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With the ever-growing availability of massive geo-data, deep learning has been

widely applied to geoscientific questions such as sedimentary provenance

analysis. However, randomly selected initial weights (and also biases) and

possible loss of population diversity in traditional neural network learning

remain problematic. To address this issue, in this study, we proposed a new

deep neural network model by incorporating genetic algorithm (GA) and

simulated annealing algorithm into the BP neural network, i.e., the GA-SA-

BP model. We then applied this new model to rare earth element (REE)

geochemical data of the Liuling Group of the East Qinling Orogen to

investigate its provenance. Our results showed that among other deep

learning algorithms, the new model presents the best performance with

good measuring metrics (e.g., over 85% of accuracy, over 0.82 of F1-macro-

average, F1-micro-average, and Kappa coefficient, and smallest (<0.15)
Hamming distance). Here, we interpreted in accordance with the

classification results that the southern margin of the North China Craton and

the South Qinling Orogen are likely two major sources of the Liuling Group,

suggesting a bidirectional deposition route of sediments from the north and

south. Therefore, we proposed a foreland basin environment as the likely

tectonic setting for the Liuling Group, which is consistent with current

geological understanding. Our observations suggested that the GA-SA-BP

model (or improved deep learning models) coupled with REE geochemistry

is capable of provenance analysis.
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1 Introduction

With the rapid development of big geodata, many research

topics and methods have been pursued to address particular

issues associated with quantitative geology (Wu and Liu, 2019).

Studies show that geoscientists are able to study and solve related

geological problems by deep mining large geological datasets (Lin

et al., 2022) Among all big data analysis techniques, machine

learning (particularly deep learning) has been widely used in the

geoscience community, and interesting predictive models have

been built. By adopting machine learning, we have uncovered a

new approach for interrogating geological big data (Luo and

Zhang, 2019). For instance, big data-based magmatic rock

tectonic setting discrimination, source identification of dust,

automatic mineral identification, and numerical simulation in

petroleum geology have been witnessed (e.g., Jiao et al., 2018;

Zhang et al., 2019; Li S. Y. et al., 2019; Wang et al., 2019; Lin X

et al., 2020; Lin X W et al., 2020; Yan et al., 2021a; 2021b).

Therefore, integrating big geodata with machine learning to

improve our understanding of certain geoscientific problems

becomes the forefront of a profound revolution in the field of

earth sciences (Zhang and Zhou, 2017).

Sedimentary provenance analysis is an important research

topic in geology (Weltje and von Eynatten, 2004; Bahlburg et al.,

2010; Rodrigues et al., 2010), as it provides links between

sedimentary basins and orogenic belts and also an effective

entry point for researchers to study basin/mountain

interactions (Haughton et al., 1991; Weltje and von Eynatten,

2004). Provenance analysis has proved to be not only an

important way to analyze geotectonic backgrounds,

geotectonic evolution, paleoenvironment, and paleoclimate

restoration (Li et al., 2016; Li S. et al., 2019) but also an

important basis for lithofacies paleogeography reconstruction,

prototype basin restoration, and sedimentary basin analysis (Xie

et al., 2017; Zhou et al., 2022).

Element geochemistry is one of the most frequently used

approaches to provenance analysis (Bhatia, 1983; Bhatia and

Crook, 1986). In particular, rare earth elements (REEs) whose

chemical properties are relatively stable and who are almost

unaffected by external factors such as weathering, transportation,

sedimentation, or diagenesis are often used to trace provenance

(Cox et al., 1995; Garver and Scott, 1995). For provenance

analysis, with a continuous accumulation of element

geochemical data, geoscientists have been on the way to a

paradigm of big data coupled with machine learning (Tang

et al., 2012; Wang et al., 2014; Amedjoe et al., 2018;

Mohammedyasin and Wudie, 2019; Lin et al., 2020; Zhang

et al., 2020; Li et al., 2020). However, randomly selected initial

weights (and also biases) and possible loss of population diversity

in traditional deep learning are pressing issues needed to be

addressed and may lead to hard-to-interpret results.

The Liuling Group from the East Qinling Orogen has been

regarded as an important window to reveal the convergence

process of the Qinling Orogen in the Early Paleozoic, whose

provenance has proved to be somewhat controversial. In this

study, we proposed a new deep neural network model by

incorporating genetic algorithm (GA) and simulated annealing

(SA) algorithm into the BP neural network, i.e., the GA-SA-BP

model. We then applied this new model to whole-rock REE

geochemical data of the Liuling Group of the East Qinling

Orogen to investigate its provenance by classifying the Liuling

Group into its surrounding geological units. The aim of this study

was therefore two-fold. First, we tried to build a new deep

learning model, which will address the issues of random

weights and loss of population diversity. Second, we tried to

identify the sources of the Liuling Group and tested the new

model. Our results suggested that the southern margin of the

North China Craton and the South Qinling Orogen are likely two

major sources of the Liuling Group, implying a bidirectional

deposition route of sediments from the north and south. A

foreland basin environment is probably the formation tectonic

setting of the Liuling Group. Based on big element geochemical

data and machine learning, this study established a new method

to distinguish provenance quantitatively and provided an

innovative idea and fresh perspective for scholars engaged in

sediment source research.

2 Geological background

The Qinling orogenic belt, located between the North and

South China cratons, is bounded by the Dabie orogenic belt in the

east and extends westward for >1,500 km before joining the

Qilian–Kunlun Orogenic Belt (Figure 1A). It occupies an

important position in the formation and evolution of

mainland China (Zhang et al., 2003; Dong et al., 2013). The

Qinling Orogenic Belt can be spatially divided into four tectonic

units from north to south by taking the Luonan–Luanchuan

fault, Shangdan suture zone, and Mianlue suture zone as the

main boundaries, i.e., the southern margin of the North China

Craton, the North and South Qinling tectonic belts, and the

northern margin of the Yangtze craton (Figure 1B).

The Shangdan suture zone is characterized by a large number

of ophiolitic mélanges and pre-arc sediments, which were formed

between the North China Craton and the Yangtze craton during

the closure of the Shangdan Ocean in the Early Paleozoic (Faure

et al., 2001; Dong et al., 2011). It represents the most important

boundary between North China and Yangtze cratons.

The North and South Qinling tectonic belts originally belong

to the North China and Yangtze cratons, respectively. The

crystalline basement on the southern margin of the North

China Craton is mainly composed of the Proterozoic Taihua

Group, while the caprocks above the crystalline basement include

mainly the Xiong’er, Guandaokou, Luanchuan, and Taowan

groups, which were deposited after the Paleoproterozoic.

There is tectonic unconformable contact between the
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basement and caprocks, with a clear double-layer structure

(Zhang et al., 2001).

The North Qinling tectonic belt is located in the north of the

Qinling orogenic belt, which is sandwiched in an E–W direction

between the Luonan–Luanchuan fault and the Shangdan suture

zone. It can be further divided into multiple lenticular blocks of

different sizes by several regional faults and is a very complex

rock composition zone in the Qinling orogenic belt.

The lithostratigraphic units of the main North Qinling

tectonic belt include the Kuanping, Erlangping, Qinling, and

Danfeng groups from north to south (Zhang et al., 1995,2001),

and granites intruded in the early Neoproterozoic (980–910 Ma),

Early Paleozoic (507–400 Ma), and late Mesozoic (250–180 Ma)

(Wang et al., 2009; 2013).

Bounded by the Shangdan and Mianlue suture zones, the

South Qinling tectonic belt is mainly composed of the pre-arc,

hyperplastic complex volcanic rock series of the Wuguan Group,

Neoproterozoic Wudang Group, and Yaolinghe Group and

Sinian–Silurian continental marginal sedimentary strata and

Devonian–Triassic strata.

The northern margin of the Yangtze craton refers to the area

at the south of the Mianlue–Bashan–Dabie fault and is

characterized by a double basement structure with an early

Precambrian crystalline basement of the Yangtze block, and

Mesoproterozoic and Neoproterozoic transitional basements.

This basement complex is unconformably overlain by

Sinian–Lower Paleozoic, Upper Paleozoic–Middle Triassic,

and Mesozoic–Cenozoic strata (Zhang et al., 2001).

The Liuling Group refers to a set of Devonian strata

distributed on the northern edge of the South Qinling tectonic

belt. The main lithologies include sandstone, siltstone, and

mudstone, with a small amount of interlayered argillaceous

limestone, which has experienced metamorphism from

greenschist facies to low amphibolite facies. According to rock

assemblage and biostratigraphic characterization, the Liuling

Group can be divided (from bottom to top) into the Middle

Devonian Niuerchuan, Chigou, and Qingshiya formations and

the Upper Devonian Tongyusi Formation (Du, 1986).

3 Materials and methods

3.1 Data acquisition

The potential source regions (PSRs) of the Liuling Group are

the southern margin of the North China Craton (PSR1), the

North Qinling tectonic belt (PSR2), the South Qinling tectonic

belt (PSR3), and the northern margin of the Yangtze craton

FIGURE 1
Geological map of study area and samples distribution [basemapmodified fromDong et al.(2011)]. (A) Tectonic framework of the study area. (B)
Sketched geological map of the Qingling belt and the distribution of samples.
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(PSR4) (Figure 1). Whole-rock REE geochemical data

(i.e., concentrations of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy,

Ho, Er, Tm, Yb, and Lu) were collected from the main pre-

Devonian geological bodies in each tectonic unit. The REE data

were obtained by collecting and organizing the published

literature related to the Liuling Group, and all collected REE

data, such as group name, abundances, sample number,

lithotype, and reference, are listed in Supplementary Tables

S1–S5.

In total, 404, 451, 518, and 648 samples of REE geochemical

data were collected from PSR1, 2, 3, and 4, respectively. The

aforementioned data were used as the training and validation

sets. A total of 107 samples of REE data of the Liuling Group were

also collected and used as unknown samples.

3.2 BP (Back Propagation) neural network
optimized by genetic algorithm and
simulated annealing algorithm

Genetic algorithm (GA) can solve the problems of random

initial weights and biases in traditional BP neural networks by

using iteration of selection, crossover, and mutation (Li et al.,

2002). Meanwhile, it can remedy the problems of slow

convergence and poor generalization caused by the gradient

descent method. However, GA is insufficient in optimization

in the later learning process due to the population and may lose

its diversity. Therefore, simulated annealing (SA) algorithm

(Chen et al., 2004) is introduced into GA in this study. The

new BP neural network optimized by GA combined with SA

algorithm (GA-SA) can improve the ability of optimization in the

later learning process and deal with the problem of convergence

to the local optimal solution.

The process of building a BP neural network optimized by GA-

SA algorithm (GA-SA-BP algorithm) is as follows: first, to construct

chromosomes for GA, weights W and biases b are chosen to be

optimized and transformed into the form of chromosomes. The

number of genes contained in each chromosome is the total number

of weights and biases in the neural network, and each gene value

corresponds to the value of weights or biases. A chromosome

represents a neural network model, and this study randomly

initializes a population with K chromosomes as the initial

population. Training samples are imported to K neural network

models determined by K chromosomes for learning information.

The classification accuracy of test samples is set as fitness function (f)

of genetic algorithm, as shown in formula Eq. 1, where Ntrue is the

number of correctly classified samples and N is the total number of

samples. The higher the classification accuracy of the chromosome

is, the higher the value of fitness is.

f � Ntrue

N
. (1)

FIGURE 2
Functional block diagram of GA-SA-BP algorithm.
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Then, the initial temperature of SA is set. At the current

temperature T(t), K chromosomes are sorted with the values

of fitness functions from high to low, and the chromosomes

with high fitness values in a certain proportion are selected

for the new generation population. The roulette wheel

method is used to make selection. Generally, the higher

the value of fitness function, the higher the probability of

a chromosome to get selected; meanwhile, the lower the value

of fitness function, the lower the probability of a chromosome

to get selected. By crossover operation that exchanges genes

at the same positions, the two parent chromosomes chosen by

the roulette wheel will create two new chromosomes.

Selection and crossover are repeated until the number of

new chromosomes reaches the requirement of the population

setting. In order to restore some important genes, the new

chromosomes are then mutated by changing the value to

random of a certain position at a certain probability.

Then, the reciprocal of fitness function f of genetic algorithm

is selected as energy function E of SA algorithm as shown in

formula Eq. 2. The chromosome with a higher fitness value has

the lower energy.

E � 1
f
� N

Ntrue
. (2)

By comparing the energy of the new chromosome with the

energy of the current chromosome, the difference in the

energy value △E is obtained from △E= E1-E0, where E1 is

the energy value of the new chromosome and E0 is the energy

value of the current chromosome. Formula Eq. 3 is used to

determine the probability to add the new chromosome to the

population:

⎧⎪⎪⎨
⎪⎪⎩

1 ΔE< 0,

Pre � e−
ΔE
T ΔE≥ 0.

(3)

When △E<0, the new chromosome is accepted to the

population with the full probability of 1. When △E≥0, the
new chromosome is accepted into the population with the

probability of Pre. Meanwhile, the larger the△E is, the smaller

the T is, and the smaller the acceptance probability is. That is

to say, the smaller the fitness function value of the new

chromosome is, the smaller the acceptance probability to

the population is.

Under current temperature, this process is executed cyclically

until the number of chromosomes in the population reaches the

setting value of the population. At this moment, the population is

established. Annealing is operated according to formula Eq. 4,

where T (t+1) is the next temperature, T(t) is the current

temperature, and λ is the annealing rate.

FIGURE 3
Comparison curves of iterative loss.

TABLE 1 Training accuracy and testing accuracy of BP, GA-BP, and
GA-SA-BP algorithms.

Algorithm Training accuracy (%) Testing accuracy (%)

BP 60.75 53.21

GA-BP 87.41 84.84

GA-SA-BP 88.83 86.82
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T(t + 1) � λT(t). (4)

For each temperature obtained from formula Eq. 4, the

processes of chromosome construction, selection, and

comparison will be repeated. As the temperature decreases

during the iteration, the system gradually converges to the

population with high fitness function, and the iteration ends

at the termination temperature. The optimal chromosome with

the highest fitness function in the optimal population is selected

as the initial weights and biases for BP neural network. On this

basis, training samples are input to this optimal neural network

to fulfill the learning process to get the provenance

discrimination model.

Combining GA and SA algorithm determines whether

chromosomes with different values of fitness add into the

population with a certain probability value can retain the

diversity of the chromosome population; effectively avoid the

premature problem of GA; enhance the searching ability to

overcome falling into the local optimal solution; and further

promote classification performance of the whole neural network.

Figure 2 is the functional block diagram of GA-SA-BP algorithm.

3.3 Experimental parameter setting

In order to build a provenance distinguish model with high

performance, this study conducts experiments on BP neural

network algorithm (BP algorithm), BP neural network

algorithm optimized by genetic algorithm (GA-BP algorithm),

and BP neural network algorithm optimized by genetic algorithm

and simulated annealing algorithm (GA-SA-BP algorithm) and

assesses the performance and reliability of the three algorithms

when applied to provenance discrimination by several evaluation

indexes. The BP network structure to be optimized in this study is

[14,100,50,4], which owns two hidden layers. The input layer of

14 dimensions corresponds to 14 REE characteristics, and the

output layer of four dimensions corresponds to four groups of

provenances.

In this study, the learning rate of the BP neural network is set

at 0.001, the number of iterations is set at 1,000, and the initial

weights and biases are set randomly. For GA-BP algorithm, the

population size is set at 20, the selection rate is 0.25, the number

of genes of each chromosome is 6,754 (calculated from

14×100+100×50+50×4+100+50+4), the number of genetic

operation cycles for selection, crossover, and mutation is 200,

the mutation operation in one cycle performs 50 times, and the

fitness function utilizes accuracy of test samples. On the basis of

GA-BP algorithm, GA-SA-BP algorithm sets the annealing start

temperature at 1, the annealing termination temperature at 0.3,

and the annealing rate at 0.95 and selects the reciprocal of the

accuracy of test samples as an energy function.

4 Results

4.1 Performance assessment of algorithms

4.1.1 Loss and accuracy
Loss in this study is the mean cross entropy of output and

actual value of the model. Accuracy is a ratio of the number of

correctly classified samples to the total number of samples, which

indicates the correct degree for the classification model. The

smaller the loss is, the higher the accuracy is, and the better the

performance of the classification model is.

The comparison curves of iterative loss of BP, GA-BP, and

GA-SA-BP algorithms during 1,000 iteration times in the

training process are shown in Figure 3. The overall iterative

loss of all three algorithms during iterations reveals a downward

trend, which illustrates the feasibility of the three algorithms for

provenance discrimination. However, there are distinct

differences in convergence speed among the three algorithms.

TABLE 2 Confusion matrix of class Ci.

Prediction class of samples

Number of samples
belonging to Ci

Number of samples
not belonging to
Ci

Real class of samples Number of samples belonging to Ci TPi FNi

Number of samples not belonging to Ci FPi TNi

TABLE 3 Kappa coefficient and consistency level.

Kappa coefficient Consistency level

0–0.2 Low consistency

0.2–0.4 General consistency

0.4–0.6 Moderate consistency

0.6–0.8 High consistency

0.8–1.0 Almost identical consistency
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The convergence speed of the BP neural network is lower than

that of the other two algorithms after the same number of

iterations. Obviously, GA-SA-BP has the highest convergence

speed among the three models. Moreover, the BP neural network

has a larger of 1.1429, while GA-BP and GA-SA-BP algorithms

reach steady convergence loss of smaller values (0.9161 and

0.9046) after about 60 and 40 iterations, respectively. The

comparison demonstrates that the introduction of optimized

weights and biases helps improve the performance of BP

algorithm, and the addition of the SA approach further

increases the training speed and decreases the convergence

loss of GA-BP algorithm.

The BP, GA-BP, and GA-SA-BP algorithms display different

training accuracy and testing accuracy after being applied to

distinguish provenance, as shown in Table 1.

The BP algorithm has the lowest accuracies among the three

algorithms for both training and test samples. Therefore, BP

algorithm cannot achieve effective provenance discrimination.

The results prove that the BP algorithm is affected by the

uncertainty of initial values to weights and biases, leading to a

lower accuracy in the classification task.

Compared to the BP algorithm, the training and testing

accuracies of the provenance discrimination model based on

GA-BP algorithm are improved up to 80%. It demonstrates that

the GA-BP algorithm is more effective in provenance

discrimination, due to the introduction of optimized initial

weights and biases by the GA approach. Although the

accuracy of the training set is 87%, the accuracy of the test set

is less than 85%. It indicates that overfitting phenomenon

appears in GA-BP algorithm, and the premature problem of

GA also makes neural networks fall into the local optimal

solution to a certain extent.

To improve the performance of GA-BP algorithm, SA

algorithm is introduced into the GA-BP algorithm. In this

way, the GA-SA-BP algorithm is developed. Compared to the

GA-BP algorithm, the training accuracy of the provenance

discrimination model based on the GA-SA-BP algorithm gets

up to 88%, and its testing accuracy reaches to a greater value of

86%. The results manifest that the GA-SA-BP algorithm solves

overfitting problems in the GA-BP algorithm to a certain extent.

For the GA-SA-BP algorithm utilized in provenance

discrimination, the addition of SA algorithm improves the GA-

BP algorithm. The chromosomes with higher fitness values are

directly added to the population, and the chromosomes with lower

fitness values are not eliminated immediately but will be added to the

population with a certain probability. This process increases the

FIGURE 4
Comparison of evaluation indexes: (A) F1-macro, (B) F1-micro, (C) Kappa coefficient, and (D) Hamming distance.
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diversity of chromosomes in the population. In this way, the

optimized weights and thresholds can better characterize the

features of samples, improving the generalization ability of the

provenance distinguishability model.

4.1.2 Other evaluation indexes
In addition to accuracy and loss, the evaluation indexes of the

multi-classification model include F1-macro-average, F1-micro-

average, Kappa coefficient, and Hamming distance. In order to

further assess the performance of BP, GA-BP, and GA-SA-BP

algorithms, this study adopts these evaluation indexes to

comprehensively evaluate the three algorithms.

4.1.2.1 F1-macro-average and F1-micro-average

F1-macro-average (F1-macro) and F1-micro-average (F1-micro)

are confusion matrix-based indexes, which are adopted to evaluate

the global classification performance of multiple classifiers. M is the

number of categories in the dataset. When calculating the confusion

matrix of each class Ci, i = {1,2, M}, samples of other classes are

regarded as samples that do not belong to Ci. According to this

principle, the confusionmatrix of classCi is built, as shown inTable 2.

F1-macro and F1-micro can be calculated, respectively, from formula

Eqs. 5, 6. The larger F1-macro and F1-micro values represent the

better performance of the classifier. For datasets with balanced

samples, there will be a slight difference between the two indexes.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pi � TPi

TPi + FPi
,

Ri � TPi

TPi + FNi
,

F1i � 2 × Pi × Ri

Pi + Ri
,

F1−macro � 1
M

∑M

i�1 F1i,

(5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

TP � ∑M

i�1TPi,

FP � ∑M

i�1FPi,

FN � ∑M

i�1FNi,

P � TP

TP + FP
,

R � TP

TP + FN
,

F1−micro � 2 × P × R

P + R
.

(6)

4.1.2.2 Kappa coefficient

A Kappa coefficient is used to evaluate the consistency of a

classification model, and its calculation process is as shown in

formula Eq. 7, where Nt is the number of samples with correct

classification,N is the total number of samples, and P0 is accuracy of

the classificationmodel.M is the number of classes,Qi is the number

of real samples of classCi, andGi is the number of samples predicted

as class Ci by the classification model. A higher Kappa coefficient

corresponds to a classification model with higher accuracy and

better consistency. The correlation between the Kappa coefficient

and consistency level is shown in Table 3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P0 � Nt

N
,

Pe �
∑M

i�1(Qi × Gi)
N2 ,

Kappa coef f icient � P0 − Pe

1 − Pe
.

(7)

4.1.2.3 Hamming distance

The Hamming distance is utilized to evaluate the distance

between the prediction label and real label with the range of [0,

1], and it is calculated from formula Eq. 8, where N is the total

number of samples and D is the dimension of labels. yi is the

prediction label of the ith sample and yti is the real label of this

sample. Xor means XOR operation for obtaining the number of

different bits of two codes. The Hamming distance reflects the

proportion of error classification in a model. A larger hamming

distance stands for a higher proportion of error classification and

a lower accuracy and vice versa.

Hamming distance � 1
N

∑N

i�1
Xor(yi − yti)

D
, (8)

The evaluation indexes, F1-macro, F1-micro, Kappa

coefficient, and Hamming distance, are calculated for the BP,

GA-BP, and GA-SA-BP algorithms based on test samples. The

values of the evaluation indexes are shown in Figure 4.

According to the minor differences between F1-macro and

F1-micro, respectively, in BP, GA-BP, and GA-SA-BP

algorithms, the balance of the sample sets is proved. The BP

algorithm has the smallest F1-macro and F1-micro among the

three algorithms. Thus, the provenance performance of BP

algorithm is worse than that of the other two algorithms.

Compared to the BP algorithm, the F1-macro and F1-micro

of the GA-BP algorithm are greatly improved and reach up to

0.8484, higher than those of the BP algorithm. It signifies that the

introduction of GA into optimizing initial parameters of the BP

neural network effectively improves the provenance

discrimination performance. F1-macro and F1-micro of the

GA-SA-BP algorithm are the highest of the three algorithms,

basically up to 0.8697. It proves that SA algorithm merged into

genetic algorithm has the advantage of increasing the diversity of

chromosomes that can avoid falling into the local optimal

solution and further usefully promote the performance of the

provenance discrimination model.

Frontiers in Earth Science frontiersin.org08

Zhang et al. 10.3389/feart.2022.1001528

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1001528


The Kappa coefficient of the BP algorithm is 0.5016, referring

to the level of general consistency. The Kappa coefficient of the

GA-BP algorithm is 0.7962, referring to the level of high

consistency, which is two-level higher than that of the BP

algorithm. The Kappa coefficient of the GA-SA-BP algorithm

is 0.8224, referring to the level of almost identical consistency,

which is one-level higher than that of the GA-BP algorithm. The

comparison of the Kappa coefficient indicates that the

provenance distinguishability model based on the GA-SA-BP

algorithm is highly consistent with the actual dataset. In other

words, the result of the GA-SA-BP algorithm for provenance

discrimination is more reliable.

The Hamming distance of the BP algorithm is far higher than

that of the GA-BP algorithm and the GA-SA-BP algorithm,

demonstrating that its distance between prediction labels and

real labels is the largest and it has the most misclassifications. The

Hamming distance of the GA-BP algorithm is lower than that of

the BP algorithm, which manifests that the introduction of GA

greatly decreases misclassifications of the BP algorithm. The

Hamming distance of the GA-SA-BP algorithm approaches

0.1318, meaning that it owns a smaller distance between

prediction labels and real labels and less misclassifications. It

confirms that the accuracy of the provenance discrimination

model based on GA-SA-BP algorithm is higher than that based

on the other two algorithms.

By comprehensively analyzing F1-macro, F1-micro, Kappa

coefficient, and Hamming distance for the three algorithms, it is

verified that the GA-SA-BP algorithm is superior to the other two

algorithms in the aspects of accuracy, consistency, and reliability.

Thus, the GA-SA-BP algorithm is an efficient algorithm in

TABLE 4 Provenance discrimination results of the Liuling Group.

Provenance Number of samples
belonging to each
provenance

Proportion to total
samples (%)

Southern margin of the North China Craton 47 43.92

North Qinling tectonic belts 13 12.15

South Qinling tectonic belts 26 24.30

Northern margin of the Yangtze craton 21 19.63

FIGURE 5
Sketch map of the provenances of Liuling Group (base map modified from (Dong et al., 2011)).
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provenance discrimination. We used the GA-SA-BP algorithm to

analyze the samples of the Liuling Group.

4.2 Provenance discrimination of the
Liuling group

There are 107 REE samples of clastic rocks from the Liuling

Group. Each sample contains 14 chemical elements, namely, La, Ce,

Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. TheGA-SA-BP

algorithm is adopted to set up a provenance discriminationmodel to

determine the provenance of samples from the Liuling Group. After

inputting samples of the Liuling Group to the provenance

discrimination model that was established on the basis of GA-

SA-BP algorithm, the distinguishability results are acquired, as

shown in Table 4. The specific results are as follows: the number

of samples distinguished as the southern margin of the North China

Craton is 47, accounting for 43.92% of samples; the number of

samples distinguished as the North Qinling tectonic belt (PSR2) is

13, accounting for 12.15% of samples; the number of samples

distinguished as the South Qinling tectonic belt (PSR3) is 26,

accounting for 24.30%% of samples; and the number of samples

distinguished as the northern margin of the Yangtze craton (PSR4)

is 21, accounting for 19.63% of samples. Therefore, it can be

concluded that the most possible provenance of the Liuling

Group is mainly PSR1 and PSR3.

5 Discussion

The provenance of the Liuling Group in the East Qinling

Mountains has remained contentious. He et al. (2005) discussed its

tectonic setting, based on the geochemical characteristics of the Liuling

Group sandstone and concluded that the clastic rocks belong to

passive continental margin basin deposits. By analyzing the

geochemical characteristics of the Liuling Group, Yan et al. (2012)

concluded that the Liuling Group’s provenance involved upper-crust

and newly differentiated island arc materials, and that the tectonic

setting was a continental island arc. Dong et al. (2013) contended that

Liuling Group’s provenance was mainly from the North and South

Qinling tectonic belts, followed by the northernmargin of the Yangtze

craton and the southernmargin of theNorthChinaCraton—and that

a marine foreland basin provided its sedimentary background.

By using the detrital zircon U-Pb geochronology, Chen et al.

(2014) proposed that the Liuling Group provenance involved the

North Qinling tectonic belt and that a forearc basin provided its

tectonic environment. In contrast, after studying the geochemistry,

heavy minerals, and tourmaline chemical composition of the Liuling

Group sandstones, Shi et al. (2016) argued that the Qinling litho-

group in the North Qinling tectonic belt was the most likely source

area, and that the Liuling Group tectonic setting was a foreland basin,

rather than a passive continental margin. Liao et al. (2017) conducted

a comprehensive analysis of zircon U-Pb, Hf isotope, and zircon

geochemical characteristics and concluded that the North and South

Qinling tectonic belts were themain provenance areas and that a post-

orogenic extensional basin was the prototype basin for this period.

In another approach, Li et al. (2018) reviewed zircon U-Pb

and Hf isotopic characteristics and suggested that the Liuling

Group provenance was mainly from the South and North

Qinling tectonic belts and from the southern margin of the

North China Craton. They found an absence of provenance

indication for the northern margin of the Yangtze craton and

concluded that the tectonic setting was a foreland basin in the

Middle–Late Devonian. Gao et al. (2019) also used Liuling Group

zircon U-Pb age characteristics and considered that binary

sources were indicated for the provenance, with both the

South and North Qinling tectonic belts providing important

materials for the Liuling Group, and that a foreland basin

tectonic environment provided its tectonic setting.

For this study, the authors collected REE data from the four

potential provenance regions and quantitatively identified the

provenance of the Liuling Group using machine learning. The

results demonstrated that the southern margin of the North

China Craton and the South Qinling tectonic belt was the most

likely provenance areas, while the North Qinling belt was the

least likely contributor (Figure 5).

It should be noted that among the four data groups, the

southern margin of the North China craton had the least amount

of REE data but had the highest probability (43.92%), which

indicated that the Liuling Group samples showed a stronger

affinity to the southern margin of the North China Craton than

they showed to the other data groups.

In the early Paleozoic, the South Qinling microplate subducted

beneath the North Qinling microplate, in a subduction process that

might have lasted until the end of the Devonian (Zhang et al., 2001;

Wang et al., 2009; Dong and Santosh, 2016). This suggests that the

Liuling Group tectonic setting should be an active continental margin

environment related to plate subduction, and that the prototype basin

was either a forearc basin or a foreland basin (Gao et al., 2019). Liu

et al. (2016) and Dong and Santosh, (2016) suggested that the

Shangdan Ocean was closed during the Middle–Late Devonian,

and that there was no forearc sedimentary environment in the

South Qinling. They also suggested that the provenance area of

the forearc basin was relatively unique, being mainly the island arc

adjacent to the forearc basin, and that the provenance itself consisted

mainly of volcanic material, implying that the provenance wasmainly

from the North Qinling tectonic belt. Our results showed, however,

that the Liuling Group provenance was bidirectional, and so we prefer

to consider that a foreland basin provided the sedimentary tectonic

setting for the group.

In the early stage of this study, various statistical methods,

including principal component analysis (PCA) and Mahalanobis

distance discriminant analysis, were applied to the geological

data; however, we were unable to achieve quantitative results

with them due to their limited ability to process multi-

dimensional, mixed geological data. By introducing machine
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learning, an intelligent model based on the GA-SA-BP algorithm

was built; it proved to be highly reliable, providing accurate and

quantitative sample discrimination. The authors are confident

that using the machine learning technique has opened a new

avenue of research into the classification and discrimination of

geological data, as well as into the provenance of sediments.

The advantages of this deep learning-based provenance

discrimination method are: 1) the method can give a quantitative

description of the source area; and 2) the performance of themachine

learning model can be described quantitatively. However, while we

focus on the advantages of this approach, we also need to be aware of

some challenges in its application. For example, 1) REE data collection

requires a great deal of preparation and is time-consuming; and 2) the

construction and enhancement of deep learning models require

knowledge in the field of artificial intelligence and have a certain

threshold, such as the need to master the Python programming

language, scikit-learn, PyTorch, and other machine learning

frameworks.

6 Conclusion

In this study, an improved BP neural network model (GA-SA-

BP), designed to identify sediment provenance, was constructed using

machine learning. The resulting quantitative prediction model was

trained using REE data from four potential provenances andwas then

used to discriminate between samples (LiulingGroupREEdata) using

a quantitative classification prediction process. The following

conclusions can be drawn from this work:

1) By using measuring metrics of F1-macro-average, F1-micro-

average, Kappa coefficient, and Hamming distance, we were

able to show that the GA-BP algorithm was superior to the BP

algorithm in establishing a sediment source identification

model, while the GA-SA-BP algorithm presented the best

performance. The measuring metrics suggested that when

optimized using the GA-SA algorithm, the provenance

identification model was more accurate, more consistent

with the dataset, and more reliable, which meant that it

was able to produce better classification performance.

2) The Liuling Group discrimination results obtained using the GA-

SA-BP model showed that the numbers of samples whose

provenances were attributable to the southern margin of the

North China Craton, the North Qinling tectonic belt, the South

Qinling tectonic belt, and the northern margin of the Yangtze

craton were, 47, 13, 26, and 21, respectively, accounting for 43.92,

12.15, 24.30, and 19.63% of the total. We thus concluded that the

Liuling Group provenances were mainly the southern margin of

the North China Craton and the South Qinling tectonic belt.

When reviewing the work of other scholars and taking into

account of our conclusion that the Liuling Group enjoyed

bidirectional provenance, we concluded that a foreland basin

provided the sedimentary tectonic setting for the Liuling Group.

3) By synthesizing big data techniques and machine learning, REE

data were processed to distinguish provenance in a quantitative

manner. Compared with traditional statistical methods, machine

learningworkedwell at processingmulti-dimensional andmixed

geological data. This interactive approach has provided a new

avenue for scholars to study sediment provenance.
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