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Over the last few decades, numerous geological studies have been carried out in the
South Shetland Islands, which have greatly contributed to a better understanding of
its geological evolution. However, few attempts have been conducted to correlate
the geological units throughout this archipelago. We present herein a review of the
literature available in the South Shetland Islands, which we use to propose a
lithostratigraphical correlation that constitutes a coherent stratigraphy for the
main Mesozoic and Cenozoic rocks of the South Shetland Islands along with a
new geological map. The lithostratigraphical correlation shows that the geological
and environmental evolution comprises three main stages: 1) deep marine
sedimentation from ~164 to 140 Ma, 2) subaerial volcanism and sedimentation
with a proliferation of plants and fauna from ~140 to 35 Ma and 3) glacial and
interglacial deposits from ~35 Ma. The lithostratigraphical correlation also shows a
broad geographical trend of decreasing age of volcanism from southwest to
northeast, which has been previously suggested. However, this spatial age trend
is disrupted by the presence of Eocene magmatism in Livingston Island, located in
the centre of the archipelago. We suggest that the migration of volcanism occurred
from the Late Cretaceous until the early Eocene. Subsequently, enhanced magmatic
activity took place from the mid-Eocene until the Miocene, which we associate with
processes related with the waning of subduction. Constraining the protolith age of
the metamorphic complex of Smith Island remains challenging, yet holds key
implications for the tectonic and accretionary evolution of the Antarctic
Peninsula. The rocks recording the glaciation of this sector of Antarctica are well
exposed in the northern South Shetland Islands and hold critical information for
understanding the timings and processes that lead to the greenhouse to icehouse
transition at the end of the Eocene. Finally, contemporaneous rocks to the breakup
of Antarctic Peninsula from Patagonia that led to the opening of the Drake Passage
and the development of the Scotia Sea are exposed in the centre and north of the
South Shetland archipelago. Better constraints on the age and tectonic settings on
these units may lead to further understanding the paleobiogeographical evolution of
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the region, which may have played an important role for speciation as a land bridge
between South America and Antarctica. The dataset containing the geological map and
associated information is shared as a shapefile or KML file.
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1 Introduction

Forearc deposits are extensively exposed in southwesternGondwana.
While they play an essential role for better understanding how the
margin evolved, the Antarctic sector remains relatively locally
characterised. In particular, the South Shetland Islands, located at the
northwest of the Antarctic Peninsula, are dominated by forearc deposits
that extend for ~300 km in a north-eastern direction. This archipelago is
separated from the Antarctic Peninsula by an active marginal basin, the
Bransfield Strait (Figure 1), which opened during the Pliocene (<5Ma) as
a result of back-arc rifting (e.g., Barker, 1982). Thus, the archipelago is a
recently detached block and is comprised of a late Palaeozoic
metasedimentary basement (e.g., Castillo et al., 2015) overlain by
Jurassic and younger magmatic and sedimentary rocks (e.g., Smellie
et al., 1984; Haase et al., 2012; Bastias et al., 2019; Leat and Riley, 2021).
The geology of the South Shetland Islands records evidence of Mesozoic
to Cenozoic tectonic, global sea-level and climate change, including the
emergence of submarine marginal basins as part of a continental island
volcanic arc (e.g., Hathway and Lomas, 1998; Riley et al., 2012; Bastias
et al., 2019) and the consequent proliferation of Cretaceous plant species
(e.g., Philippe et al., 1995; Torres et al., 1997; 2015; Falcon-Lang and
Cantrill, 2002; Leppe et al., 2007; Warny et al., 2019a). This was followed
during the Eocene by the development of a mountainous landscape with
stratovolcanoes and lava fields that were covered by Valdivian-type forest
(Poole et al., 2001; Hunt and Poole, 2003), which are similar to wetlands
and freshwater environments still present today in Chile and Argentina.
Later, approaching the Eocene/Oligocene boundary, northward
propagation of the Antarctic icesheet and marine transgression
occurred (Baker, 2007; Davies et al., 2012), which led to glacial,
glaciomarine and marine sedimentation (Troedson and Riding, 2002;
Troedson and Smellie, 2002). This was followed by a period of glaciations
and interglacials that are recorded at the northwestern end of the
archipelago on King George Island (e.g., Birkenmajer et al., 1985;
Birkenmajer, 2001; Troedson and Smellie, 2002; Whittle et al., 2014;
Smellie et al., 2021a; Smellie et al., 2021b). These paleoenvironmental
events are related to globally significant climate events (e.g., Kennett,
1977; Zachos et al., 2001; De Conto & Pollard, 2003), and the South
Shetland Islands are one of the few regions in Antarctica where these
processes are preserved in the geological record. Therefore, a better
understanding of the lithostratigraphic evolution of the South Shetland
Islands is key to determine the timings and extent of these events.
However, after decades of research, our geological knowledge of the
South Shetland archipelago is limited, with most studies concentrated on
the more accessible islands (King George and Livingston islands). This
poses a significant problem when regional correlations between
geological units are required. Additionally, while there is a plethora of
local-scale geological maps, these are mostly located near research
stations and unfortunately often introduce new geological units as
opposed to attempting regional correlation. The most comprehensive
geological map of the South Shetland archipelago was presented in the
work of Smellie et al. (1984), and now after almost four decades,

significant new information is available (e.g., Bastias et al., 2019;
Smellie et al., 2021a; Smellie et al., 2021b; Chen et al., 2021), which
we gather and present herein.

This study presents a review of the main geological units of the
nine major islands of the South Shetland archipelago, which are from
south to north Low, Smith, Snow, Deception, Livingston, Greenwich,
Robert, Nelson and King George. In doing so, we correlate these units
across the archipelago to determine changes in paleoenvironmental
conditions (i.e., submarine vs. subaerial settings, the presence of glacial
episodes). This exercise has allowed us to present herein a unified
stratigraphy for the South Shetland Islands, which is used to show the
timings and characteristics of the stages of the geological and
environmental evolution of the archipelago. Additionally, this has
relevant implications for better understanding the timings for the
Cenozoic glaciation of Antarctica and the breakup between the
Antarctic Peninsula and Patagonia.

Finally, in addition to the review and correlation of the
lithostratigraphical units of the South Shetland Islands, we present
a polygon shapefile containing the geology gathered herein that the
reader can download and use freely. This should serve as a valuable
tool for Earth and environmental sciences researchers working in the
region. Although geographically the South Shetland Islands
traditionally include the Elephant Islands, which are located
~100 km further north of King George Island, this work focuses on
the nine major islands located to the south. The rocks exposed in the
Elephant Islands reveal a different geological evolution and thus we
consider that they require an independent review.

2 Geological history

The geological evolution of the Antarctic Peninsula is dominated by an
active margin setting during the late Palaeozoic, Mesozoic and Cenozoic
resulting from the subduction of the Phoenix Plate beneath the Antarctic
Peninsula along southwestern margin of Gondwana (e.g., Burton-Johnson
and Riley, 2015; Bastias et al., 2020; Jordan et al., 2020; Bastias et al., 2021;
Bastias et al., 2022). During the early Mesozoic the breakup of Gondwana
occurred, which caused the separation of the Antarctic Peninsula from
Patagonia and Africa by the opening of the Weddell Sea in the South
Atlantic (e.g., Ghidella et al., 2002; König and Jokat, 2006). Breakup was
associated with magmatism (Pankhurst et al., 2000; Riley et al., 2001;
Bastias et al., 2021) and the development of volcano-sedimentary basins on
the eastern (Larsen Basin; Hathway, 2000) and western flanks of the
peninsula (Byers Basin; Bastias et al., 2019). With the exception of the high
pressure-low temperature metamorphic accretionary complex on Smith
Island (e.g., Trouw et al., 1998b), the South Shetland archipelago is
comprised of Mesozoic and Cenozoic volcanic and volcaniclastic rocks
(e.g., Smellie et al., 1984). While waning subduction off the South Shetland
Islands and northwestern tip of the Antarctic Peninsula may still be
occurring based on seismic activity (Robertson-Maurice et al., 2003),
cessation of subduction along most of the margin developed
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progressively from south to north as a consequence of the collision of
spreading ridge segments separated by transform faults (Larter and Barker,
1991). The segment of the margin where the South Shetland Islands lies is
flanked by Hero and Shackleton fractures zones to the south and north,
respectively (Figure 1; e.g., Galindo-Zaldívar et al., 2004). Subduction is
ceasing (Lawver et al., 1995) and has resulted in the absence of arc
volcanism for the last ~20 Myr (Birkenmajer et al., 1985). Subduction-
related convergence of the Phoenix Plate with the South Shetland Islands
stopped at ~3Ma when seafloor spreading in the ridge ceased (Eagles,
2004). This has led to slab rollback and transtensionalmotions between the
Scotia and Antarctic plates, which caused extension and the opening of the
Bransfield Strait (Figure 1; Gonzalez-Casado et al., 2000; Maestro et al.,
2007; Almendros et al., 2020).

3 Methodology used for the
development of the geological map

The geological maps were developed through different stages,
which are explained herein.

1. Data from multiple sources were used to construct the geological
map presented in this work. Because our primary aim is to present

regional lithostratigraphical correlations across the South Shetland
archipelago, we have worked at a formation stratigraphic level of
detail (Figure 2A). Presenting the information in this form allows
us to observe the regional evolution of the geological units
throughout the Mesozoic and Cenozoic; including more detail
(e.g., members or further subdivisions of units) complicates this
regional synthesis. The lithological descriptions presented in this
work are mainly derived from the geological maps published by
Smellie (1979); Smellie et al. (1984); Smellie et al. (2021a); Smellie
et al. (2021b); Grunow et al. (1992); Li et al. (1996); Hathway and
Lomas (1998); Lee et al. (2002); Machado et al. (2005); Hervé et al.
(2006); Kraus and del Valle (2008); Israel (2015); Warny et al.
(2015); Bastias (2014); Gao et al. (2018); Gao et al. (2021); Bastias
et al. (2019); Chen et al. (2021); which are for the most part of local
scale. The geological symbols employed the library presented by
Frigeri (2020). Finally, it should be noted that this compilation of
maps does not include all the geological information published in
the South Shetlands archipelago and thus this geological
compilation is presented as a starting point for further work.
Occasionally, maps were not included due to 1) their local scale
either in size or time or 2) conflictive stratigraphy. Hence, we
consider that this material can be updated and complemented by
the geoscientific community working in the northern Antarctic

FIGURE 1
Tectonic configuration of the region encompassing the Scotia Plate, Patagonia and Antarctic Peninsula and showing the location of the South Shetland
Islands and the Bransfield Strait. BS: Bransfield Strait. SSI: South Shetland Islands. Red box in inset figure shows the location of the archipelago and its main
islands.
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Peninsula, and we welcome such interaction with researchers in the
future. The local geological maps of each island presented in
Figure 3 throughout Figure 13.

2. Digitization of the geological maps was performed in QGIS
v3.24 using the EPSG:3031—WGS 84/Antarctic Polar
Stereographic projection, based on the World Geodetic
System 1984 ensemble (EPSG: 6326), which has a limited
accuracy of 2 m. To digitise the maps, we initially
georeferenced each geological map presented in Figure 3
through to Figure 13 (Figure 2B). The coastline derived from
the high-definition model of Antarctica (Gerrish et al., 2021)
was used as reference guide and forms part of the data presented
in the Scientific Committee on Antarctic Research, Antarctic
Digital Database, accessed in May 2022.

3. Geological maps were fully digitised within a shapefile polygon type,
which includes 326 different polygons (Figure 2C). This shapefile has
the following fields: 1) Name, 2) Island, 3) Formation, 4) Age, 5)

Environment, 6) Type, 7) Age Max, 8) Age Min and 9) Comment.
This information was used to generate maps for each island, which
are present in the Supplementary Material.

4. The scale of the maps presented here requires consideration—while
the archipelago is more than 300 km long, the largest outcrops have
dimensions of a few kilometres across. This results in local maps
with (varying) scales, and therefore this work should be considered
as a compilation of local geological maps, rather than a
consolidated map of the archipelago as a whole.

5. Finally, the shapefile containing the geological information has
been named Geology_South Shetland Islands and has been
uploaded with all the relevant files for its visualisation to
YARETA (https://yareta.unige.ch/home/detail/71ebfa0f-c810-
45dd-b79d-036716873550; DOI: 10.26037/yareta:
zcqgax5aqzgphky3nhgxlbswc4), the digital repository from the
University of Geneva, which allows the reader to download
these files. Additionally, a.KML file has been produced that

FIGURE 2
Workflow employed in this study. (A) A geological map from the literature (Gao et al., 2018). (B) The geological maps were georeferenced by using the
coastline high-definition shapefile from Gerrish et al. (2021) and digitization in QGIS v3.24 of the units to create a polygon shapefile of the geological
information. (C) Final map showing the geological units of Fildes Peninsula, King George Island as an example.
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mirrors the geological shapefile and can be visualised on the easily
accessible platform Google EarthTM.

4 Geological units

The geology of the archipelago is presented here from southwest to
northeast.

4.1 Low Island, Cape Wallace: Jurassic deep
marine sedimentation, Early Cretaceous
volcanism and Valanginian plutonism

Located at the southern end of the South Shetland Islands
(Figure 1), Low Island is almost entirely covered by ice. Cape
Wallace is the exception, where lies about 4 km2 of exposures
(Figure 3). The exposures consist of a fine-grained sedimentary
unit overlain by a volcanic succession, both of which are intruded
by a granodiorite pluton (Araya and Hervé, 1966; Smellie, 1979;
Bastias, 2014). Smellie (1979) first described the bedded sequence
at Low Island, later redefined by Bastias and Hervé (2013) as the Cape
Wallace Beds (Figure 3). Bastias et al. (2019) defined two members for
the Cape Wallace Beds, the Pencil Beach and the Albatross Hill
members, which are equivalent to the “sedimentary member” and
“volcanic member” defined by Smellie (1979), respectively. Further
details of these units are presented below.

4.1.1 Pencil Beach Member: Deep marine Jurassic
sedimentation

Outcrops of the Pencil Beach Member are located in the southeast
and the northeast parts of CapeWallace (Figure 3). This sequence is well-

bedded and includes fine-grained volcaniclastic claystones, crystal tuffs
and lapilli stones. Individual beds are generally 4–30 cm thick, laterally
uniform and continuous, and have been interpreted as turbiditic deposits
(Smellie et al., 1984). Primary sedimentary structures are uncommon,
except for some cross-lamination, disrupted beds, and graded bedding
(Smellie, 1979). The strata strike between NW-SE and E-W, with a dip
varying from sub-horizontal to 30°N. Thomson (1982) reported in-situ
trace and molluscan fossils that suggest a Late Jurassic age, with an
ammonite identified as Epimayites aff. Transiens (Waagen)
corresponding to the Oxfordian stage. Castillo et al. (2015); Bastias
(2014) investigated the provenance (using the U-Pb zircon method) of
this unit and determined that the zircon detritus in the Pencil Beach
Member was predominantly Permian, akin to the turbidite-like sequences
in the northern Antarctic Peninsula (Carboniferous–Triassic Trinity
Peninsula Group).

4.1.2 Albatross Hill Member: Subaerial Valanginian
volcanism

The Albatross Hill Member unconformably overlies the Pencil
BeachMember and consists of a succession of subaerial lava flows. The
lava flows and associated hyaloclastites are aphyric or feldspar-phyric
augite-andesites, dacites, hornblende-andesites and rare basalts
(Smellie, 1979). Both lithostratigraphic units are intruded by the
Early Cretaceous Cape Wallace granodiorite (Smellie, 1979; Bastias
et al., 2019). Bastias et al. (2019) presented 40Ar/39Ar plateau ages of
~140–136 Ma on the Albatross Hill Member, which constrains the
minimum age of this volcanic unit.

4.1.3 Cape Wallace granodiorite: Valanginian acidic
plutonism

This pluton comprises most of the outcrop on Cape Wallace Island
and is a granodiorite associated with minor aplite bodies. This pluton

FIGURE 3
Revised geological map of Cape Wallace, Low Island, modified from Bastias (2014).
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intrudes the Pencil Beach and Albatross Hill members (Figure 3). Smellie
et al. (1984) obtained a whole-rock K-Ar age of 120 ± 4Ma, while Bastias
et al. (2019) reported a refined age of 137 ± 2Ma (U-Pb SHRIMP zircon).

4.2 Smith Island: High pressure-low
temperature palaeocene–eocene
metamorphism

A suite of metamorphic rocks (predominantly blueschist-
greenschist facies) crops out on the most inaccessible island of
the archipelago, Smith Island. The island is 40 km long and 8 km
wide and has a mountainous interior (the Imeon Range) that
extends along the entire length of the island and has peaks over
2 km in height. The metamorphic complex on Smith Island consists
of polydeformed rocks metamorphosed up to amphibiolite and
blueschist facies and has been interpreted as an accretionary
complex metamorphosed during the Mesozoic (Trouw et al.,
1998a). The exposures are comprised mainly of green and blue
phyllites with intercalations of metachert, grey phyllite and marble
(Figure 4; Dalziel, 1984; Grunow et al., 1992; Truow et al., 1998a).
Valeriano et al. (1997) on the basis of chemical analyses, suggested
these rocks had a mid ocean ridge basalt protolith, while
hemipelagic sediments from an ocean floor environment were
also present (Grunow et al., 1992; Truow et al., 1998a). While
Grunow et al. (1992) presented 40Ar/39Ar ages of ~58–47 Ma in
white mica, recently Zhao et al. (2019) presented 40Ar/39Ar plateau
ages of 65 ± 1 and 63 ± 1 Ma in phengite and sodic amphibole,
respectively. Truow et al. (1998b) determined PT conditions of
8 kbar, 300–350°C, and Chen et al. (2021) presented metamorphic
ages for the blueschist of ~65–62 Ma and showed that it underwent

a clockwise P-T evolution. Furthermore, Truow et al. (1998b) and
Chen et al. (2021), interpreted these rocks as part of a subduction
complex composed of ocean floor material mixed with arc-derived
sediments. Bastias et al. (2022) suggested that the uplift of these
rocks may have been associated with the resumption of subduction
during the Cretaceous. While the Palaeocene–Eocene age of
deformation has been established by Grunow et al. (1992) for
these rocks, the age of its protolith remains unknown. However,
considering the late Palaeozoic and Mesozoic active margin
evolution of the Antarctic Peninsula, we can speculate a
Palaeozoic to Mesozoic age for the protolith.

4.3 Snow Island: Early Cretaceous marine
sedimentation, subaerial late Cretaceous
volcanism and Eocene plutonism

The outcrops of Snow Island are mostly restricted to President
Head Peninsula (Figure 5), ~10 km south of Byers Peninsula on
Livingston Island (Figure 7), although other minor shore outcrops
are also present to the west and east on Snow Island. On President
Head Peninsula, two distinctive units crop out—a sedimentary unit
overlain by a volcaniclastic unit (Figure 5; e.g., Israel, 2015; Bastias
et al., 2019). Due to their proximity and based on litho-, bio- and
tectono-stratigraphic similarities, Crame et al. (1993) suggested
correlations between these units and those present on the adjacent
Livingston Island (Section 4.5; Figure 7). It have suggested that the
marine ammonite-bearing sedimentary succession at the western end
of President Head could be correlated with the Sealer Hill Member of
the Chester Cone Formation of Livingston Island (Crame et al., 1993;
Torres et al., 1997; Hathway and Lomas, 1998; Israel, 2015). Based on

FIGURE 4
Revised geological map of Smith Island, modified from Grunow et al. (1992).
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the marine invertebrate assemblages, the sedimentary succession on
President Head has been assigned to the mid-Valanginian (Ugalde
et al., 2013; Israel, 2015). Plant remains found in the terrestrial
volcaniclastic rocks at the top of the President Head succession on
Snow Island show the emergence of the arc and the abundant flora is
represented by bryophyta (Muscites, Thallites), ferns as Lophosoria
cupultus with spores Cyatheacidites annulatus and Gleichenites,
Aculea, Sphenopteris, Pentoxylales (Taeniopteris), Bennettitales
(Zamites, Ptilophyllum, Dictyozamites, Cycadolepis) and Coniferales
(Araucarites, Elatocladus, Conites, Podostrobus) (Torres et al., 1997;
Cantrill, 1998; Hathway and Lomas, 1998). Furthermore, Bastias et al.
(2019) presented a U-Pb zircon age of 109 Ma ± 1 from the upper
volcaniclastic succession at President Head, constraining its age to
Aptian–Albian. This age was used to refine lithostratigraphic
correlations with the units on Livingston (Section 4.5; Figure 7)
and Low (Section 4.1; Figure 3) islands and to propose a common
evolution within the Byers Basin.

Intrusive bodies constitute a major part of the outcrops on
President Head on Snow Island (Figure 5). They are mostly dykes,
although there are other hypabyssal intrusions of basaltic to
andesitic composition (e.g., Valenzuela and Hervé, 1972;
Smellie, 1980; Pankhurst and Smellie, 1983) and minor
columnar basalts and dacites (Pankhurst et al., 1979). The
geochronological control of this intrusive unit is limited to the
age obtained by Pankhurst and Smellie (1983), who reported a
K-Ar age of 46 ± 2 Ma from a dacite sampled from the President
Head Peninsula. Nevertheless, most of these rocks have
experienced low-temperature alteration (Smellie et al., 1980)

and likely the daughter isotope is disturbed, as has been shown
on other islands of the archipelago (Bastias et al., 2016; Bastias
et al., 2019) and thus K-Ar dates may be the result of the
combination between the alteration and crystallisation age in
these rocks.

4.4 Deception Island: Quaternary volcanism

This island is amongst the most active volcanoes in Antarctica
with over 20 explosive eruptions recorded in the last two centuries
(e.g., Smellie, 2001). It consists of a composite volcano with a basal
diameter of 30 km and rising over 500 m above sea level (e.g., Luzón
et al., 2011). The island has a horseshoe-shape, whose submerged
central portion represents a collapsed caldera (Figure 6). The normal
magnetic polarity of the rocks exposed on Deception Island indicates
that the rocks exposed there are younger than 0.75 Ma (Valencio et al.,
1979) while K-Ar data suggest that most of the subaerial part of the
island was built in the last 0.2 Myr (Keller et al., 1992). This active
volcanic island has attracted several volcanologists, which have greatly
contributed to a better understanding on its age and evolution (e.g.,
González-Ferrán et al., 1971; Orheim, 1972; Roobol, 1982; Ibáñez
et al., 2003; Almendros et al., 2018; Geyer et al., 2019) along with a
detailed geological map (Smellie et al., 2002). Although a considerable
amount of detailed information has been obtained on the Quaternary
geology of this island, it is not useful for the purposes of small-scale
regional lithostratigraphical correlations across the South Shetland
archipelago.

FIGURE 5
Revised geological map of the President Head Peninsula, Snow Island, modified from Israel (2015).
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FIGURE 6
Geological map of Deception Island.

FIGURE 7
Revised geological map of Byers and Hurd peninsulas, Livingston Island, modified from Hathway and Lomas (1998), Hervé et al. (2006) and Gao et al.
(2021).
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4.5 Livingston Island

Most of the rock exposures on Livingston Island are restricted to
the Byers Peninsula (Figure 7), where the Byers Group has been
defined (Hathway and Lomas, 1998). The base and the top of the
group are not exposed, but the overall thickness is estimated to be at
least 2.7 km, consisting of 1.3 km of marine sedimentary rocks
overlain by 1.4 km of non-marine strata, with a younging direction
to the east. Contact relations between the formations are locally
obscured by high-angle faults, folding, and intrusion of younger
hypabyssal and plutonic rocks (e.g., Hathway and Lomas, 1998);
others are covered by the ice cap. Hathway (1997) and Hathway
and Lomas (1998) reviewed the Byers Group lithostratigraphy
originally proposed by Smellie et al. (1980) and Crame et al.
(1993), and is presented here in stratigraphic order.

4.5.1 Byers Peninsula
4.5.1.1 Anchorage Formation: Late Jurassic deep marine
sedimentation

First defined by Crame et al. (1993), the outcrops of the Anchorage
Formation are confined to an area of 0.5 km2 in the northwest sector of
Byers Peninsula (Figure 7), where they form a homoclinal succession
dipping to the north-west and are intruded by tabular microdioritic
bodies. Hathway and Lomas (1998) subdivide the Anchorage
Formation into the New Plymouth and Punta Ocoa members,
which reach a combined thickness of about 120 m. Although the
members are lithologically distinguishable and differ markedly in the
degree of bioturbation, these two members are not differentiated on
the map presented here. This follows the rationale presented in
Deception Island, where detailed information is not useful for the
purposes of regional lithostratigraphical correlations across the South
Shetland archipelago. The New Plymouth Member consists mainly of
mudstones that exhibit notable bioturbation and numerous silicic tuff
layers, and normally graded clastic sediments that are locally
bioturbated. The Punta Ocoa Member is mainly composed of
radiolarian-rich shale with volcanic ash tuff layers and fine layers
of massive sandstone with mudstone intraclasts (Pirrie and Crame,
1995; Hathway and Lomas, 1998). The fossil record of the Anchorage
Formation suggests a Late Jurassic age (Kiessling et al., 1999). The
mudstones can be mostly interpreted as deep hemipelagic deposits but
some may have been deposited by minor turbidity currents. The
sandstones and some tuffs are interpreted as turbidites (Pirrie and
Crame, 1995) and show a limited volcaniclastic input from the Late
Jurassic magmatic arc. Bastias et al. (2019) presented a zircon U-Pb
age of 153 ± 2 Ma from an ash-layer of the Anchorage Formation,
complementing the age control suggested by the fossil record of
this unit.

4.5.1.2 President Beaches Formation: Berriasian
(~145–140 Ma) marine fan sedimentation

The President Beaches Formation was defined by Crame et al.
(1993) and redefined by Hathway and Lomas (1998), and crops out
over an area extending 0.5–1.5 km inland from Byers Peninsula and
has an estimated thickness of at least 600 m (Figure 7). It overlies the
Anchorage Formation in apparent unconformity. The President
Beaches Formation consists mainly of dark grey shales with pyrite,
radiolarians and isolated trace fossils. There also minor units of
yellowish clay-rich strata 0.5–4 cm thick (interpreted as altered
tuffs), layers of grey-green sandstones and centimetric carbonate

concretions. There are also lenticular bodies of sandstone with a
thickness of 8–45 m, with small-scale syn-sedimentary deformation
(load structures, flame structures, convolute lamination, clastic dykes)
likely caused by the submarine relief and high sedimentation rates
(Lomas, 1999). Hathway and Lomas (1998) proposed that the
President Beaches Formation was probably deposited on a
submarine slope fan below the base level of storm waves, where
mud deposition was sporadic and locally interrupted by sandy
turbidite flows confined to small channels. The source region may
have been a volcanic arc with vegetation located to the southeast
(Lomas, 1999). The rocks contain macrofossils of Berriasian affinity,
including ammonites (Spiticeras, Blanfordiceras, Himalayites,
Bochianites; Smellie et al., 1980), bivalves (Manticula Waterhouse,
Praeaucellina, Inoceramus; Crame et al., 1993) and belemnites
(Smellie et al., 1980; Crame et al., 1993; Pirrie and Crame, 1995).
Duane (1994), Duane (1996) further described the presence of
dinoflagellate assemblages that would indicate a mid-to-late
Berriasian age (~145 Ma). This formation does not have any
reported geochronological control.

4.5.1.3 Start Hill Formation: Valanginian (~140–133 Ma)
shallow marine fan sedimentation and basaltic subaerial
volcanism

The Start Hill Formation was defined by Hathway and Lomas
(1998), and has an estimated thickness of at least 265 m. The top is
unknown, while its base is well defined and is in apparent discordant
contact with the mudstones of the President Beaches Formation
(Figure 7; Valenzuela and Hervé, 1972; Smellie et al., 1980). The
formation is mainly composed of massive, poorly sorted volcanic
breccias and both clast- and matrix-supported conglomerates that
form very thick strata (5–30 m). The clasts, mostly smaller than 30 cm
but up to 3 m in diameter and generally angular, are of basalt and
basaltic andesite composition with porphyritic and amygdaloidal
textures. The contacts between stratal packages are mainly
gradational with pronounced lateral variation. There are also
geographically restricted volcanic agglomerates of grey and brown,
finely-laminated lapilli tuffs and lavas. Combined with the presence of
a molluscan assemblage dominated by oyster shell fragments (Smellie
et al., 1980), this formation has been interpreted as part of a fan/apron
of submarine debris that surrounded one or more basaltic subaerial
volcanoes. While Hathway and Lomas (1998) assigned a Berriasian
age (~145–140 Ma), Haase et al. (2012) suggested a Valanginian age
based on 40Ar/39Ar dating of aphyric lavas that yielded an age of
135 ± 3 Ma.

4.5.1.4 Chester Cone Formation: Valanginian (~140–133 Ma)
marine-continental transitional sedimentation and volcanism

The Chester Cone Formation was defined by Crame et al. (1993)
and redefined by Hathway and Lomas (1998), who divided it into two
members: the basal Devils Point Member, previously included at the
top of the Anchorage Formation by Crame et al. (1993), and an upper
Sealer Hill member. We however do not separate this formation into
two units on the geological map (Figure 7), with the aim of
maintaining consistency on the level of detail presented in the
maps. The Devils Point Member is wedge-shaped with an
estimated thickness of 300 m and has been affected by numerous
faults. Its base is composed of matrix-to clast-supported pebble
conglomerates, of mottled appearance and grey-orange colour, with
well-rounded clasts of basaltic to intermediate volcanic rocks and
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beige-grey mudstone intraclasts. The upper part consists of
conglomerates of gravel and thick greyish sandstones with fossil
remains. The fossil content is dominated by thick-shelled bivalves
that appear to be reworked (Crame et al., 1993), probably by turbidity
currents that remobilised coastal gravels (Duane, 1996). The Devils
Point Member is intruded by the Chester Cone andesite plug, for
which Pankhurst et al. (1979) obtained a Valanginian K-Ar amphibole
age of 132 ± 4 Ma. The contact of the Sealer Hill Member with the
Devils Point Member is gradational (Crame et al., 1993; Hathway,
1997; Hathway and Lomas, 1998). The Sealer Hill Member consists of
dark, finely laminated, fairly bioturbated shales, millimetric to
centimetric layers of fine-grained graded sandstone that sometimes
reach greater thicknesses and exhibit parallel to wavy low-angle
stratification, and rare 1-m thick strata of massive and poorly
sorted conglomerates, with pebble-size basaltic clasts in a gravel-to-
sand matrix. The shales might be low-energy suspension deposits
while the sandstones and conglomerates might be the product of storm
deposits (Hathway and Lomas, 1998). An ammonite assemblage with
species of Bochianites, Uhligites and Neocomites, indicates a
Valanginian age (Covacevich, 1976), while belemnites (Belemnopsis
(Belemnopsis) alexandri Willey and B. B.) gladiatoris Willey (Crame
et al., 1993), plants and bivalves are also present. Duane (1996), by
means of palynology, defined the maximum age as Valanginian.

4.5.1.5 Cerro Negro Formation: Late Early Cretaceous
volcanism

The Cerro Negro Formation (Hathway, 1997) encompasses all
the continental volcaniclastic strata exposed on the eastern side of
Byers Peninsula (Figure 7). It has an approximate thickness of
1.4 km, measured in a composite type section, and dips gently to
the ENE. The top is obscured under the present ice cap. Hathway
(1997) informally divided the Cerro Negro Formation into two
members separated by an abrupt and striking colour change, which
may represent a diagenetic front rather than a primary
stratigraphic colour change. The first member consists of
200–240 m of silicic volcaniclastic rocks of pale green to grey
colour (a weathering effect), and silicic welded or non-welded
ignimbrites intercalated with reworked and silicic pyroclastic
material. The second member is composed of lapilli tuffs and
tuff breccias, mostly syn-eruptive and of a dark red–purple
colour (due to the predominance of basaltic rocks). The lapilli
tuffs and tuff breccias are interpreted as debris flows and flood
flows, respectively. Changes in thickness and facies support a syn-
sedimentary displacement along normal and south-vergent ENE-
trending faults (Hathway, 1997). These rocks contain abundant
macro- and micro-fossil vegetation of various plant groups of late
Aptian age. Microfossils are represented by the spore species
(Muricingulisporites annulatus, Sotasporites elegans, S.
triangularis) and the macrofossils show the presence of new
species of tree ferns (Alienopteris livingstonensis, Millerocaulis
tekellili) and silicified gymnosperm trunks (Araucarioxylon,
Podocarpoxylon and Sahnioxylon) (Duane, 1996; Torres et al.,
1997; Cantrill, 2000; Falcon-lang and Cantrill, 2002; Vera, 2010;
Vera, 2012; Santos et al., 2022). 40Ar/39Ar analysis of plagioclase
from a basal tuff yielded an age of 120.3 ± 2.2 Ma (Hathway, 1997;
Hathway et al., 1999). Ignimbritic clasts in a conglomerate unit
140 m below the top of the succession yielded 40Ar/39Ar ages of
119.4 ± 0.6 Ma and 119.1 ± 0.8 Ma on biotite and plagioclase,
respectively (Hathway et al., 1999), suggesting rapid deposition

during the latest Aptian. Many younger K-Ar ages have been
obtained from the upper part of the Cerro Negro Formation
including the intrusive rocks at Negro Hill, ranging from
~110 Ma to 80 Ma (Pankhurst et al., 1979; Smellie et al., 1984).
Hathway (1997) and Hathway and Lomas (1998) consider the
possibility of placing the Cerro Negro Formation in a
stratigraphic framework outside the Byers Group, and thus
denote its current status within the Byers Group as provisional.
While we acknowledge that better constraints on the age and
geochemical affinity of these rocks may rule out its inclusion,
we retain the unit in the Byers Group, considering the current
international stratigraphic conventions.

4.5.2 Late Cretaceous volcanism in Hannah Point
Volcanic rocks are widespread on the central-east side of

Livingston Island, such as at Hannah Point (south-central coast
of Livingston Island, Figure 7). Pallàs et al. (1999) recognised five
members within this 500 m thick succession, which from base to
top are represented by: 1) 120 m of polymictic volcaniclastic
breccias, 2) 70 m of volcaniclastic breccias, 3) 65 m of basaltic
lavas, 4) 65 m of volcaniclastic breccias and 5) 150 m of andesitic
lavas, suggesting that this succession was emplaced as pyroclastic
flows associated with explosive volcanic activity in a subaerial
environment. The age of the succession has been determined by
a combination of palaeontology and geochronology. On the basis of
leaf imprints consisting of ferns (Adiantites, Matonia jeffersonii,
Gleichenites sanmartinii, Coniopteris, Sphenopteris, Cladophlebis
antarctica and C. oblonga), pteridosperms (Ptilophyllum,
Podozamites, Pachypteris), gymnosperms (Elatocladus and
Brachyphyllum) and fossil tree trunks, Leppe et al. (2007)
suggested a Late Cretaceous age. This was confirmed by Haase
et al. (2012) based on 40Ar/39Ar whole rock dating which yielded an
age of 98 ± 1 Ma. Later, Bastias et al. (2016) studied the ubiquitous
presence of low-temperature mineral associations in Hannah Point
and attributed these assemblages to a combination of burial and
hydrothermal alteration.

4.5.3 Hurd Peninsula: Jurassic marine
sedimentation, Cretaceous acidic plutonism and
palaeogene hypabyssal mafic plutonism

Located to the southeast of Livingston Island, the Hurd Peninsula
hosts the Miers Bluff Formation, which is interpreted as a polyphase
deformed and metamorphosed turbidite sequence (Hobbs, 1968;
Smellie et al., 1984; Willan et al., 1994) unconformably overlain by
Cretaceous volcanic strata (Figure 7; Caminos et al., 1973; Smellie
et al., 1984; Smellie et al., 1995). These units are cut by widespread
mafic dyke swarms (Zheng et al., 2003). The age of this succession was
assigned to the Middle to Late Jurassic based on provenance studies
and an Early Cretaceous age derived from U-Pb SHRIMP zircon age
dating of a granodiorite pluton (138 ± 1 Ma; Hervé et al., 2006) and
calcareous nannoplankton fossils (Pimpirev et al., 2002; Pimpirev
et al., 2006). This formation has been proposed to be deposited in a
multiple source, gravel-rich, deep-sea ramp system and was deposited
in a strike-slip setting (Muñoz et al., 1992). Bastias et al. (2019) used
the granodiorite age (138 ± 1 Ma) to suggest the presence of an Early
Cretaceous arc-related belt of plutons on the South Shetland Islands.
Finally, Zheng et al. (2003) based on K-Ar and 40Ar/39Ar ages,
suggested that the mafic dyke swarm was emplaced from ~79 to
31 Ma.

Frontiers in Earth Science frontiersin.org10

Bastías et al. 10.3389/feart.2022.1002760

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1002760


4.6 Greenwich Island, Fort Point: Late
Cretaceous volcanism and plutonism

The Fort Point exposures crop out on the east coast of Greenwich
Island (Figure 8), and are comprised of volcanic rocks (basalts, basaltic

andesites, and andesites) and plutonic rocks (granites, tonalites,
diorites and gabbros) (e.g., Machado et al., 2005). Grikurov et al.
(1970) reported a ~105 Ma K-Ar age on a tonalite from the central
part of the island (uncertainty was not reported), while Smellie et al.
(1984) documented a K-Ar age of 80 ± 2 Ma for a basalt sill.

FIGURE 8
Geological map of Fort Point, Greenwich Island, from Machado et al. (2005).

FIGURE 9
Geological map of Coppermine Peninsula, Robert Island, from Machado et al. (2005).
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4.7 Robert Island, Coppermine Peninsula:
Late Cretaceous volcanism

Located within the central part of the archipelago, Robert Island is
18 km long and 18 km wide, and is mostly covered by an ice-cap
(Figure 9). While some regions along the coastline have rock
exposures, the largest outcrop is located on the Coppermine
Peninsula on the southwest coast (Figure 9). These rocks form part
of the Coppermine Formation, which is dominated by basalts and
andesitic-basaltic agglomerates (e.g., Caballero and Fourcarde, 1959;
Hervé, 1965; González-Ferran and Karsui, 1970). Smellie et al. (1984)
reported K-Ar ages of ~83 to 78 Ma from the Coppermine Formation.
Recently, Villanueva (2021) undertook a compilation study of the
geology of Coppermine Peninsula and reported 40Ar/39Ar plateau ages
between~81 and 62 Ma.

4.8 King George and Nelson islands

Nelson and King George islands are only separated by a narrow
channel ~500 m wide and share a common geological evolution. King
George Island is the largest of the South Shetland Islands and given its
relative ease of access and proximity to research stations, multiple
geological studies have been carried out. This has resulted in a complex
stratigraphy that has been supported mainly by poorly constrained
K-Ar geochronology (e.g., Leat and Riley, 2021). The exposures in
King George Island are dominated by Cenozoic volcanic and
sedimentary strata (e.g., Birkenmajer and Zastawniak, 1989; Dutra
and Batten, 2000; Poole et al., 2001; Fontes and Dutra, 2010; Warny
et al., 2019b; Smellie et al., 2021a; Smellie et al., 2021b; Chen et al.,
2021). These exposures (particularly those in northeast King George
Island) are relevant because they provide a record of Antarctica’s
glacial history, and have been used to suggest episodes of late Cenozoic
glaciation (e.g., Warny et al., 2019a; Smellie et al., 2021a; Smellie et al.,
2021b). Additionally, the presence of Late Cretaceous rocks has been
indicated based on analyses of taphoflora, which are preserved in
Fildes Peninsula on King George Island and Rip Point on Nelson
Island (Birkenmajer, 1981; Smellie et al., 1984; Li et al., 1989; Cao,
1994; Shen, 1994; Dutra & Batten, 2000). The taphoflora preserved in
these deposits consists of an assemblage of carbonized wood, leaves,
pollens and spores (Manfroi et al., 2015; Manfroi et al., 2022), they are
dominantly pteridophytes (as Dicksoniacea and Cyatheaceae),
gymnosperms (as Araucariacites and Cycadopite) and angiosperms
(as Nothofagites and Melastomataceae) (Dutra, 1997; Francis, 1999;
Bastos et al., 2013; Trevisan et al., 2022).

4.8.1 Nelson Island and Fildes Peninsula: Late
Cretaceous to palaeocene volcanism and
sedimentation

Situated in southwestern King George Island, the bedrock geology
of the Fildes Peninsula (Figure 10) consists of a suite of subalkaline
volcanic, plutonic and volcaniclastic rocks (Zheng et al., 1991). Early
work indicated the presence of an abundance of volcanic rocks with
Cenozoic and Mesozoic fauna and plants (Hawkes, 1961; Barton,
1965). Smellie et al. (1984) placed the rocks of the peninsula into the
Fildes Peninsula Formation, comprised of three members: 1) a lower
member of coarse porphyritic basalt and basaltic andesite interbedded
with laterally discontinuous volcanic rocks, 2) a middle member of
volcaniclastic rocks with minor basalt and basaltic andesite lavas and

3) and an upper member of fine-grained aphyric andmicroporphyritic
andesite and dacite lavas. Furthermore, Smellie et al. (1984) reported
K-Ar whole-rock ages between ~58 and 42 Ma. Later; Machado (1997)
separated these rocks into four formations from bottom to top: 1) the
Clement Hill Formation, composed of basalt and andesites
interbedded with polymictic volcanic breccias, 2) the Fildes Strait
Formation comprised of trachybasalts and porphyritic basalts
associated with volcanic breccias, 3) the Schneider Bay Formation
composed of porphyric basalts, andesites and dacites interbedded with
breccias and 4) the Winkel Point Formation, which is comprised of
basalts and basaltic andesites interbedded with volcanic breccias,
agglomerates, conglomerates and tuffs.

Other workers have developed a different stratigraphy for
Fildes Peninsula (Li et al., 1992; Li et al., 1996; Li and Liu, 1987;
Liu and Zheng, 1988; Zheng et al., 1991; Gao et al., 2018). These
studies have divided the geology of the peninsula into five
formations which are the Jasper Hill, Agate Beach, Fossil Hill,
Block Hill and Long Hill formations, and this is the stratigraphic
nomenclature we adopt here, which we consider has the better age
constraint. The basal Jasper Formation is mostly exposed on the
southwestern tip of the Fildes Peninsula and is composed of
basaltic and basalt-andesitic lavas and breccias. The overlying
Agate Beach Formation consists of amygdaloidal basalt, basalt-
andesitic lavas and volcanic breccias. The Fossil Hill Formation
overlies the Agate Beach Formation and consists of volcanic
breccia, tuff and pyroclastic-sedimentary rocks intercalated with
several fossiliferous layers. Fossils of middle Eocene age found in
the Fossil Hill Formation include pollen spores, plant leaves and
stems and bird footprints (Li and Shen, 1990; Li, 1994; Song, 1998;
Mansilla et al., 2012; Mansilla et al., 2013). The overlying Block Hill
Formation is exposed on the east of the Fildes Peninsula and
consists of basaltic andesite, breccia and agglomerate. Finally,
the Long Hill Formation is restricted to the eastern part of the
peninsula, and consists predominantly of basaltic and basalt-
andesitic subvolcanic rocks. The reliability of the
geochronological results presented across the South Shetland
Islands is affected by the ubiquitous mineral alteration of the
volcanic rocks on the archipelago (e.g., Bastias et al., 2016).
However, Gao et al. (2018) compiled and updated the
geochronological information of Fildes Peninsula to slightly
modify the stratigraphy presented by Li et al. (1996), which is
presented herein and can be used to construct a succession of
subaerial volcanic and volcaniclastic strata of Late Cretaceous to
Pliocene age.

The geological history of Nelson Island shares close similarities
with King George Island, particularly with the Fildes Peninsula,
which is separated from Nelson Island by a narrow strait only
~500 m wide. Li et al. (1996) presented a common
lithostratigraphy, indicating that the units exposed in Nelson
Island correspond to the Jasper Hill and Fossil Hill formations.
However, it is not clear why Agathe Beach formation is not present,
which should be stratigraphically between these two units.
Regardless, the geology is presented in Figure 11.

4.8.2 Barton Peninsula: Palaeocene to Eocene
volcanism and Eocene plutonism

The Barton Peninsula is dominated by volcanic and plutonic rocks
(Figure 12). The exposures of the volcanic rocks cover most of the
peninsula and range in composition from basalt to andesite (e.g.,
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FIGURE 10
Geological map of the Fildes Peninsula, King George Island, modified from Li et al. (1996).

FIGURE 11
Geological map of northern Nelson Island, modified from Li et al. (1996).
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Hwang et al., 2011). The Sejong Formation crops out along the
southern coast of the peninsula (Figure 12; e.g., Yoo et al., 2001).
This formation is largely composed of lapilli tuffs and volcanic
breccias with a maximum thickness of 100 m and gently dip to the
south/southwest. Overlying the Sejong Formation are basic to
intermediate volcanic lavas, which are widespread on the peninsula
and range from basalt to andesite in composition (e.g., Hwang et al.,
2011). Although the presence of alteration minerals prevents
constraining the precise age of the lavas (Davies, 1982; Armstrong,
1995; So et al., 1995; Hur et al., 2001; Willan and Armstrong, 2002;
Hwang et al., 2011), most of the lavas appear to have erupted during
the Palaeocene to Eocene (Park, 1989; Kim et al., 2000; Willan and
Armstrong, 2002; Yeo et al., 2004). Fossil plant fragments are
contained within a fine-grained tuffaceous bed at Barton Peninsula
(Tokarski et al., 1987).Willan and Armstrong (2002) described debris-
flow deposits, lacustrine sediments and welded tuffs including
eutaxitic rhyolitic welded tuff, probably an ignimbrite, interbedded
with lavas at Barton Peninsula. A ca. 1.25 km-diameter caldera may be
defined by the arcuate Noel Hill intrusion. Wang et al. (2009) dated
two lavas from Barton Peninsula by Ar/Ar geochronology yielding
preferred isochron ages of 46 ± 2 and 44 ± 2 Ma, consistent with the
age presented by Kim et al. (2000) from a fine-grained diorite (40Ar/
39Ar age of 49 ± 2 Ma). Calc-alkaline granodiorite and diorite plutons
intrude the volcanic rocks in the northern Barton Peninsula, which
have been interpreted to be mid-Eocene in age (Park, 1989; Lee et al.,
1996; Kim et al., 2000). Furthermore, Kim et al. (2000) reported a 40Ar/
39Ar age of ~49 ± 2 Ma from a fine-grained diorite.

4.8.3 Potter Peninsula: Palaeocene to Eocene
volcanism and Early Eocene plutonism

The peninsula is dominated by a volcanic sequence with an
estimated thickness of ~500 m (Figure 12; Leat and Riley, 2021).
Kraus (2005) reported that the volcanic sequence on the Potter
Peninsula is comprised of volcanic centres composed of lava flows,
pyroclastic rocks (ash-fallout, pyroclastic flow deposits, volcanic
breccia and agglomerates) and hypabyssal intrusions (dykes and
sills). These rocks range from basaltic to andesitic in composition
and often exhibit columnar jointing. Early K-Ar ages have been
reported from Potter Peninsula and range between ~58 and 42 Ma
(Watts, 1982; Smellie et al., 1984), which agree with the stratigraphic
interpretation of Kraus (2005) and the Ar/Ar plateau age of 48 ± 1 Ma
of a mafic lava from Potter Peninsula (Haase et al., 2012). However,
evidence from Kim et al. (2000) and Zheng et al. (2000) indicate that
the Eocene ages may be reset as a result of local intrusive events and
the volcanic sequences may be mid-Cretaceous in age.

4.8.4 Admiralty Bay and Polonez Cove areas
While the Eocene and Oligocene rocks appear in several small

outcrops in west-centre King George Island (Smellie et al., 2021a), here
we show the two main exposures, which are located in Admiralty Bay
and Polonez Cove (Figure 13). We have used the lithostratigraphy
presented by Smellie et al. (2021a), who revised the conflictive models
presented by former contributions (e.g., Barton, 1965; Birkenmajer,
1981; Birkenmajer, 1982; Birkenmajer et al., 1985; Birkenmajer and
Zastawniak, 1989; Smellie et al., 1984; Kraus, 2005; Panczyket al., 2009;

FIGURE 12
Geological map of Barton and Potter peninsulas, King George Island, modified from Kraus and del Valle (2008) and Lee et al. (2002).
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Panczyk & Nawrocki, 2011; Nawrocki et al., 2011) on the base of
geochemistry and 40Ar/39Ar geochronology. Nevertheless, further local
maps are presented in Smellie et al. (2021a), with a thorough review of
the late Cenozoic rocks shown in eastern King George Island.

Admiralty Bay is located in the east of KingGeorge Island (Figure 13)
and its exposures are dominated by the Hennequin Formation and more
recent clastic and lavas rocks. While the Hennequin Formation is
constrained by basaltic andesites, andesite lavas and amygdaloidal
breccias, with minor presence of rhyolites (Smellie et al., 1984),
Smellie et al. (2021a) suggested that these rocks, along with other
Eocene strata, extensively crop out in eastern King George Island.

Polonez Cove is located in central-west King George Island
(Figure 13); its exposures are dominated by the Chopin Ridge
Group (Birkenmajer, 1980). This group of rocks include
porphyritic lava flows and pyroclastics, marine tillites, associated
glaciogenic sediments and sandstones. The rocks cropping out near
Polonez Cove along with other minor exposures have been extensively
reviewed by Smellie et al. (2021b), and only a summary is presented
here to facilitate comparison with the other units in the archipelago.

In the Polonez Cove region, three formations are recognised,
Hennequin (also called Mazurek Point; Panczyk & Nawrocki
2011), Polonez Cove and Boy Point formations (Figure 13; Smellie
et al., 2021a; Smellie et al., 2021b). The Hennequin Formation is a
subaerial volcanic sequence of Eocene age. While Birkenmajer (1982)
considered this unit as part of a larger marine-related group (Chopin
Ridge Group, Smellie et al. (2021a); Smellie et al. (2021b) suggested to

not include this unit within that group considering its different age,
features and origin. The Polonez Cove Formation is perhaps the most
intensively investigated unit in the archipelago due to its association
with an important glacial episode (Polonez Glaciation; e.g., Barton,
1965; Birkenmajer, 1980; Birkenmajer, 1982; Birkenmajer, 1987;
Birkenmajer, 1995; Smellie et al., 1998; Smellie et al., 2021b;
Troedson and Smellie, 2002; Quaglio et al., 2008; 2014; Warny
et al., 2019b; Nawrocki et al., 2021a). The formation is exposed in
a 2 km-long cliff along with other exposures in the area. It is
dominated by sandstones, conglomerates with abundant fossils and
clear glacial features such as tillites, striations and roche moutonée
landforms (Birkenmajer, 1995). These rocks are intercalated with
volcanic units consisting of lava-fed deltas and breccias formed
during submarine extrusion (Smellie et al., 1998). Provenance
studies have suggested that this formation sourced material from
the Antarctic Peninsula and the interior of Antarctica in the Ellsworth
Mountains (Nawrocki et al., 2021b), The depositional environment
ranges from deep to shallow water conditions with a dominant mafic
volcanic detrital component (Smellie et al., 2021b). Although fossil
material is abundant, represented by marine invertebrates including
representatives of Brachiopoda (Neothyris and Liothyrella), chinode
(Adamussium and Limatula), bryozoa, polychaeta and chinodermata,
much of it has been reworked from older strata (Smellie et al., 2021b),
and suggests an imprecise Oligocene palaeontological age (Gazdzicki
and Pugaczewska 1984; Gaździcka and Gaździcki 1985; Birkenmajer
and Gaździcki 1986; Quaglio et al., 2008). Ages on shell material

FIGURE 13
Geological map of Admiralty Bay and Polonez Cove areas modified from Smellie et al. (1984); Smellie et al. (2021a).
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FIGURE 14
Geological map of Melville Peninsula, King George Island, modified from Smellie et al. (2021b) and Warny et al. (2015).
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derived from the global 87Sr/86Sr marine curve suggest an age of
~29–28 Ma (Dingle et al., 1997; Dingle and Lavelle, 1998); however
alteration is widespread and these correlations with the global 87Sr/86Sr
marine curve should be treated with caution. Recently, Smellie et al.
(2021b), presented new 40Ar/39Ar data on the Polonez Cove
Formation, which yield plateau ages between ~28 and 26 Ma also
suggesting an Oligocene age. Overlying the Polonez Cove Formation is
the Boy Point Formation, composed of ~150 to 100 m of felsic-
intermediate lavas and agglomerates, conglomerates and sandstones
(Birkenmajer, 1982; Birkenmajer, 2001; Smellie et al., 2021b). This
unit was formally divided into two different formations (Birkenmajer,
1982; Birkenmajer, 2001) and has been redefined into one formation
by Smellie et al. (2021b). While the formation is dominantly composed
of lavas, it is interbedded with volcanic-sourced sediments which are
mostly comprised of sandstones and conglomerates (Smellie J. L. et al.,
2021). Recently, Smellie et al. (2021b) presented new 40Ar/39Ar data on
the Boy Point Formation, which yield an age between ~27 and 25 Ma.
This suggests that there is no significant time gap between the Polonez
Cove and the Boy Point formations and deposition may have been
essentially continuous (Smellie et al., 2021b).

4.8.5 Melville Peninsula
Melville Peninsula is located in northeast King George Island. The

rock exposures in the peninsula are comprised of the Sherratt Bay,
Destruction Bay and Cape Melville formations along with the recent
volcanism associated with the Melville Peak volcano (Figure 14; e.g.,
Troedson and Smellie, 2002; Warny et al., 2015). The Sherratt Bay
Formation represents an andesitic-basaltic succession, which crops
out on the eastern edge of the Melville Peninsula. Smellie et al. (2021b)

suggested to reconsider this unit as an intrusive complex considering
its features. Nevertheless, a stratigraphic hiatus separates the Sherratt
Bay Formation and the overlying fossiliferous Oligocene Destruction
Bay Formation (Birkenmajer et al., 1985). The Destruction Bay
Formation consists of a ~100–40 m thick succession of
volcaniclastic material with horizons rich in marine invertebrates
(Birkenmajer et al., 1985). Overlying this formation is the Cape
Melville Formation, which is composed of glacio-marine sediments
including sandstones, conglomerates, clay-shales and silty shales with
occasional ice-rafted dropstones (Birkenmajer et al., 1985; Troedson
and Smellie, 2002). The dropstones often show glacial striae and
glacially polished facets, thus giving primary evidence for a
continental ice-sheet presence in Antarctica (e.g., Birkenmajer
et al., 1985; Troedson and Smellie, 2002; Warny et al., 2015).
Similar to the Polonez Cave Formation, the Cape Melvile
Formation records a glacial event and thus it is one of the most
studied geological units on King George Island. The palaeontological
record of the Cape Melville formation shows the presence of
ophiuroids, crinoids and brachiopods, dominated by infaunal
bivalves, with a significant component of decapods (Whittle et al.,
2014). Furthermore, this glacial formation has been correlated with the
Mi-1 glaciation (e.g., Warny et al., 2015), an event that followed the
retreat of the icecap established during the Eocene-Oligocene by brief
periods of interglaciation (e.g., Liebrand et al., 2011). Recently, Smellie
et al. (2021b), presented an 40Ar/39Ar age of ~22–21 Ma for a tuff from
the Cape Melville Formation. The formations on the Melville
Peninsula are cut by a swarm of Miocene basaltic dykes (~20 Ma;
Birkenmajer et al., 1985) and overlain by deposits associated with the
Quaternary Melville Peak volcano (Birkenmajer and Keller, 1990).

FIGURE 15
Major lithostratigraphic units of the South Shetland Islands. Threemain tectonostratigraphic episodes are recognised: 1) deepmarine sedimentation from
~164 to 140 Ma, 2) subaerial volcanism and proliferation of plants and fauna from ~140 to 35 Ma and 3) glacial and interglacial with sedimentation and
volcanism from ~35 Ma.
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5 Lithostratigraphic correlations

5.1 Deep marine sedimentation: ~164 (?)—
140Ma

The oldest geological units exposed in the archipelago are Middle
to Late Jurassic sedimentary rocks, which crop out on Low and
Livingston islands and are represented by the Pencil Beach
Member (Low Island) and the Anchorage and Miers Bluff
formations (Livingston Island) (Figure 15). These rocks are
dominated by mudstones and fine-grained sandstones interbedded
with minor ash layers (e.g., Smellie, 1979; Hathway and Lomas, 1998;
Bastias et al., 2019), and with fossil assemblages implying a deep-
marine setting (Thomson, 1982; Kiessling et al., 1999). While the
specific depositional environment is not clear, a turbiditic setting has
been proposed (e.g., Hervé et al., 2006). Provenance studies have
indicated derivation from a Permian magmatic belt, similar to the
Triassic turbidite deposits of the Trinity Peninsula Group on the
Antarctic Peninsula (Castillo et al., 2016). While these rocks crop out
in the southern and central South Shetland Islands (Figure 15), they
may form part of the basement present throughout the archipelago
(e.g., Haase et al., 2012). Therefore, their presence suggests that
probably most of the South Shetland Islands were under a marine
sedimentation environment during the Jurassic.

5.2 Subaerial volcanism and sedimentation:
~140–35Ma

The marine Jurassic successions of Low and Livingston islands are
overlain by volcanic and volcaniclastic rocks of continental affinity
with an abundant palaeobotanical material and fauna (e.g., Bastias
et al., 2019). These two units are separated by an erosional hiatus and
provide evidence of a clear change in depositional environment in the
South Shetland archipelago. The earliest volcanism is dated at
~140–137 Ma (Low Island; 40Ar/39Ar in whole-rock; Bastias et al.,
2019) and is accompanied by ~137 Ma acidic plutonism (Livingston
and Low islands; Hervé et al., 2006; Bastias et al., 2019). Furthermore,
~140 Ma volcanism on the South Shetland archipelago links in with
the resumption of arc magmatism on the Antarctic Peninsula, which
was continuously active throughout the Cretaceous and most of the
Cenozoic (e.g., Leat et al., 1995; Riley et al., 2018). Bastias et al. (2022),
based on thermochronological studies, suggested that the Antarctic
Peninsula experienced rock uplift and erosion during the Early
Cretaceous due to the westward migration of South America
induced by the opening of the South Atlantic (e.g., Mpodozis and
Ramos, 1989). This is in agreement with similar exhumational and
erosional processes occurring farther north in the Andes during the
Early Cretaceous in Patagonia (Gianni et al., 2018; Gianni et al., 2020),
Colombia and Ecuador (Sarmiento and Rangel, 2004; Martin-
Gombajov and Winkler, 2008; Villagomez and Spikings, 2013;
Spikings et al., 2015). Therefore, the first deposits of subaerial
volcanism in the South Shetland Islands may record the early
development of the so-called “Andean cycle” in the Chilean-
Argentinian Andes, which is responsible for most of the onset of
the development of the current Andean range.

The Cretaceous period on Livingston Island is marked by
shallow water sedimentation, volcanism, Slope-apron sandstones
and conglomerates of the Byers Group (Hathway et al., 1999), and

on Low Island it is dominated by volcanic and volcaniclastic rocks
(Smellie, 1979; Bastias et al., 2019). Cretaceous volcanic and
volcaniclastic rocks are also present on Snow, Greenwich,
Robert and King George islands (Figure 15). However, it is
noteworthy that several of these successions have not been
dated by modern geochronological techniques. Volcanism,
minor plutonism and associated deposition of volcaniclastic
rocks continued throughout the Palaeocene and Eocene, which
is represented by exposures on Livingston and King George islands
(Figure 15; e.g., Smellie et al., 1984; Zheng et al., 1991). While the
presence of early Cenozoic deposits has not been reported on Low,
Snow, Greenwich, Livingston and Robert islands, they may be
buried beneath the icecap. The period between ~140–35 Ma is
key for the evolution of life in Antarctica and particularly on
the Antarctic Peninsula. The mountainous landscape allowed
the development of a complex and diverse palaeobotanical
material and fauna that is still providing new paleontological
discoveries (e.g., Birkenmajer, 1980; Cao, 1994; Poole et al.,
2001; Hunt and Poole, 2003; Warny et al., 2015; Trevisan et al.,
2022). Our unified stratigraphy for the South Shetland Islands
presented in Figure 15 provides a coherent framework that can
serve for further paleontological investigations in the archipelago
and the nearby regions.

5.3 Glacial and interglacial with volcanism and
sedimentation: ~35Ma–recent

The sudden and widespread Cenozoic glaciation of Antarctica is
one of the most fundamental reorganisations of global climate known
in the Phanerozoic geological record (e.g., Kennett, 1977; Zachos et al.,
2001; De Conto and Pollard, 2003; Klages et al., 2020). While there is
reasonable consensus on the timing of this rapid and widespread
glaciation of Antarctica, there is ongoing debate regarding the
causative mechanism responsible for such a change. Two main
hypotheses have been posed, the first is related to the Cenozoic
opening of sea gateways between Antarctica-Patagonia and
Antarctica-Australia, which correspond to the Drake Passage
(Barker and Burrell, 1977) and the Tasmanian Passage (Exon et al.,
2000). This tectonic event locally changed the organic carbon burial
and reduced southward heat transport, cooling the Southern Ocean
and the land masses around it (Eagles et al., 2006). The second
hypothesis consists of a global decline in atmospheric CO2 (e.g., De
Conto and Pollard, 2003) that may be related to the rapid increase in
Cenozoic orography (Barbeau et al., 2009; Poblete et al., 2021), the
contribution of arc volcanism (Sternai et al., 2020), or an increase of
terrestrial and marine organic carbon burial (Galy et al., 2015).
Regardless of the responsible mechanism, the rocks that document
the onset of this glacial event are exceptionally well exposed in
northeast King George Island (Figure 14; e.g., Warny et al., 2015);
specifically in Polonez Cove (Figure 14; e.g., Birkenmajer, 1980;Warny
et al., 2019a) and on the Melville Peninsula (Figure 13, e.g.,
Bikenmajer, 2001; Warny et al., 2015). These rocks are mostly
comprised of two main sequences, 1) Eocene to Oligocene lava
flows and pyroclastics, marine tillites, associated glaciogenic
sediments and sandstones and 2) Eocene to Miocene volcano-
sedimentary sequences. Research is being currently conducted by a
variety of research groups to further understanding of the timing and
duration of these glacial events.
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5.4 Patagonia and Antarctic Peninsula
breakup

While the separation of Patagonia from Antarctic Peninsula leading
to the formation of the Drake Passage may have had a profound effect
on global circulation and climate during the Cenozoic (e.g., Eagles
et al., 2006), it also has relevant repercussions for its relationship with
understanding the paleontological evolution of this sector. Furthermore,
the timings for the breakup of Patagonia from Antarctic Peninsula have
been intensively debated and interpreted to occur during the interval of
~50 to 30Ma (e.g., Barker and Burrell, 1977; Livermore et al., 2005;
Barbeau et al., 2009; Lagabrielle et al., 2009; Eagles and Jokat, 2014). This
tectonic event may be also recorded in the rocks of the South Shetland
archipelago, which are one of the closest exposures of the Antarctic
Peninsula to Patagonia. Furthermore, Figure 15 also shows that the
contemporaneous rocks to the opening of the Drake Passage are located
in the northern part of the archipelago; specifically in Livingston, Nelson
and King George islands. Thus, better constraints on the geochemistry
and the time of formation of these units may be relevant for its potential
correlation with the breakup of Patagonia from the Antarctic Peninsula.
This information will also help to better understand the faunal and
botanical link between the South Shetland Islands and Patagonia, which
is usually challenged by the poor age control of the rocks hosting the
fossils.

5.5 Smith Island: Age and tectonic
implications

The mid-ocean ridge basalts of Smith Island that were
metamorphosed under blueschist/greenschist-facies conditions
rocks yield an age of ~58–47 Ma for metamorphism (40Ar/39Ar in
white mica; Grunow et al., 1992). While these rocks have been
interpreted as part of a subduction complex composed of ocean
floor material mixed with arc-derived sediment (Grunow et al.,
1992; Truow et al., 1998a), its tectonic implication and protolith
age is not clear. Furthermore, Bastias et al. (2022), pointed out that
Smith Island resides in the same structural position to the west of the
Mesozoic intrusions as elsewhere in the Andes (e.g., the northern
Andes; e.g., Spikings et al., 2015). Therefore, it is feasible that these
high pressure-low temperature rocks were exhumed during the Early
Cretaceous on the west margin of the Antarctic Peninsula by
compression associated with the westward migration of South
America induced by the opening of the South Atlantic (e.g.,
Mpodozis and Ramos, 1989), although more work is required (and
is ongoing) to investigate the consistency of this hypothesis.
Constraining the age of the protolith, formation and exhumation
of the rocks in Smith Island is key to understand the tectonic evolution
of this sector of the Antarctic Peninsula as it may be connected to
major tectonic events.

5.6 Migration of volcanism

A broad geographical trend of decreasing age of volcanism from
southwest to northeast has been proposed (Pankhurst and Smellie,
1983; Smellie et al., 1984). The cause of the age migration is unknown.
Although a potential explanation has been linked to the rotation of the
Antarctic plate (Birkenmajer, 1995), this has been challenged by the

presence of Cenozoic dykes in Livingston Island (Willan and Kelley,
1999). Haase et al. (2012) suggested that the volcanic migration
proceeded in a series of major steps (i.e., belts), rather than a
progressive north-eastern migration. Bastias et al. (2019) reported a
southern prolongation of the Early Cretaceous volcanic rocks from
Livingston Island (Hervé et al., 2006) to Low Island and suggested the
presence of arc belts in the archipelago. Recently, Smellie (2021),
suggested that the volcanism occurred in north-easterly-aligned
elongate belts that migrated progressively to the south-east and
tentatively linked the migration to fore-arc erosion. Nevertheless,
the presence of Eocene magmatism in Livingston Island, located in
the centre of the archipelago (Willan and Kelley, 1999), challenges any
model of progressive migration to the northeast. Figure 15 depicts this
issue, where it is possible to observe a younging age trend of volcanism
towards the islands located in the north, with the exception of a dyke
unit in Livingston Island of early Cenozoic age. Alternatively, while
volcanism may have migrated from the southwest to the northeast in
the South Shetland archipelago, as it has been suggested (Pankhurst
and Smellie, 1983; Smellie et al., 1984), enhanced early Cenozoic
volcanism and plutonism may have been developed in most of the
archipelago, which interrupted the arc migration. We suggest that this
event may be related to the end of the arc magmatism of this region.
Furthermore, recently, Burton-Johnson et al. (2022) modelled the
waning of the subduction and suggested that most of the Cenozoic
magmatism in the Antarctic Peninsula is associated with the
progressively younging age of the Phoenix Plate, which is
subducted underneath the Antarctic Peninsula. Additionally, this
process may have evolved into the development of the Bransfield
Strait, a Pliocene marginal back-arc (e.g., Barker, 1982).

6 Conclusion

The South Shetland Islands host Mesozoic to Cenozoic
sedimentary, volcanic and volcaniclastic sequences that record
three main tectonostratigraphic successions:

1. Deep marine sedimentation from the Middle to Late Jurassic
(~164–140 Ma), present in the centre and south of the
archipelago.

2. Subaerial subduction-related volcanism and deposition with
proliferation of plants and fauna from the Early Cretaceous to
the Eocene/Oligocene boundary (~140–35 Ma) is present
throughout the archipelago.

3. Glacial and interglacial deposits with volcanism and sedimentation
from the Oligocene until modern times (from ~35 Ma), exclusively
present on King George Island.

We suggest that a migration in volcanism towards the northeast
took place in the South Shetland archipelago from the Late
Cretaceous until the early Eocene. This was followed by
enhanced volcanism and plutonism from the mid-Eocene until
the Miocene. We associate this enhanced magmatic activity to the
waning of subduction along the western margin of the South
Shetland Islands during the late Cenozoic.

The determination of the protolith, formation and exhumation
age of the metamorphic complex that crops out in Smith Island
remains an outstanding issue in unravelling the tectonic evolution
of the region.
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