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To simulate the moving boundary problems, the moving least square–based numerical
manifold method, abbreviated as MLS-based NMM, was proposed. The MLS-based
NMM has been applied successfully to open crack problems, which exhibits the high
accuracy and strong robustness. In this study, we extend the MLS-based NMM to
simulate the cracked rock considering the contact of the crack surface.
Simultaneously, in order to simulate the progressive failure of the cracked rock, an
improved strength-based criterion is proposed. The criterion is based on the
Mohr–Coulomb criterion and maximum tensile stress criterion. Because rock can be
regarded as a quasi-brittle material, a characteristic distance is used to calculate the crack
tip stress and correct the crack propagation direction which avoids the phenomenon of
“Zig-zag” for the crack propagation path based on the fracture mechanics criterion. The
proposed strength-based criterion can acquire the crack tip stress and propagation
direction and also realize the automatic determination of the crack propagation length in
each step of the crack growth. A Brazilian disc problem and a rectangular plate problem
are adopted to verify the numerical model. At last, the numerical model is applied to study
the progressive failure process of the rock slope. The results indicate that the proposed
method can deal with the crack propagation in the rock and the opening/sliding of rock
blocks along discontinuities in a natural way.

Keywords: numerical manifold method, moving least squares, contact, cracked rock, strength-based criterion,
crack propagation

INTRODUCTION

In rock engineering, rock mass is rich in a large number of discontinuous cracks and joints, which
often leads to instability and destruction of the engineering structures. In addition, oil and gas
exploitation need to produce directional cracks in the rock mass for increasing the production. Thus,
the research of crack propagation in rock mass is of great significance to practical engineering
activities.

Under the action of self-weight stress and tectonic stress, cracks may be in a closed state during the
development process. In order to accurately simulate the crack propagation in rock mass, the contact
between the crack surfaces must be considered. At present, the simulative methods of crack
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propagation considering contact are mainly divided into three
categories: 1) Continuum-based analysis method, such as the
finite element method (Li et al., 2005), extended finite element
(Liu and Borja, 2008; Xie et al., 2016), mesh-free/mesh-less
method (Zhu et al., 2011), scaled boundary finite element
method (Zhang P. et al., 2021), and phase-field method (Fei
and Choo, 2020). 2) The analysis method based on the
discontinuous medium, such as discontinuous deformation
analysis (Ning Y. et al., 2011; Zhang K. et al., 2021), discrete
element method (Camones et al., 2013; Yan and Zheng, 2017),
and peridynamics (Rabczuk and Ren, 2017; Lu et al., 2021).3) The
continuous and discontinuous unified analysis method, such as
the numerical manifold method (Wu and Wong, 2012; Liu et al.,
2017; Zheng et al., 2019; Yang et al., 2020b). It is not an easy task
for continuum-based analysis methods to simulate complex crack
problems. For example, it is difficult to construct the level set of
the extended finite element to describe the position of the
complex crack, and the finite element method requires that
the crack tips stay on the edge of the element at each step of

crack propagation. The phase-field method requires additional
calculation of the field and encryption of the grid near the crack,
which results in low computational efficiency. The analysis
method based on the discontinuous medium can deal with the
complex crack problem well, but the calculation accuracy is not
high in the continuous area. Although there are corresponding
coupling methods, the data transmission problem at the junction
of different areas needs to be considered, which is more difficult
to handle. In view of this, the numerical manifold method
(NMM) (Shi, 1991) was proposed, which belonged to the
continuous and discontinuous unified analysis method.

At the beginning of the NMM, it aimed to solve the continuous
and discontinuous problems in geotechnical engineering under a
unified framework. The continuous and discontinuous solutions
were implemented by using two sets of covering systems, which
were physical and mathematical covers, and the penalty method
for imposing contact boundary conditions with an open-close
iteration determining the contact states. After 30 years of
development, it has made great achievements in basic theories

FIGURE 1 | Mathmatical nodes, background integration mesh, and some mathamatical patches for the cracked body in the MLS-based NMM.
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(Liu and Zheng, 2016; Yang and Zheng, 2017; Liu et al., 2020; Liu
and Zheng, 2021) and applications (Jiang et al., 2010; Wang and
Gong, 2012; Zheng et al., 2015b; Fan et al., 2016; Chen and Li,
2017; Zhang et al., 2018; Guo et al., 2019; Yang et al., 2019; Yang
et al., 2020a). The studies on crack propagation using the NMM
are discussed in detail below.

According to whether the crack tips are allowed to stay inside
the physical patch with crack propagation, the NMM can be
divided into two categories. The first type is that only the crack
tips are allowed to stay at the edge of the physical patch. Based on
a local mesh refinement and auto-remeshing scheme, Tsay et al.
(1999) carried out the simulation of crack propagation using the
NMM. Later, Chiou et al. (2002) combined the virtual crack
extension method to simulate the mixed mode fracture
propagation. Zhang G. et al. (2010) applied the second-order
manifold method to simulate the toppling failure of the rock
slope. Considering the crack surface contact, the stability analysis
of the rock slope was studied based on the Mohr–Coulomb
criterion with a tensile cutoff (Ning Y. J. et al., 2011; An et al.,
2014). Based on a cover refinement method, Yang et al. (2014)
modeled cracks with contact. The second type is that the crack
tips are allowed to stay at any position of physical patch. In order
to reflect the singularity and discontinuity near the crack tip, a

FIGURE 2 | Some typical physical patches and they attach to physical nodes for the cracked body in the MLS-based NMM.

FIGURE 3 | Force analysis of the contact pair about angle to edge.
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local approximation function is introduced to improve the
solution precision (Li and Cheng, 2005; Ma et al., 2009; Liu
et al., 2021a), which is also known as the enriched NMM. Most
studies have focused on open cracks (without considering the
contact of the crack surface), such as tensile/tension-shear crack
propagation (Zhang H. H. et al., 2010; Yang et al., 2016a; Yang
et al., 2016b; Xu et al., 2019) and hydraulic fracturing modeling
(Yang YT et al., 2018). Frictional contact cracks using the
enriched NMM are studied in detail in the literature (Wu and
Wong, 2012; Liu et al., 2017; Zheng et al., 2019). The enriched
NMM has successfully simulated the failure process of the rock
slope considering the contact of the crack surface (Wong andWu,
2014; Yang et al., 2020b). Obviously, if only the crack tip is
allowed to stay at the edge of the physical patch and the local
mesh refinement technology near the crack tip is not adopted, the
calculation error will increase when the mesh is coarse.

In order to further improve the solving accuracy of the NMM
and its ability to deal with moving boundary problems, the
moving least square–based NMM (abbreviated as the MLS-
based NMM) was proposed (Zheng et al., 2014), which
allowed the crack tips to exist in the physical patch.
Compared with the traditional NMM, the MLS-based NMM
without changing the arrangement of mathematical nodes can
improve the approximate precision of partition of unity by
increasing the size of the constructing mathematical patch and
choosing the order of basis function and the type of weight
function constructing MLS. Of course, the MLS-based NMM also
inherits the advantage of the NMM to improve the approximate
accuracy by constructing a local approximation function
(increasing the order or reflecting the analytical solution of the
local characteristics of the problem domain) (Zheng et al., 2014;
Zheng and Xu, 2014), and it is easy to implement p-adaptive
analysis (Liu and Xia, 2017). It can solve the continuous and
discontinuous problems in a unified framework. Through the
construction of tailored local approximate functions, the essential
boundary condition and material interface continuity can be
imposed exactly (Zheng et al., 2017). The MLS-based NMM
for seepage analysis (Zheng et al., 2015b) and 3D static and
dynamic analyses of the continuous elastic body (Liu et al., 2019)
have also been presented.

At present, the MLS-based NMM is mainly used for open
crack analysis (Zheng et al., 2014; Zheng et al., 2015a; Li et al.,
2018a; Li et al., 2018b; Li et al., 2021). This study will expand the
MLS-based NMM to study the closed crack propagation
considering the contact boundary conditions of the crack
surface. So, a variational equation for conservation of
momentum considering the contact will be established and
discretized by the MLS-based NMM.

The maximum circumferential stress criterion based on
fracture mechanics is only applicable to the case where the
type I stress intensity factor (KI) is greater than or equal to
zero (Wu and Wong, 2012). However, when the criterion is used
to simulate compression-shear cracks, KI is usually less than zero,
which is actually unreasonable. The simulated results based on
the fracture mechanics criterion are also given in section 6, and it
is found that the propagation path is “Zig-zag”, which deviates
from the reality. Therefore, inheriting the literature (Zheng et al.,

2019; Yang et al., 2020b), this study proposes an improved
strength based on the Mohr–Coulomb criterion and maximum
tensile stress criterion, including the crack initiation criterion,
propagation direction, and propagation length and verifies its
validity through numerical examples.

Section 2 gives a detailed introduction to the MLS-based
NMM, including MLS, cover systems, global approximation
function space, and background integration mesh. In section
3, the method of contact treatment in the MLS-based NMM, the
inheritance strategy of the degree of freedom during crack
propagation, and the variational equation of momentum
conservation considering contact are introduced, and the
corresponding solving scheme of the MLS-based NMM is
established. In section 4, an improved strength-based criterion
is proposed as the crack propagation criterion. Section 5 gives the
detailed process of program implementation. In section 6, the
validity of the proposed method is verified by some typical
examples. Some conclusions are drawn in the last section.

AN INTRODUCTION TO THE
MLS-BASED NMM

Moving Least Square Method
In the MLS-based NMM, the core idea is to utilize the moving
least squares (MLSs) instead of the shape function of the finite
element in the NMM as the function of partition of unity. MLSs
will be briefly introduced below. The “node” mentioned in this
section is the “mathematical node” of the MLS-based NMM.

In a two-dimensional problem domain (Ω), let the value of
discrete nodes of a scalar function (u) be ui � u (ri), i � 1, . . . ,m,
wherem is the number of nodes and ri is the coordinate of the i

th

node. Here, ri � (xi, yi), where xi and yi are the x and y coordinates
of the ith node in the coordinate system.

FIGURE 4 | Schematic diagram of the physical patch type changing with
crack propagation (The physical nodes are directly used to replace
corresponding the physical patches for description in the figure).
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In Ω, the local approximation function of any point (r)
constructed by moving least squares is

uh(r, �r) � pT(�r)a(r). (1)

Here, a(r) is the undetermined coefficient, �r is the coordinate
of the node in the influence domain of r, and p(�r) is an
n-dimensional basis vector. In this study, the linear basis is
taken as

pT(�r) � [ 1 x y ], n � 3. (2)

p(�r) is also called a fixed basis vector. If it is changed to p(�r − r), it
is called the moving basis vector. Theoretically, p(�r − r) and p(�r)
are equivalent. But due to numerical error, when the domain is
large or the high order basis function is adopted, the p(�r) may
distort the result. For this case, it is recommended to use p(�r − r)
(Wu and Wang, 2021).

The sum of the weighted squares of errors at each discrete
node (�r � ri) in the influence domain covering r is

J � ∑N
i�1

�wi(r)[uh(r, ri) − u(ri)]2, (3)

where N is the number of nodes whose influence domain can
cover r, and �wi(r) is the weight function. In this study, the weight
function based on the rectangular influence domain is selected,
namely,

�wi(r) � �w(|x − xi|
dxi

) �w(
∣∣∣∣y − yi

∣∣∣∣
dyi

). (4)

Here, dxi and dyi are the half lengths of the rectangular
influence domain in the x direction and y direction,
respectively. �w is taken as the cubic spline weight function

�wi(z) �
⎧⎪⎨⎪⎩
2/3 − 4z2 + 4z3, z≤ 0.5
4/3 − 4z + 4z2 − 4/3z3, 0.5< z≤ 1
0, z> 1

, (5)

where z represents |x−xi |
dxi

or |y−yi|
dyi

.
After taking the minimum value of J in Eq. 3, the following

equation can be obtained

a(r) � A−1(r)C(r)U , (6)

where

U � [u1, u2 , . . . ,UN ]T , (7)

A(r) � ∑N
i�1

�wi(r)p(ri)pT)ri), (8)

C(r) � [ �w1(r)p(r1), �w2(r)p(r2), . . . �wN(r)p(rN )]. (9)

Substituting Eq. 6 into Eq. 1 and making uh(r) of the overall
approximation in Ω equal to uh(r, �r) of the local approximation,
we get

uh(r) � pT(r)A−1(r)C(r)U . (10)

Then, the MLS is

w(r) � pT(r)A−1(r)C(r). (11)

MLS owns compactness and partition of unity and also has the
ability to regenerate the base, namely,

∑m
i�1
wi(r)p(ri) � p(r). (12)

When p(r) � [1], MLS becomes Shepard function, meaning

wi(r) � �w(r − ri)
∑N
i�1

�w(r − ri)
. (13)

Cover System of the MLS-Based NMM
Since MLS owns the property of partition of unity, it is natural
to choose MLS as the partition of unity function of the NMM.
Then, the interpolation of the NMM will be replaced by the
shape function of MLS, which can improve the accuracy of
interpolation and enhance the adaptability to the problem. The
following is a brief introduction to the cover system of the
MLS-based NMM.

As shown in Figure 1, mathematical nodes (MNi, i �
1,2,3, . . . ,n, n is the total number of mathematical nodes.)
are arranged according to the problem domain (Ω) containing
a closed crack. It is worth noting that the mathematical nodes
can be arranged outside Ω as long as their influence domains
intersect Ω. The influence domain of MLS nodes is taken as a
square. Taking three times the distance between adjacent
mathematical nodes as the edge length of the influence
domain, then each mathematical node corresponds to a
mathematical patch (MPi). All of mathematical patches
constitute a mathematical cover {MPi} and satisfy

∪ n
i�1MPi ⊇ Ω. (14)

FIGURE 5 | Schematic diagram of stress distribution on a circle with the
crack tip as the center and rc as the radius.
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Cutting the mathematical patches through physical
boundaries (such as the boundaries of the problem domain
and cracks) to generate corresponding physical patches (PPi−j)
and physical nodes (PNi−j), the subscript indicates that the ith

mathematical patch (or mathematical node) generates the jth

physical patch (or physical node); j � 1,2, . . . ,pi, pi is the number
of physical patches generated byMPi, as shown in Figure 2. All of
physical patches constitute a physical cover {PPi−j} and satisfy

∪ n
i�1 ∪

pi

j�1
PPi−j � Ω. (15)

In addition, the crack tips are allowed to stay in the physical
patch, as PP3 in Figure 2, which is called the singular physical
patch (Williams’s displacement series is defined on it to reflect
the singularity and discontinuity near the crack tip). When the
mathematical patch is cut completely by the cracks, such as MP4
in Figure 1, two physical patches (PP4-1 and PP4-2) and
corresponding physical nodes (PN4-1 and PN4-2) of Figure 2
are generated. Such treatment will allow the MLS-based NMM
to naturally simulate the discontinuity of cracks (Zheng et al.,
2014).

For convenience, after merging physical patches and physical
nodes, they become {PPk} and PNk; k � 1,2, . . . ,p, where p is the
total number of physical patches or physical nodes.

To sum up, the mathematical cover ({MPi}) and physical cover
({PPk}) of the MLS-based NMM are obtained.When the program
is implemented, the MLS will be constructed using
physical nodes.

Global Approximation Function Space
The global approximate function space of the MLS-based NMM
(denoted asV(Ω)) is obtained by the weighted sum of partition of
unity function for the local function space defined on each
physical patch (denoted as VP

k ), namely,

V(Ω) � ∑p
k�1

wk(r)Vp
k ≡

⎧⎨⎩v

∣∣∣∣∣∣∣∣∣v � ∑p
k�1

wk(r)vk, vk ∈ VP
k

⎫⎬⎭, (16)

where " ≡ " means definition, wk(r) is the partition of unity
function, and vk is the local approximate function. From Eq. 16, it
can be seen that the approximate accuracy of the MLS-based

NMM is mainly determined by two aspects—the approximate
accuracy of wk(r) and vk.

In this study, two types of physical patch are defined. One is
the singular physical patch (S-PP) containing the crack tips, and
the other is the ordinary physical patch (O-PP) without the crack
tips. For example, PP1, PP2, PP4-1, and PP4-2 belong to the
ordinary physical patch, and PP3 belongs to the singular
physical patch in Figure 2. Different local approximation
functions will be defined in different physical patches to
achieve a better local approximate accuracy.

On O-PP, only constant order is taken

uh
k(r) � uk, r ∈ PPk. (17)

In order to reflect the singularity of the crack tip, Williams’s
displacement series (Williams, 1957) is added on Eq. 17. Then,
the local approximation function on S-PP is

uh
k(r) � uk +∑nk

i�1
f ik(ri, θi), r ∈ PPk. (18)

Here, nk is the number of crack tips in S-PP. (ri, θi) is the polar
coordinate of the point r, where the pole is the ith crack tip, and
the polar axis is along the extension line of the crack. f ik(ri, θi) is
the asymptotic solution of the ith crack tip, namely,

f ik(ri, θi) � Ei
k(ri, θi)ai−k, (19)

where ai−k ≡ (a1i−k,/, a8i−k)T is an 8-dimensional unknown
column vector and Ei

k(r, θ) is a 2 × 8 matrix.

Ei
k(ri, θi) � [ci1I2, si1I2, ci2I2, si2I2] (20)

Here, I2 is a 2 × 2 identity matrix,

cij(ri, θi) � ��
ri

√
cos

2j − 1
2

θi, sij(ri, θi) � ��
ri

√
sin

2j − 1
2

θi , j � 1, 2.

(21)

Combining Eq. 17 and 18, a unified expression can be
obtained

uh
k(r) � Tk(r)dk, r ∈ PPk, (22)

where

FIGURE 6 | Judging crack growth based on L and rc.
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dk � uk, Tk(r) � I2, PPk is S − PP, (23)

dk � (uT
k , a

T
1−k, . . . , a

T
nk−k)T, Tk(r)

� [I2,E1
k, . . . ,E

nk

k ], PPk isO − PP. (24)

Then, from Eq. 16, the global approximate function of the
MLS-based NMM is

uh(r) � ∑p
k�1

wk(r)uh
k(r), r ∈ Ω. (25)

Substituting Eq. 22 into Eq. 25 to get

uh(r) � N(r)d, r ∈ Ω, (26)

where

dT � (dT
1 , . . . d

T
k , . . . d

T
p), (27)

N(r) � [N1(r), . . .Nk(r), . . . ,Np(r)], (28)

Nk(r) � wk(r)Tk(r). (29)

Here, dk is the degree of the freedom vector of PPk (see Eqs 23
and 24), Nk(r) is the shape function on the corresponding dk of
PPk, and Tk(r) is the matrix of the local approximate basis
function on PPk (see Eqs 23 and 24).

Background Integration Method
Like the element-free Galerkin method (EFG), the MLS-based
NMM also adopts the background integration mesh to
implement numerical integration. The background mesh refers
to the non-overlapping and non-gap grids in the problem
domain. In the MLS-based NMM, the background mesh is
only used to compute integrals. Therefore, there is no need to
pay too much attention to the mesh quality; its generation is
simpler and more flexible than the FEM. Therefore, based on the
regular arrangement of mathematical nodes, this study directly
generates a basic integration mesh by connecting adjacent

mathematical nodes. Afterward, they are cut and subdivided
into triangular grids through physical boundaries, and the
background integration mesh of the MLS-based NMM is
finally obtained, as shown in Figure 1. For each triangle, the
Gauss integral scheme of the literature (Yang et al., 2020b) is
adopted, and the singular integral is adopted near the crack tip,
referring to the literature (Zheng and Xu, 2014).

VARIATIONAL EQUATION OF MOMENTUM
CONSERVATION CONSIDERING CONTACT

In this study, the MLS-based NMM inherits the contact
processing technology of the NMM (Shi, 1991; Zheng et al.,
2019; Yang et al., 2020b), as follows: 1) Search and judgment of
the contact pair. All contact pairs of angle–angle, angle–edge, and
edge–edge are all transformed into the contact pairs of angle–edge.
2) Using the penalty method to impose contact constraints. 3)
Adopting an open-close iteration to solve the contact problem.

The background integration mesh matches the boundary of
the problem domain, so the background integration mesh is
applied to discretize the contact boundary (as shown in Figure 1)
and search the contact pairs. All contact pairs are eventually
converted to the contact pairs of angle–edge in the MLS-based
NMM (see Figure 3). Next, the contact pairs of angle–edge are
analyzed, and the variational equation of momentum
conservation considering the contact is established and
discretized by the MLS-based NMM.

Contact Analysis of the Closed Cracked
Body
Figure 3 shows a force analysis of the ith contact pair about
angle–edge. A vertex (Vi) of the slave block (Ωs) is in contact with
an edge of the master block (Ωm). The projection of Vi on Ωm is
V′i. The unknown contact force acts on the master block as a

FIGURE 7 | Brazilian disk with a crack (A) Geometry and loading conditions (B) Discrete model (taking θ � 45° as an example).
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point load (pi) and reacts on the slave block. pi can be represented
by the components of the local coordinate system composed of
the inner normal and tangential directions of the contact edge on
Ωm, namely,

pi � pn
i ni + pτ

i τi (30)

or

pi � Lip
L
i , (31)

where

Li � [ni, τi] (32),
pLi � (pni , pτi )T. (33)

Here, ni and τi represent the inner normal and tangential
direction vectors of the contact edge, respectively. pn

i and pτ
i

represent the inner normal and tangential components of pi,
respectively.

When the current time step finishes, the normal relative
displacement between Vi and V′i is

FIGURE 8 | Crack propagation path of a Brazilian disk with a crack under compression. (A–C) The proposed method, (D–F) MLS-based NMM based on the
fracture mechanics criterion, (G–I) Experimental result (Haeri et al., 2014) (J) the NMM (Zheng et al., 2019), and (K) DDA (Ning Y. et al., 2011).
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FIGURE 9 | Brazilian disk with parallel multiple cracks (A) Geometry and loading conditions (B) Discrete model.

FIGURE 10 |Crack propagation path of a Brazilian disk with parallel multiple cracks under compression. (A) The result of parallel double cracks using the proposed
method, (B) The result of three parallel cracks using the proposed method, and (C,D) Experimental result (Haeri et al., 2015).
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gn
i � nT

i (rVi − rV′i) � nT
i (r0Vi

− r0V′i + uVi − uV ′i). (34)

And, the relative tangential displacement is

gτ
i � τTi (uVi − uV′i), (35)

where r0Vi
, uVi, and rVi are the position vectors of Vi at the

beginning of the time step, displacement of the current time step,
and the position vector of Vi at the end of the time step,
respectively. Similarly, r0V′i , uV′i, and rV′i are the position
vectors of V′i at the beginning of the time step, displacement
of the current time step, and the position vector ofVi at the end of
the time step, respectively.

The contact relationship must satisfy the normal contact
condition as

gn
i ≥ 0, pn

i ≤ 0, pn
i g

n
i � 0. (36)

Here, three formulas are expressed as the non-embedded
condition, the normal non-pulling condition, and the
complementary condition in sequence. It is worth noting that
when the penalty method is applied to impose the contact
boundary condition, certain embedding will occur between the
contact bodies.

The tangential contact condition using the Mohr–Coulomb
friction criterion should be

pτ
i � { 0,

∣∣∣∣pτ
i

∣∣∣∣< − μpn
i + c

−μpn
i + c,

∣∣∣∣pτ
i

∣∣∣∣ � −μpn
i + c,

(37)

where μ is the coefficient of friction, and c is cohesion.

The Inheritance Strategy of Extended
Freedoms
In the MLS-based NMM, as the crack propagates, the type
of physical patch changes accordingly. As shown in Figure 4,

PP1 ∼ PP9 (blue nodes) are singular physical patches, PP10∼PP18,
PP23, and PP24 are ordinary physical patches, and PP19∼PP22
(each blue box represents two ordinary physical patches) are
physical patches generated by crack cutting at time t.
However, at time t+Δt after crack propagation, the singular
PP1∼PP9 and ordinary PP23 and PP24 at time t will change into
the physical patches generated by the new crack (red dotted
line) cutting, and the ordinary PP10∼PP18 will change into the
new singular physical patches. Therefore, the degrees of
freedom on these physical patches will change at the
adjacent moments of crack propagation, which will cause
the problems of related variables (such as displacement and
velocity.) to inherit and transfer. If there is no suitable
inheritance strategy, the energy before and after crack
propagation will be inconsistent, which seriously affects the
accuracy of simulating dynamic crack propagation. This issue
has also been studied by Réthoré et al. (2005) and Zheng et al.
(2019) et al.

When the crack propagates, the configuration of the
computational domain changes. In other words, the
termination configuration of the current time step is different
from the initial configuration of the current time step.

Let Y represent the field variable that changes with time; then,
the calculation process from tn to tn+1 is expressed as follows:

Yn → Yn+1
n → Yn+1, (38)

where Yn is the value of the field variable at time tn, Yn+1
n is the

value of the field variable at time tn after the configuration
updated, and Yn+1 is the value of the field variable at time tn+1.

Converting the variable values on the physical patches to the
Gaussian integration points, the first transformation of Eq. 38 is
accomplished through processing the variable values on the
Gaussian integration points. In other words, using the variable
values on the Gaussian integration points before crack
propagation to calculate the variable values on the newly
generated Gaussian integration points by Shepard
interpolation. After the first step is completed, the second step
is completed according to the idea of first discrete time in discrete
space (Zheng et al., 2019). The second step is described in
detail below.

Variational Equation of Momentum
Conservation and its Discretization
Without considering the damping effect, for linear elastic media,
the penalty method is adopted to apply the displacement
boundary and contact boundary; then the variational form of
the momentum equation is

∫
Ω
(δε)T σdΩ � ∫

Ω
(δu)T(b − ρü)dΩ + ∫

Γt
(δu)T�tdΓ

+ kp∫
Γu
(δu)T(�u − u)dΓ + δ∏

c
(39)

where ∑ is the strain tensor, σ is Cauchy stress, u is the
displacement vector, ü is the acceleration vector, b is the body
force, ρ is the material density, Γu is the displacement boundary, �u

FIGURE 11 | Rectangular plate with a crack (A) Geometry and loading
conditions (B) Discrete model (taking θ � 30° as an example).
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is the known displacement on Γu, Γt is the force boundary, �t is the
known surface force on Γt, kp is the penalty factor, and δ∏c is

δΠc � ∑
i
(δuVi − δuV ′i)T · Li · pi. (40)

If the ith contact pair is in a bonded state, then

pi � (knp · gn
i , kτp · gτ

i )T. (41)

If the contact state is the sliding state, then

pi � (knp · gn
i , �pτ

i )T. (42)

FIGURE 12 | Crack propagation path of a rectangular plate with a crack under compression. (A–C) The proposed method, (D–F)MLS-based NMM based on the
fracture mechanics criterion, (G) NMM (Zheng et al., 2019), and (F) RFPA (Li et al., 2005)
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Here, �Pτ
i � μsign(gτ

i )knp · gn
i + c, sign(gr

i ) can be replaced by
sign(~pτ

i ), and ~P
τ
i is the tangential contact force of the previous

iteration step.
If the contact state is an open state, then

pi � ( 0, 0 )T. (43)

In Eqs 41 and 42, knp and kτp are the normal and tangential
penalty factors, respectively. gn

i and gτ
i are shown in Eqs 34 and

FIGURE 13 | Slope with a single inclined crack (A) Geometry and boundary conditions (B) Discrete model.

FIGURE 14 | Crack propagation path of a slope with a single inclined crack.
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35, respectively. In Eq. 39, for displacement boundary, other
methods are also considered, such as the construction of tailored
local approximate functions for the displacement boundary
condition (Zheng et al., 2017) and the Nitsche’s method that
the penalty factor can be determined by the maximum eigenvalue
of the generalized eigenvalue problem (Liu et al., 2021b).

With the inheritance strategy in Section 3.2 and constant
acceleration method of Newmark, Eq. 39 is discreted by Eq. 26,
namely,

�KΔd � �F, (44)

where

�K � 2
Δt2 M + K + Kp +∑

i
Kc

i , (45)

�F � 2
Δt ∫

Ω

ρN _dngdΩ + F + F0 +∑
i
Fc
i . (46)

In Eqs 45 and 46,

M � ∫
Ω
ρNTNdΩ, (47)

K � ∫
Ω
BTDBdΩ, (48)

Kp � kp∫
Ω
NTNdΩ, (49)

B �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z
zx 0 z

zy

0 z
zy

z
zz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
T

N , (50)

F � ∫
Ω
NTbdΩ + ∫

Γt
NT�tdΓ + kp∫

Γu
NT�udΓ. (51)

And, the initial stress matrix is

F0 � −∫
Ω
BTσngdΩ. (52)

In Eq. 48, D is the elastic matrix. In Eqs 46 and 52, _dng and σng

are expressed as the velocity and stress of the Gaussian point at
the nth step.

For Kc
i and Fc

i of the i
th contact pair, when the contact state is

bonding

Kc
i � −(Nvi − Nv′i)T[knpnin

T
i + kτpτiτ

T
i ](Nvi − Nv′i), (53)

Fc
i � knp(NVi − NVi′)Tnin

T
i (r0Vi

− r0Vi′). (54)

sliding

K c
i � −knp(Nvi − N v′i)T[nin

T
i + μsign(~pτ

i )τinT
i ](Nvi − N v′i),

(55)

Fc
i � knp(Nvi − Nv′i)T{[nin

T
i + μsign(~pτ

i )τinT
i ](r0Vi − r0V′i) + τic},

(56)

and open

Kc
i � 0, Fc

i � 0. (57)

After the completion of the open-close iteration, Δd can be
obtained. Δdg of the Gaussian point can be obtained by Eq. 26.

Then, the displacement d(n+1)g, acceleration €d(n+1)g, and
velocity _d(n+1)g of the Gaussian point at the beginning of the
n+1 step are

d(n+1)g � dng + Δdg, (58)

€d(n+1)g � 1
Δt2 (Δdg − Δt _dng + 1

2
Δt2€dng), (59)

_d(n+1)g � _dng + Δt
2

[€dng + €d(n+1)g]. (60)

Here, Δt � tn+1 − tn.

AN IMPROVED STRENGTH-BASED
CRITERION FOR CRACK PROPAGATION

This section introduces the crack propagation criteria based on
the strength criterion, including approximate crack tip stress,
crack propagation direction, crack initiation criterion, and crack
propagation length. The criterion is inherited and developed from
the literature (Zheng et al., 2019; Yang et al., 2020b).

Crack Tip Stress and Crack Propagation
Direction
The crack tip stress needs to be determined for the strength
criterion. However, the stress at the crack tip is singular in linearly
elastic media (Williams, 1957). In other words, the closer it is to
the crack tip, the greater the stress is. Theoretically, the crack tip
stress is infinite. But the crack tip stress cannot be infinite in
practice. So how to calculate the representative crack tip stress is a
key issue.

In the NMM, the average stresses on the physical patches near
the crack tip are generally calculated by the area weighting
method, which is adopted to interpolate the crack tip stress.
The interpolation method can apply the shape function of the
finite element method or MLS and so on (Ning Y. et al., 2011; An
et al., 2014; Yang et al., 2020b). However, the kind of method is
actually the approximate method, which cannot explain its
rationality and accuracy. A large number of studies (Aliha
et al., 2010; Gupta et al., 2015; Xie et al., 2017) show that for
quasi-brittle materials, the influence of T-stress on the crack
propagation direction should be considered, and there is a
characteristic distance rc (Taylor et al., 2004), which is
generally taken as

rc � 1
2π(KIC

σt
)2

, (61)

where KIC is the fracture toughness, and σt is the tensile strength
of material.

In view of this, this study gets a set of stresses at a distance of rc
from the crack tip (see Figure 5). The crack tip stress will be
determined by analyzing a set of stresses according to the failure
criterion. Here, the characteristic distance (see the Eq. 61) is used,
so the crack tip stress may be influenced by T-stress.

The Mohr–Coulomb criterion and the maximum tensile
stress criterion are selected as the failure criterion and
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determine the direction of crack propagation. Taking the
compressive stress as positive, the critical stress of the
Mohr–Coulomb criterion is

σ1 � 2c cos ϕ + σ3(1 + sinϕ)
1 − sin ϕ

, (62)

where σ1 is the maximum principal stress, σ3 is the minimum
principal stress, c is the cohesive force, and ϕ is the
frictional angle.

And, the maximum tensile stress criterion is

−σ3 � σt. (63)

Considering the poor tensile properties of quasi-brittle rock
materials, the failure criterion is mainly based on the maximum
tensile stress criterion. Then, the steps to determine the crack tip
stress are shown as follows.

First, the stresses on the circle whose center is located at the
crack tip with the radius of rc are calculated by the Shepard
interpolation of the stresses of nearby Gaussian points.
Furthermore, the maximum circumferential stress and
tangential stress are found from the stresses. Second,
according to Eqs 62 and 63, the maximum stresses are
determined whether failure will occur. And lastly, if the
failures occur on the basis of Eqs 62 and 63, or the failure
occurs on the basis of Eq. 62, the stress of this position of the
maximum circumferential stress is the crack tip stress. If the
failure occurs only on the basis of Eq. 63, the stress of this position
of the tangential stress is the crack tip stress.

After the crack tip stress is determined, the crack propagation
direction is determined according to the maximum tensile stress
criterion or Mohr–Coulomb criterion. If tensile failure occurs
according to the crack tip stress, the crack propagation direction
is perpendicular to the direction of minimum principal stress (σ3)
and is an acute angle with the crack direction. If shear failure
occurs according to crack tip stress, the crack propagation
direction is the small angle of ±(π/4 + ϕ/2) with σ3 (Ning Y.
J. et al., 2011; An et al., 2014).

Crack Growth Length
In the literature studies (Ning Y. J. et al., 2011; An et al., 2014)
using the strength criterion as the crack growth criterion, the
crack growth length is often specified artificially through
experience. So the simulative results may be affected by the
specified crack growth length. Therefore, this study adopts the
method proposed by Zheng et al. (2019), which can directly and
automatically calculate the crack propagation length. The method
is briefly described as follows.

First, the stresses of any point are calculated in the crack
propagation direction. Then, the failure of these points is judged
according to Eqs 62 and 63. According to the destructive points,
the crack propagation length (L) will be determined. Since the
crack tip stress comes from a distance of rc from the crack tip in
this study, it is necessary to further correct whether the crack
propagates. When L < r¸c, the crack does not propagate. When
L ≥ rc, the crack propagates. As shown in Figure 6, when the

result is L1, the crack does not propagate, and when the result is
L2, the crack propagates.

PROGRAM IMPLEMENTATION

1) Entering geometric and physical parameters.
2) The mathematical nodes and corresponding mathematical

patches are arranged regularly to generate the mathematical
cover and background integration mesh.

3) Cutting the mathematical patches by the physical boundary to
form the physical patches and constituting the physical cover.
Processing the background integration mesh to generate the
final background integration mesh.

4) Establishing a solution system for the cracked rock using the
MLS-based NMM, in which the contact boundary is imposed
by the penalty method.

5) Solving the nth time step.
i) Searching the contact pairs of angle–edge and solving the

problem by open-close iteration.
ii) Determining whether the crack propagates in accordance

with the improved strength-based criterion. If yes,
performing the (iii)∼(VI). If not, determining whether
the total time step is reached (If not, performing the
(n+1)-th time step. If yes, performing the 6.).

iii) According to the improved strength-based criterion,
determining the crack propagation direction and length.

IV) Updating the physical cover and background
integration mesh.

V) Updating the stresses of integral points, which applies
the Shepard interpolation to calculate near the
expanding crack.

VI) Determining whether the total time step is reached. If
not, performing the (n+1)-th time step. If yes, performing
the 6.

6) Post-processing of results.

NUMERICAL EXAMPLES

Several typical examples are simulated to verify the accuracy and
ability of the proposed method. The square form of mathematical
patches (the influence domain of the MLS node) is selected, and
its half-length is 1.6 h, where h is the distance between adjacent
mathematical nodes. In addition, the crack growth criterion based
on the fracture mechanics criterion is also adopted for
comparison [see Li et al. (2018a)], where the crack growth
length at each step is set as 1.1 h. The results are also
compared with related numerical simulation results (Li et al.,
2005; Zheng et al., 2019) and experimental results (Haeri et al.,
2014; Haeri et al., 2015). It is worth noting that the penalty
method is adopted to impose the displacement boundary
condition and contact boundary condition. In this study, we
do not discuss the selection of the optimal penalty factor. Thus,
we choose 105 × E as the penalty factor for the displacement
boundary, where E represents the Elastic modulus. For the
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contact boundary, the stiffness of the normal contact spring is E,
while the stiffness of the normal contact spring is 0.4 × E.

In this study, when the crack grows, the background
integration mesh and the physical boundaries are updated
automatically by the loop updating technology of the NMM
(Zheng et al., 2019; Yang et al., 2020b). Furthermore, the
physical cover is updated through the updated physical
boundaries cut the mathematical patches.

Brazilian Disc With Pre-crack
The Brazilian disc test is an effective method to determine the
tensile strength of the brittle rock. Two cases of a Brazilian disk
containing one pre-crack and two pre-cracks are considered in
this section. Among them, the diameter of the disc is 100mm, and
the platform of compression is 6.2 mm (that is, the platform
forms a central angle of 7.2 at the center of the circle).

The size of the rigid plate is 100 mm in length and 4 mm in
width. The material parameters of rock are Elastic modulus E �
10GPa, Poisson’s ratio ] � 0.25, density ρ � 2500 kg/m3, internal
friction angle φ � 40+, cohesion c � 5MPa, tensile strength σt �
0.5 MPa, and fracture toughness KIC � 5 × 104 N/m3/2. The
contact surface between the rock and the rigid plate is
assumed to be free of friction, cohesion, and tensile strength.
Considering the time approximation accuracy, the time step is
taken as Δt � 0.001 s.

(a) A Brazilian disk with a crack
Figure 7A shows a schematic diagram of a Brazilian disc with

a crack, where the length of the crack is 30 mm. Figure 7B shows
the discrete model with 584 mathematical nodes. The load is
applied through rigid plates at both ends of the disk with an
average loading speed of 1.0 × 10−6 m/step.

Figure 8 shows the crack propagation paths with crack
inclination angles of 30°, 45°, and 60°, including the simulation
results of the proposed method (the MLS-based NMM based on
the improved strength-based criterion), the MLS-based NMM
based on the fracture mechanics criterion, the NMM from the
literature (Zheng et al., 2019), DDA from the literature (Ning Y.
et al., 2011), and the experiment from the literature (Haeri et al.,
2014).

It can be seen from the results in Figure 8 that the dynamic
crack propagation path based on the improved strength-based
criterion and fracture mechanics criterion using the MLS-based
NMM is basically consistent with the reference results and
experimental results. But the results based on the improved
strength-based criterion are smoother than those based on the
fracture mechanics criterion. It should be noted that the crack
propagation length based on the improved strength-based
criterion is automatically generated at each step, while the
crack propagation length based on the fracture mechanics
criterion is fixed as 1.1h.

(b) A Brazilian disk with parallel multiple cracks
Figure 9A shows a Brazilian disk with parallel multiple cracks

with θ � 45°, all of cracks are 20 mm in length. The distance
between the centers of the two cracks is s � 20 mm. The discrete
model with 1,132 mathematical nodes is shown in Figure 9B. The
load is applied through rigid plates at both ends of the disk with
an average loading speed of 1.0 × 10−7 m/step.

The simulation results of the proposed method are shown in
Figures 10A,B and compared with the experimental results in the
literature (Haeri et al., 2015). Although there are slight
differences, the authors think that the results of the proposed
method are reasonable. Because the example is a symmetric
structure and enforced by the symmetric load, the crack
should propagate symmetrically. Furthermore, the results of
the proposed method also show the symmetry of crack
propagation. The results suggest that the damage is caused by
the penetration and intersection of cracks.

Rectangular Plate With Pre-crack
Figure 11A shows a rectangular plate with an oblique crack in the
middle. The top and bottom of the plate are subjected to
compressive loads. The size of the plate is 62 mm in width
and 110 mm in height. The initial crack length is 20mm, and
the angle between the crack and the horizontal direction is θ. The
load is applied through rigid plates at both ends of the disk with
an average loading speed of 1.0 × 10−6 m/step. The size of rigid
plates is 62 mm in width and 5 mm in height. The material
parameters of rock are Elastic modulus E � 10 GPa, Poisson’s
ratio ] � 0.25, density ρ � 2500 kg/m3, internal friction angle
φ � 40+, cohesion c � 5MPa, tensile strength σt � 0.5 MPa, and
fracture toughness KIC � 5 × 104 N/m3/2. The contact surface
between the rock and the rigid plate is assumed to be free of
friction, cohesion, and tensile strength. Considering the time
approximation accuracy, the time step is taken as Δt � 0.001s.
The discrete model with 312 mathematical nodes is shown in
Figure 11B.

Figure 12 shows the crack propagation paths at crack
angles θ � 30°, 45°, and 60°, respectively. Likewise, the
simulation results of the MLS-based NMM based on the
fracture mechanics criterion are also presented for
comparison. In Figures 12G,H, the simulation results using
the NMM (Zheng et al., 2019) and RFPA (Li et al., 2005) are
also given.

From the results, the proposed method can simulate the crack
propagation well, which is similar to the results in the literature.
The simulation results of the MLS-based NMM based on the
fracture mechanics criterion also show the phenomenon of “Zig-
zag” like the Brazilian disk experiment in Section 6.1, but the
overall trend of crack growth is consistent with other methods.
This means that the cracks will expand towards the place of the
load and gradually tend to be parallel to the direction of the load.
The phenomenon of oscillation may be caused by the inaccurate
calculation of the dynamic stress intensity factor after considering
the contact or the inaccurate crack propagation length at
each step.

A Slope With a Single Inclined Crack
A homogeneous slope with a single inclined crack is shown in
Figure 13A from the literature (Yang et al., 2020b). Figure 13A
gives the geometry and boundary conditions of the slope, and
only the gravity load is imposed to the slope body. In order to
make the slope be more easily damaged, the overload method is
adopted. In the simulation process, the gravity load is 10 times
greater than the actual value of gravity. The actual material
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parameters of this example are Elastic modulus E � 35 GPa,
Poisson’s ratio ] � 0.15, density ρ � 3200 kg/m3, internal friction
angle φ � 25+, cohesion c � 5 MPa, tensile strength σt � 5 MPa,
and fracture toughness KIC � 0.5 × 106 N/m3/2. The frictional
coefficient of the crack surface is ϕ � 10°. The discretized model
with 744 mathematical nodes is shown in Figure 13B. The time
step is taken as Δt � 0.001 s. Figure 14 shows the final crack
propagation path of a slope with a single inclined crack. Moreover,
all processes of crack propagation in line with the improved
strength-based criterion is found that the slope is caused by a
tensile crack, which is consistent with the rock slope engineering.

CONCLUSION

In this study, the MLS-based numerical manifold method is
extended to model the crack propagation of the cracked rock
considering the contact of the crack surface. The inheritance
strategy of the degree of freedom during crack propagation and
the variational equation of momentum conservation considering
contact are established for the MLS-based NMM. Using the
penalty method to impose contact constraints and adopting
open-close iteration to solve the contact problem are all
presented. Simultaneously, in order to simulate the progressive
failure of the cracked rock, an improved strength-based criterion
is proposed. Several typical examples are simulated. Some
conclusions are drawn as follows:

1) The MLS-based NMM considering the contact of the crack
surface allows the crack tip to stay in any position and can
simulate the complex contact boundary.

2) The improved strength-based criterion incorporated into
the MLS-based NMM can automatically compute the

approximate crack tip stress, crack propagation direction,
crack initiation criterion, and crack propagation length.

3) The results of typical examples indicate that the proposed
method can deal with the crack propagation in a rock and the
opening/sliding of rock blocks along discontinuities in a
natural way.

In practice, the rock mass contains complex cracks and is in 3-
dimensional space. So, the proposed method warrants further
investigation in the future.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

WL contributed to the study design. Heng Zheng consulted the
study. XY interpreted the data. CJ was responsible for searching
references. WL and XS drafted the manuscript.

FUNDING

This study is supported by the National Natural Science
Foundation of China, under Grant Nos. 11902134 and
51904149, and the Youth Natural Science Foundation of
Shandong Province (Nos. ZR2020QD126 and ZR2019BEE013).

REFERENCES

Aliha, M. R. M., Ayatollahi, M. R., Smith, D. J., and Pavier, M. J. (2010).
Geometry and Size Effects on Fracture Trajectory in a limestone Rock
under Mixed Mode Loading. Eng. Fracture Mech. 77 (11), 2200–2212.
doi:10.1016/j.engfracmech.2010.03.009

An, X., Ning, Y., Ma, G., and He, L. (2014). Modeling Progressive Failures in
Rock Slopes with Non-persistent Joints Using the Numerical Manifold
Method. Int. J. Numer. Anal. Meth. Geomech. 38 (7), 679–701. doi:10.1002/
nag.2226

Camones, L. A. M., Vargas, E. d. A., Jr, de Figueiredo, R. P., and Velloso, R. Q.
(2013). Application of the Discrete Element Method for Modeling of Rock
Crack Propagation and Coalescence in the Step-Path Failure Mechanism.
Eng. Geology. 153, 80–94. doi:10.1016/j.enggeo.2012.11.013

Chen, Y. L., and Li, L. X. (2017). Modeling Phase Change Problems Using a
New Implementation of the Numerical Manifold Method. Appl. Math.
Model. 48, 39–52. doi:10.1016/j.apm.2017.01.022

Chiou, Y.-J., Lee, Y.-M., and Tsay, R.-J. (2002). Mixed Mode Fracture
Propagation by Manifold Method. Int. J. Fracture 114 (4), 327–347.
doi:10.1023/a:1015713428989

Fan, H., Zheng, H., and He, S. (2016). S-R Decomposition Based Numerical
Manifold Method. Comput. Methods Appl. Mech. Eng. 304, 452–478.
doi:10.1016/j.cma.2016.02.033

Fei, F., and Choo, J. (2020). A Phase-Field Method for Modeling Cracks with Frictional
Contact. Int. J. Numer. Methods Eng. 121 (4), 740–762. doi:10.1002/nme.6242

Guo, H., Zheng, H., and Zhuang, X. (2019). Numerical Manifold Method for Vibration
Analysis of Kirchhoff’s Plates of Arbitrary Geometry. Appl. Math. Model. 66,
695–727. doi:10.1016/j.apm.2018.10.006

Gupta, M., Alderliesten, R. C., and Benedictus, R. (2015). A Review of T-Stress and its
Effects in Fracture Mechanics. Eng. Fracture Mech. 134, 218–241. doi:10.1016/
j.engfracmech.2014.10.013

Haeri, H., Khaloo, A., andMarji, M. F. (2015). Experimental and Numerical Analysis of
Brazilian Discs with Multiple Parallel Cracks. Arab J. Geosci. 8 (8), 5897–5908.
doi:10.1007/s12517-014-1598-1

Haeri, H., Shahriar, K., Marji, M. F., and Moarefvand, P. (2014). Experimental and
Numerical Study of Crack Propagation and Coalescence in Pre-cracked Rock-
like Disks. Int. J. Rock Mech. Mining Sci. 67, 20–28. doi:10.1016/
j.ijrmms.2014.01.008

Jiang, Q.-h., Deng, S.-s., Zhou, C.-b., and Lu, W.-b. (2010). Modeling
Unconfined Seepage Flow Using Three-Dimensional Numerical
Manifold Method. J. Hydrodyn 22 (4), 554–561. doi:10.1016/S1001-
6058(09)60088-3

Li, S. C., Li, S. C., and Cheng, Y. M. (2005). Enriched Meshless Manifold
Method for Two-Dimensional Crack Modeling. Theor. Appl. fracture Mech.
44 (3), 234–248. doi:10.1016/j.tafmec.2005.09.002

Li, W., Yu, X., Lin, S., Qu, X., and Sun, X. (2022). A Numerical Integration
Strategy of Meshless Numerical Manifold Method Based on Physical Cover
and Applications to Linear Elastic Fractures. Eng. Anal. Boundary Elem.
134, 79–95. doi:10.1016/j.enganabound.2021.09.028

Li, W., Zheng, H., Chen, Y., Lin, S., and Sun, Y. (2018a). Application of the
MLS Based Enriched Numerical Manifold Method in Dynamic Crack

Frontiers in Earth Science | www.frontiersin.org January 2022 | Volume 9 | Article 82550816

Li et al. MLS-Based Numerical Manifold Method

https://doi.org/10.1016/j.engfracmech.2010.03.009
https://doi.org/10.1002/nag.2226
https://doi.org/10.1002/nag.2226
https://doi.org/10.1016/j.enggeo.2012.11.013
https://doi.org/10.1016/j.apm.2017.01.022
https://doi.org/10.1023/a:1015713428989
https://doi.org/10.1016/j.cma.2016.02.033
https://doi.org/10.1002/nme.6242
https://doi.org/10.1016/j.apm.2018.10.006
https://doi.org/10.1016/j.engfracmech.2014.10.013
https://doi.org/10.1016/j.engfracmech.2014.10.013
https://doi.org/10.1007/s12517-014-1598-1
https://doi.org/10.1016/j.ijrmms.2014.01.008
https://doi.org/10.1016/j.ijrmms.2014.01.008
https://doi.org/10.1016/S1001-6058(09)60088-3
https://doi.org/10.1016/S1001-6058(09)60088-3
https://doi.org/10.1016/j.tafmec.2005.09.002
https://doi.org/10.1016/j.enganabound.2021.09.028
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Propagation. Chin. J. Rock Mech. Eng. 37 (7), 1574–1585. doi:10.13722/
j.cnki.jrme.2018.0031

Li, W., Zheng, H., and Sun, G. (2018b). The Moving Least Squares Based
Numerical Manifold Method for Vibration and Impact Analysis of Cracked
Bodies. Eng. Fracture Mech. 190, 410–434. doi:10.1016/
j.engfracmech.2017.12.025

Li, Y.-P., Chen, L.-Z., and Wang, Y.-H. (2005). Experimental Research on Pre-
cracked marble under Compression. Int. J. Sol. Structures 42 (9-10), 2505–2516.
doi:10.1016/j.ijsolstr.2004.09.033

Liu, F., and Borja, R. I. (2008). A Contact Algorithm for Frictional Crack
Propagation with the Extended Finite Element Method. Int. J. Numer. Meth.
Engng 76 (10), 1489–1512. doi:10.1002/nme.2376

Liu, Z. J., and Zheng, H., (2016). Two-Dimensional Numerical Manifold Method
With Multilayer Covers. Sci. China Technol. Sci. 59 (4), 515–530. doi:10.1007/
s11431-015-5907-z

Liu, F., and Xia, K. (2017). Structured Mesh Refinement in MLS-Based Numerical
Manifold Method and its Application to Crack Problems. Eng. Anal. Boundary
Elem. 84, 42–51. doi:10.1016/j.enganabound.2017.08.004

Liu, F., Zhang, K., and Liu, Z. (2019). Three-dimensional MLS-Based Numerical
Manifold Method for Static and Dynamic Analysis. Eng. Anal. Boundary Elem.
109, 43–56. doi:10.1016/j.enganabound.2019.09.014

Liu, X. W., Liu, Q. S., Wei, L., and Huang, X. (2017). Improved Strength
Criterion and Numerical Manifold Method for Fracture Initiation and
Propagation. Int. J. Geomechanics 17 (5), 0000676. doi:10.1061/(asce)
gm.1943-5622.0000676

Liu, Z., Guan, Z., Zhang, P., Sun, C., Liu, F., and Lin, S. (2021a). Explicit Edge-
Based Smoothed Numerical Manifold Method for Transient Dynamic
Modeling of Two-Dimensional Stationary Cracks. Eng. Anal. Boundary
Elem. 128, 310–325. doi:10.1016/j.enganabound.2021.04.012

Liu, Z., Zhang, P., Sun, C., and Liu, F. (2020). Two-dimensional Hermitian
Numerical Manifold Method. Comput. Structures 229, 106178.
doi:10.1016/j.compstruc.2019.106178

Liu, Z., Zhang, P., Sun, C., and Yang, Y. (2021b). Smoothed Numerical
Manifold Method with Physical Patch-Based Smoothing Domains for
Linear Elasticity. Int. J. Numer. Methods Eng. 122 (2), 515–547.
doi:10.1002/nme.6547

Liu, Z., and Zheng, H. (2021). Local Refinement with Arbitrary Irregular
Meshes and Implementation in Numerical Manifold Method. Eng. Anal.
Boundary Elem. 132, 231–247. doi:10.1016/j.enganabound.2021.07.010

Lu, W., Oterkus, S., Oterkus, E., and Zhang, D. (2021). Modelling of Cracks
with Frictional Contact Based on Peridynamics. Theor. Appl. Fracture
Mech. 116, 103082. doi:10.1016/j.tafmec.2021.103082

Ma, G. W., An, X. M., Zhang, H. H., and Li, L. X. (2009). Modeling Complex
Crack Problems Using the Numerical Manifold Method. Int. J. Fract 156
(1), 21–35. doi:10.1007/s10704-009-9342-7

Ning, Y. J., An, X. M., and Ma, G. W. (2011a). Footwall Slope Stability Analysis
with the Numerical Manifold Method. Int. J. Rock Mech. Mining Sci. 48 (6),
964–975. doi:10.1016/j.ijrmms.2011.06.011

Ning, Y., Yang, J., An, X., and Ma, G. (2011b). Modelling Rock Fracturing and
Blast-Induced Rock Mass Failure via Advanced Discretisation within the
Discontinuous Deformation Analysis Framework. Comput. Geotechnics 38
(1), 40–49. doi:10.1016/j.compgeo.2010.09.003

Rabczuk, T., and Ren, H. (2017). A Peridynamics Formulation for Quasi-Static
Fracture and Contact in Rock. Eng. Geology. 225, 42–48. doi:10.1016/
j.enggeo.2017.05.001

Réthoré, J., Gravouil, A., and Combescure, A. (2005). An Energy-Conserving
Scheme for Dynamic Crack Growth Using the eXtended Finite Element
Method. Int. J. Numer. Methods Eng. 63 (5), 631–659. doi:10.1002/nme.1283

Shi, G. (1991). “Manifold Method of Material Analysis,”. Report No. 92–1 in
Transactions of the 9th army conference on applied mathematics and
computing, Minneapolis (Minneapolis, MN: U.S. Army Research Office),
57–76.

Taylor, D., Merlo, M., Pegley, R., and Cavatorta, M. P. (2004). The Effect of
Stress Concentrations on the Fracture Strength of Polymethylmethacrylate.
Mater. Sci. Eng. A 382 (1-2), 288–294. doi:10.1016/j.msea.2004.05.012

Tsay, R.-J., Chiou, Y.-J., and Chuang, W.-L. (1999). Crack Growth Prediction
by Manifold Method. J. Eng. Mech. 125 (8), 884–890. doi:10.1061/(asce)
0733-9399(1999)125:8(884)

Wang, Y., and Gong, J. (2012). “Simulation of Seepage in Porous Medium by
Numerical Manifold Method,” in Advances in Discontinuous Numerical
Methods and Applications in Geomechanics and Geoengineering (Honolulu,
HI: CRC Press), 275–280. doi:10.1201/b11600-39

Williams, M. L. (1957). On the Stress Distribution at the Base of a Stationary
Crack. J. Appl. Mech. J. Appl. Mech. 24, 109–114. doi:10.1115/1.4011454

Wong, L. N. Y., andWu, Z. (2014). Application of the Numerical Manifold Method
to Model Progressive Failure in Rock Slopes. Eng. Fracture Mech. 119, 1–20.
doi:10.1016/j.engfracmech.2014.02.022

Wu, J., andWang, D. (2021). An Accuracy Analysis of Galerkin Meshfree Methods
Accounting for Numerical Integration. Comput. Methods Appl. Mech. Eng. 375,
113631. doi:10.1016/j.cma.2020.113631

Wu, Z., and Wong, L. N. Y. (2012). Frictional Crack Initiation and Propagation
Analysis Using the Numerical Manifold Method. Comput. Geotechnics 39,
38–53. doi:10.1016/j.compgeo.2011.08.011

Xie, Y., Cao, P., Jin, J., and Wang, M. (2017). Mixed Mode Fracture Analysis of
Semi-circular bend (SCB) Specimen: A Numerical Study Based on Extended
Finite Element Method. Comput. Geotechnics 82, 157–172. doi:10.1016/
j.compgeo.2016.10.012

Xie, Y., Cao, P., Liu, J., and Dong, L. (2016). Influence of Crack Surface Friction on
Crack Initiation and Propagation: A Numerical Investigation Based on
Extended Finite Element Method. Comput. Geotechnics 74, 1–14.
doi:10.1016/j.compgeo.2015.12.013

Xu, D., Wu, A., and Li, C. (2019). A Linearly-independent Higher-Order Extended
Numerical Manifold Method and its Application to Multiple Crack Growth
Simulation. J. Rock Mech. Geotechnical Eng. 11 (6), 1256–1263. doi:10.1016/
j.jrmge.2019.02.007

Yan, C. Z., and Zheng, H. (2017). A New Potential Function for the Calculation of
Contact Forces in the Combined Finite-Discrete Element Method. Int.
J. Numer. Anal. Meth. Geomech. 41 (2), 265–283. doi:10.1002/nag.2559

Yang, S., Ma, G., Ren, X., and Ren, F. (2014). Cover Refinement of Numerical
Manifold Method for Crack Propagation Simulation. Eng. Anal. Boundary
Elem. 43, 37–49. doi:10.1016/j.enganabound.2014.03.005

Yang, Y., Sun, G., Zheng, H., and Fu, X. (2016a). A Four-Node Quadrilateral Element
Fitted to Numerical Manifold Method with Continuous Nodal Stress for Crack
Analysis. Comput. Structures 177, 69–82. doi:10.1016/j.compstruc.2016.08.008

Yang, Y., Sun, G., Zheng, H., and Qi, Y. (2019). Investigation of the Sequential
Excavation of a Soil-Rock-Mixture Slope Using the Numerical Manifold
Method. Eng. Geology. 256, 93–109. doi:10.1016/j.enggeo.2019.05.005

Yang, Y., Sun, G., Zheng, H., and Yan, C. (2020a). An Improved Numerical
Manifold Method with Multiple Layers of Mathematical Cover Systems for the
Stability Analysis of Soil-Rock-Mixture Slopes. Eng. Geology. 264, 105373.
doi:10.1016/j.enggeo.2019.105373

Yang, Y., Tang, X., Zheng, H., Liu, Q., and He, L. (2016b). Three-dimensional
Fracture Propagation with Numerical Manifold Method. Eng. Anal. Boundary
Elem. 72, 65–77. doi:10.1016/j.enganabound.2016.08.008

Yang, Y., Tang, X., Zheng, H., Liu, Q., and Liu, Z. (2018). Hydraulic Fracturing
Modeling Using the Enriched Numerical Manifold Method. Appl. Math. Model.
53, 462–486. doi:10.1016/j.apm.2017.09.024

Yang, Y., Xu, D., Liu, F., and Zheng, H. (2020b). Modeling the Entire Progressive
Failure Process of Rock Slopes Using a Strength-Based Criterion. Comput.
Geotechnics 126, 103726. doi:10.1016/j.compgeo.2020.103726

Zhang, G., Zhao, Y., and Peng, X. (2010). Simulation of Toppling Failure of Rock
Slope by Numerical Manifold Method. Int. J. Comput. Methods 07 (1), 167–189.
doi:10.1142/S0219876210002118

Zhang, H. H., Han, S. Y., Fan, L. F., and Huang, D. (2018). The Numerical Manifold
Method for 2D Transient Heat Conduction Problems in Functionally Graded
Materials. Eng. Anal. Boundary Elem. 88, 145–155. doi:10.1016/
j.enganabound.2018.01.003

Zhang, H. H., Li, L. X., An, X. M., andMa, G.W. (2010). Numerical Analysis of 2-D
Crack Propagation Problems Using the Numerical Manifold Method. Eng.
Anal. boundary Elem. 34 (1), 41–50. doi:10.1016/j.enganabound.2009.07.006

Zhang, K., Liu, F., and Xia, K. (2021a). Formulation, Calibration, and Applications of
Disk-Based Discontinuous Deformation Analysis for Rock Failure Simulation. Int.
J. Rock Mech. Mining Sci. 148, 104944. doi:10.1016/j.ijrmms.2021.104944

Zhang, P., Du, C., Zhao, W., and Sun, L. (2021b). Dynamic Crack Face Contact and
Propagation Simulation Based on the Scaled Boundary Finite Element Method.
Comput. Methods Appl. Mech. Eng. 385, 114044. doi:10.1016/j.cma.2021.114044

Frontiers in Earth Science | www.frontiersin.org January 2022 | Volume 9 | Article 82550817

Li et al. MLS-Based Numerical Manifold Method

https://doi.org/10.13722/j.cnki.jrme.2018.0031
https://doi.org/10.13722/j.cnki.jrme.2018.0031
https://doi.org/10.1016/j.engfracmech.2017.12.025
https://doi.org/10.1016/j.engfracmech.2017.12.025
https://doi.org/10.1016/j.ijsolstr.2004.09.033
https://doi.org/10.1002/nme.2376
https://doi.org/10.1007/s11431-015-5907-z
https://doi.org/10.1007/s11431-015-5907-z
https://doi.org/10.1016/j.enganabound.2017.08.004
https://doi.org/10.1016/j.enganabound.2019.09.014
https://doi.org/10.1061/(asce)gm.1943-5622.0000676
https://doi.org/10.1061/(asce)gm.1943-5622.0000676
https://doi.org/10.1016/j.enganabound.2021.04.012
https://doi.org/10.1016/j.compstruc.2019.106178
https://doi.org/10.1002/nme.6547
https://doi.org/10.1016/j.enganabound.2021.07.010
https://doi.org/10.1016/j.tafmec.2021.103082
https://doi.org/10.1007/s10704-009-9342-7
https://doi.org/10.1016/j.ijrmms.2011.06.011
https://doi.org/10.1016/j.compgeo.2010.09.003
https://doi.org/10.1016/j.enggeo.2017.05.001
https://doi.org/10.1016/j.enggeo.2017.05.001
https://doi.org/10.1002/nme.1283
https://doi.org/10.1016/j.msea.2004.05.012
https://doi.org/10.1061/(asce)0733-9399(1999)125:8(884)
https://doi.org/10.1061/(asce)0733-9399(1999)125:8(884)
https://doi.org/10.1201/b11600-39
https://doi.org/10.1115/1.4011454
https://doi.org/10.1016/j.engfracmech.2014.02.022
https://doi.org/10.1016/j.cma.2020.113631
https://doi.org/10.1016/j.compgeo.2011.08.011
https://doi.org/10.1016/j.compgeo.2016.10.012
https://doi.org/10.1016/j.compgeo.2016.10.012
https://doi.org/10.1016/j.compgeo.2015.12.013
https://doi.org/10.1016/j.jrmge.2019.02.007
https://doi.org/10.1016/j.jrmge.2019.02.007
https://doi.org/10.1002/nag.2559
https://doi.org/10.1016/j.enganabound.2014.03.005
https://doi.org/10.1016/j.compstruc.2016.08.008
https://doi.org/10.1016/j.enggeo.2019.05.005
https://doi.org/10.1016/j.enggeo.2019.105373
https://doi.org/10.1016/j.enganabound.2016.08.008
https://doi.org/10.1016/j.apm.2017.09.024
https://doi.org/10.1016/j.compgeo.2020.103726
https://doi.org/10.1142/S0219876210002118
https://doi.org/10.1016/j.enganabound.2018.01.003
https://doi.org/10.1016/j.enganabound.2018.01.003
https://doi.org/10.1016/j.enganabound.2009.07.006
https://doi.org/10.1016/j.ijrmms.2021.104944
https://doi.org/10.1016/j.cma.2021.114044
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Zheng, H., Li, W., and Du, X. (2017). Exact Imposition of Essential Boundary
Condition and Material Interface Continuity in Galerkin-Based Meshless
Methods. Int. J. Numer. Meth. Engng 110 (7), 637–660. doi:10.1002/nme.5370

Zheng, H., Liu, F., and Du, X. (2015a). Complementarity Problem Arising from Static
Growth of Multiple Cracks and MLS-Based Numerical Manifold Method. Comput.
Methods Appl. Mech. Eng. 295, 150–171. doi:10.1016/j.cma.2015.07.001

Zheng, H., Liu, F., and Li, C. (2015b). Primal Mixed Solution to Unconfined
Seepage Flow in Porous media with Numerical Manifold Method. Appl. Math.
Model. 39 (2), 794–808. doi:10.1016/j.apm.2014.07.007

Zheng, H., Liu, F., and Li, C. (2014). The MLS-Based Numerical Manifold Method
with Applications to Crack Analysis. Int. J. Fract 190 (1-2), 147–166.
doi:10.1007/s10704-014-9980-2

Zheng, H., and Xu, D. (2014). New Strategies for Some Issues of Numerical Manifold
Method in Simulation of Crack Propagation. Int. J. Numer. Meth. Engng 97 (13),
986–1010. doi:10.1002/nme.4620

Zheng, H., Yang, Y., and Shi, G. (2019). Reformulation of Dynamic Crack Propagation
Using the Numerical Manifold Method. Eng. Anal. Boundary Elem. 105, 279–295.
doi:10.1016/j.enganabound.2019.04.023

Zhu, H., Zhuang, X., Cai, Y., and Ma, G. (2011). High Rock Slope Stability
Analysis Using the Enriched Meshless Shepard and Least Squares Method.

Int. J. Comput. Methods 08 (02), 209–228. doi:10.1142/
s0219876211002551

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Li, Zheng, Yu, Jia and Sun. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and
that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does
not comply with these terms.

Frontiers in Earth Science | www.frontiersin.org January 2022 | Volume 9 | Article 82550818

Li et al. MLS-Based Numerical Manifold Method

https://doi.org/10.1002/nme.5370
https://doi.org/10.1016/j.cma.2015.07.001
https://doi.org/10.1016/j.apm.2014.07.007
https://doi.org/10.1007/s10704-014-9980-2
https://doi.org/10.1002/nme.4620
https://doi.org/10.1016/j.enganabound.2019.04.023
https://doi.org/10.1142/s0219876211002551
https://doi.org/10.1142/s0219876211002551
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles

	MLS-Based Numerical Manifold Method for Modeling the Cracked Rock Considering the Contact of the Crack Surface
	Introduction
	An Introduction to the MLS-Based NMM
	Moving Least Square Method
	Cover System of the MLS-Based NMM
	Global Approximation Function Space
	Background Integration Method

	Variational Equation of Momentum Conservation Considering Contact
	Contact Analysis of the Closed Cracked Body
	The Inheritance Strategy of Extended Freedoms
	Variational Equation of Momentum Conservation and its Discretization

	An Improved Strength-Based Criterion for Crack Propagation
	Crack Tip Stress and Crack Propagation Direction
	Crack Growth Length

	Program Implementation
	Numerical Examples
	Brazilian Disc With Pre-crack
	Rectangular Plate With Pre-crack
	A Slope With a Single Inclined Crack

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


