 Ma. We argue that the drying history has been caused by global cooling, in particular, the high-latitude cooling of the Northern Hemisphere with some contributions from the growth of the northern Tibetan Plateau at 3.6 Ma.
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