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In seismic exploration, dense and evenly spatial sampled seismic traces are

crucial for successful implementation of most seismic data processing and

interpretation algorithms. Recently, numerous seismic data reconstruction

approaches based on deep learning have been presented. High dimension-

based methods have the benefit of making full use of seismic signal at different

perspectives. However, with the transformation of data dimension from low to

high, the parameter capacity and computation cost of training deep neural

network increase significantly. In this paper, we introduce depthwise separable

convolution instead of standard convolution to reduce the operation cost of

Unet for 3D seismic data missing trace interpolation. The structural similarity

(SSIM), L1 hybrid loss function, and switchable normalization further improve the

reconstruction performance of the network. The comparative experiments on

the synthetic and field seismic data show that depthwise separable convolution

can effectively reduce the number of network parameters and computation

intensity with the interpolation results comparable to the standard convolution

results.
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1 Introduction

Prestack seismic data reconstruction has been a longstanding issue in the field of

seismic data processing. It is hard to spatially collect seismic data densely and evenly due

to the economic and geological constraints, which influence the implementation of

subsequent seismic data processing and interpretation methods (Jia and Ma, 2017).

Seismic data reconstruction or interpolation is an effective and cost-saving technique to

acquire dense and regular sampled seismic data in the seismic exploration community

(Huang and Liu, 2020; Huang, 2022).

Seismic data reconstruction is important in seismic imaging. Many traditional

intelligent methods have been proposed to solve various problems in seismic imaging,

such as seismic resolution enhancement (Alaei et al., 2018; Soleimani, 2016; Soleimani,

2017; Soleimani et al., 2018; Mahdavi et al., 2021), complex geological structure

identification (Soleimani, 2015; Farrokhnia et al., 2018; Kahoo et al., 2021; Khasraji
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et al., 2021; Hosseini-Fard et al., 2022; Khayer et al., 2022a;

Khayer et al., 2022b), and noise attenuation (Gholtashi et al.,

2015; Siahsar et al., 2017; Anvari et al., 2018; Anvari et al., 2020).

In recent years, deep learning has achieved outstanding successes

in a variety of domains, including computer vision (Ferdian et al.,

2020; Manor and Geva, 2015) and medical image processing (Li

et al., 2021; Tavoosi et al., 2021), with its powerful representing

ability. In the field of geophysics, deep learning methods have

also been applied to many research directions recently, such as

seismic inversion (Shahbazi et al., 2020; Wu et al., 2020; Li et al.,

2022), fault analysis (Wu et al., 2019; Lin et al., 2022; Wang et al.,

2022; Zhu et al., 2022), denoising (Qiu et al., 2022; Jiang et al.,

2022; Yang et al., 2021; Yang et al., 2022), and interpolation (Liu

et al., 2021; Li et al., 2022; Yu and Wu, 2022).

Compared with traditional interpolation methods, deep

learning pays more attention to the principles contained

inside the data and learns how to interpolate the missing

traces directly from the data itself. Mandelli et al. (2018)

exploited convolutional auto encoder to interpolate missing

traces of prestack seismic data. Oliveira et al. (2018) designed

a trace interpolation algorithm and used conditional generative

adversarial network (CGAN) to interpolate irregular corrupted

seismic data. Wei et al. (2021) used the Wasserstein distance

when training CGAN to avoid gradient vanishing and model

collapse, thereby improving the interpolation effect of the model.

Liu et al. (2021) introduced “deep-seismic-prior” into a

convolutional neural network to obtain an unsupervised

seismic data reconstruction method. Yoon et al. (2021)

processed seismic data as a time-series sequence and used

deep bidirectional long short-term memory (LSTM) for

seismic trace interpolation. Chai et al. (2020, 2021) extended

the 2D seismic reconstruction task to 3D by using an ordinary 3D

Unet and obtained good interpolation results. Kong et al. (2022)

proposed a multi-resolution Unet with 3D convolution kernels

which belongs to the deep prior family for unsupervised 3D

seismic data interpolation. Compared to 2D seismic data, 3D

seismic data can help the network better reconstruct the missing

data by exploiting correlations in different dimensions of seismic

data volumes. However, the 3D neural network has huge

parameters and complex calculation, which is often limited by

hardware (GPU) memory during training. To a large extent, it

affects the task of 3D seismic data interpolation for practical

application.

Although deep learning methods show excellent

performance in seismic data reconstruction, one of its main

shortcomings extending to high-dimension data operation is

that a large amount of computational memory is required

when training the network. There have been a lot of research

studies on how to mitigate this problem, and one of the solutions

is to use depthwise separable convolution. In the field of image

processing, many related methods have been proposed, especially

for the task of image segmentation. Many of these works reduce

the number of parameters and computation of the network by

replacing the standard convolution in Unet with the depthwise

separable convolution (Qi et al., 2019; Beheshti et al., 2020;

Gadosey et al., 2020; Zhang et al., 2020; Rao et al., 2021).

Moreover, depthwise separable convolution also has similar

applications on the task of image reconstruction. For example,

Zabihi et al. (2021) integrated depthwise separable convolution

and Atrous Spatial Pyramid Pooling (ASPP) module into Unet,

which not only improved the reconstruction accuracy of

magnetic resonance imaging (MRI) but also reduced the

number of parameters and memory consumption by the

network. The aforementioned methods using depthwise

separable convolution are two-dimensional, while in

geophysics, many seismic data are three- or five-dimensional.

Thus, we propose DS-Unet in this paper, which is a 3D Unet

(Chai et al., 2021) with depthwise separable convolution

(Howard et al., 2017), for 3D irregular missing seismic trace

interpolation. The depthwise separable convolution effectively

reduces the parameters and computation cost required in the

convolution operation by splitting the standard convolution into

two steps: depthwise convolution and pointwise convolution.

The structure of this paper is as follows: First, we introduce the

hybrid loss function, switchable normalization, and depthwise

separable convolution in detail. Next, our proposed DS-Unet

architecture is presented. Then, our proposed network is tested

on a SEG C3 synthetic dataset and Mobil Avo Viking Graben

Line 12 field dataset. The workflow of the experiments and

analysis is shown in Figure 1. The experiment results show

that the depthwise separable convolution can make the

network more lightweight, while the obtained results are on

par with those using standard convolution. In the last section,

conclusions are presented.

FIGURE 1
Scheme of the numerical experiments and analysis.
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2 Theory and method

2.1 Loss function

The network training process updates network

parameters using an optimizer according to the loss

function. The suitable loss function can help to capture the

intrinsic features of the inverse problem and speed up the

convergence of the network (Huang et al., 2022). In this

paper, we use a hybrid loss function (Yu and Wu, 2022) to

obtain information from the missing part and global

structure which is effective for seismic data reconstruction.

The following describes the loss function used in this paper in

detail.

1) L1 loss function: Given the model prediction result x and

reference label data y, L1 is calculated as

LossL1 �
∑l

i�1∑
m
j�1∑

n
k�1w[i, j, k] ·

∣∣∣∣x[i, j, k] − y[i, j, k]
∣∣∣∣

∑l
i�1∑

m
j�1∑

n
k�1w[i, j, k]

, (1)

where x[i, j, k] and y[i, j, k] are the seismic amplitude of x and

y, respectively; l ·m · n is the total number; and w[i, j, k]
represents a 3D binary mask which is equal to one at data

missing position and zero elsewhere. Using L1 as loss function

makes the deep neural network pay more attention to recovering

details of missing traces during training.

2) SSIM loss function: The structural similarity (SSIM) loss is

used to capture the overall structural texture information of

seismic data. SSIM is an indicator that measures the similarity

between data, which is calculated from brightness, contrast,

and structure (Wang et al., 2004). For the interpolation result

of network output x and corresponding labeled data y, the

expression formula of SSIM(x, y) is

FIGURE 2
(A) Standard convolution; (B) depthwise convolution; and (C) pointwise convolution.
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SSIM(x, y) � (2μxμy + c1)(2σxy + c2)
(μ2x + μ2y + c1)(σ2x + σ2y + c2)

, (2)

where μx, μy are the means; σx, σy are the standard deviations;

σxy is the covariance; and c1, c2 are small constants. The value

range of SSIM(x, y) is [0, 1]; the closer to 1, the more similar x

and y is. We set the SSIM loss function as

LossSSIM � 1 − SSIM(x, y). (3)

Since the calculation results of the two loss functions are in range

[0, 1], the hybrid loss function formula used in this paper is set as

LossL1+SSIM � LossL1 + LossSSIM. (4)

Compared with the single loss function, the LossL1+SSIM
captures both local and global information which is more

suitable for the seismic missing trace reconstruction task (Yu

and Wu, 2022).

2.2 Switchable normalization

We use switchable normalization (SN) (Luo et al., 2018)

instead of batch normalization (BN) to eliminate the influence of

minibatch size on BN due to the increase of data dimension. The

expression for switchable normalization is

SN � wbn × BN + win × IN + w ln × LN , (5)

where IN is the instance normalization and LN is the layer

normalization. Since the mean and variance of BN are calculated

on a minibatch, the smaller the minibatch, the greater the noise

generated by the estimation of this statistical information, which

will lead to excessive regularization of model training and affect

the generalization ability of the model. IN and LN are

independent of the minibatch in calculation, but they cannot

reach the accuracy of BN due to the lack of regularization ability

when the minibatch is large. SN allows the network to learn the

value of wbn, win, w ln according to the data so that different

normalization methods interact to overcome the aforementioned

problems.

2.3 Depthwise separable convolution

Compared with 2D seismic data, the additional dimension

of 3D seismic data can obtain more information from multi-

dimension, which is beneficial for data interpolation.

FIGURE 3
(A) Standard convolution; (B) depthwise convolution; and (C) pointwise convolution. N, M are the channel number of input and output.
DI , DO , Dk are the spatial dimensions of input, output, and convolution kernels assumed to be square, respectively.
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However, with the increasing dimensionality, the calculation

operation of each component in the network will be greatly

increased. Thus, we introduce depthwise separable

convolution to replace standard convolution in some layers

to reduce parameters and computation of the network.

Depthwise separable convolution decomposes the standard

convolution into two steps, namely, depthwise convolution

and pointwise convolution. In the following, we first introduce

the depthwise separable convolution on 2D data and then

further introduce the depthwise separable convolution in the

3D case.

2.3.1 Convolution on 2D data
To make it easier to understand, we first introduce a

simple example of using standard convolution and

depthwise separable convolution, respectively, on 2D data,

as shown in Figure 2. We assume that the 2D input data has

3 channels, and the size of the feature maps of each channel is

H × W. In addition, we use zero padding and the stride is set to

1 in both standard convolution and depthwise separable

convolution. The following describes the process of these

two kinds of convolution methods, as well as their

parameter quantity and computation cost.

1) Standard convolution: As can be seen in Figure 2, 4

convolution filters with the size of 3 × 3 × 3 are directly

applied to convolve the 3 × H × W input data, and the

output data are 4 feature maps with the size of H × W.

The parameter quantity PSTD and computation cost CSTD

required by the standard convolution are as follows:

PSTD � 4 × 3 × 3 × 3 � 108, (6)
CSTD � 3 × 3 × H × W × 3 × 4 � 108 × H × W. (7)

2) Depthwise separable convolution: Unlike the standard

convolution, the depthwise separable convolution is

divided into two steps: depthwise convolution and

pointwise convolution. It first uses depthwise convolutions

to apply a single filter per input channel. Then, a simple

1×1 convolution named pointwise convolution is used to

calculate a linear combination of the outputs of depthwise

convolution for generating new features (Howard et al.,

2017). For our 2D case in Figure 2, we first performed the

depthwise convolution: applying 3 convolution filters with the

size of 3 × 3 to the 3 channels of 3 × H × W input data,

respectively, and obtaining 3 feature maps with the size of

H × W. Then, we perform the pointwise convolution: 4

convolution filters of size 1 × 1 × 3 are applied to the 3

feature maps obtained in the previous step, producing 4

feature maps with the size of H × W. The parameter

quantity PDS and computation cost CDS required by the

depthwise separable convolution are as follows:

PDS � 3 × 3 × 3 + 1 × 1 × 3 × 4 � 39, (8)
CDS � 3 × H × W × 3 × 3 + 3 × 3 × 3 × 4

� 108 + 27 × H × W. (9)

According to the aforementioned analysis, compared with

standard convolution, depthwise separable convolution can

effectively reduce the parameter and computation cost of the

convolution layer, and the larger the size of input data is, the

FIGURE 4
Architecture of DS-Unet. The left side is encoder, the right side is decoder, and the orange arrow in themiddle is the jump connection layer. The
red arrows and yellow arrows are depthwise separable convolution and Transpose convolution, respectively.
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more parameter and computation cost are reduced. When

dealing with practical problems, it often happens that the data

size to be handled relies on the device hardware memory (GPU).

The use of depthwise separable convolution can effectively

mitigate this problem.

2.3.2 Convolution on 3D data
The input data in this paper is the 3D seismic data volume.

In the training process, the input of convolution layers are

usually 4D data with the size of N × H × W × D, where N is

the number of channels andH × W × D is the 3D feature map

size. Based on the previous depthwise separable convolution

for 2D data, we derive the depthwise separable convolution for

3D data used in this paper and compare it with the 3D

standard convolution. Moreover, when applying depthwise

separable convolution on 3D seismic data, we first conduct

depthwise convolution along inline and crossline and then

FIGURE 6
Time slice of interpolation results on the SEG C3 synthetic data: (A)missing traces data; (B) ground truth; (C)Unet (Chai et al., 2021); and (D)DS-
Unet.

FIGURE 5
Loss curves of the two networks on the SEG C3 synthetic
data.
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pointwise convolution along time axis. As shown in Figure 3,

we assume that the 3D input data are a cube which has N

channels and the size of the feature map of each channel is

DI × DI × DI. Padding and stride are not specified in this 3D

case.

1) Standard convolution: As shown in Figure 3, M 3D

convolution filters with the size of Dk × Dk × Dk are

directly applied to the N × DI × DI × DI input data,

producing the output data with the size of

M × Do × Do × Do. The parameter quantity PSTD and

computation cost CSTD in 3D standard convolution can be

expressed as follows:

PSTD � M ·Dk ·Dk ·Dk, (10)
CSTD � Dk ·Dk ·Dk ·N ·M ·DI ·DI ·DI. (11)

2) Depthwise separable convolution: Similar to the 2D case, N

convolution filters with size 1 × Dk × Dk are first applied to

the N × DI × DI × DI input data for depthwise

convolution, and a 3D feature map with N channels and

size of Do × Do × DI is obtained. Then, M convolution

filters with the size of 1 × 1 × Dk are used to perform

pointwise convolution on the previously obtained

feature map to produce the output data with the same

size as the standard convolution. The parameter quantity

PDS and computation cost CDS in depthwise separable

convolution are:

PDS � N ·Dk ·Dk +M ·Dk, (12)

CDS � Dk ·Dk ·N ·N ·DI ·DI ·DI +Dk ·M ·N ·DO ·DO.

(13)
It can be concluded that the use of depthwise separable

convolution can reduce the calculation workload of the

network. The experimental part in this paper further verifies

that the depthwise separable convolution can reduce the

computation cost and parameter amount of 3D convolution

neural network with close seismic data reconstruction results

to standard convolution.

FIGURE 7
Inline slice of interpolation results on the SEGC3 synthetic data: (A)missing traces data; (B) ground truth; (C)Unet (Chai et al., 2021); and (D)DS-
Unet.
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3 Network architecture

We design a 3D Unet network equipped with depthwise

separable convolution for interpolation of 3D seismic data

which coined as DS-Unet. In the experiment, we found that

replacing all standard convolution with the depthwise

separable convolution slows down the time of network

training. Tan et al. (2021) pointed out that although the

depthwise separable convolution greatly reduces the

number of parameters, it divides the original one-step

standard convolution into two steps, which increases the

depth of the network and the intermediate variables that

need to be saved and read. Then, a lot of time is spent on

reading and writing data, resulting in slow training speed. Tan

et al. (2021) addressed this problem by replacing the

depthwise separable convolution in shallow layers with

standard convolution. Likewise, in this paper, we use

standard convolution in three layers close to the input and

output of Unet, and use the depthwise separable convolution

in the middle four layers. The underlying principle is that

deeper layers have smaller feature maps, saving more time on

reading and writing intermediate variables. The specific

structural framework of the proposed network is shown in

Figure 4.

The construction of 3D Unet is to replace the 2D

convolution, pooling, and up-sampling layers in 2D Unet with

the corresponding 3D versions. Based on 3D Unet, our 3D DS-

Unet entirely replaces the standard convolution (blue arrow) in

the middle four layers with depthwise separable convolution (red

and yellow arrow). Like the ordinary Unet, the input seismic data

are first convolved and down sampled several times to obtain a

feature map with 512 channels. This process is used to extract

representative features of the input seismic data, which is called

the encoder. Then, the feature map finally obtained by the

encoder is convolved and up sampled for the same number of

times to get the final result. This process is used to reconstruct the

seismic data, which is called the decoder. In addition, the skip

connection concatenates the feature maps of encoder layer and

decoder layer to make up for the information lost in the down

sampling process.

FIGURE 8
Crossline slice of interpolation results on the SEGC3 synthetic data: (A) (complete crossline) missing traces data; (B) ground truth; (C)Unet (Chai
et al., 2021); and (D) DS-Unet.
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4 Experiments

4.1 Synthetic data

The synthetic dataset we used in the experiment is the SEG

C3 dataset, which is a publicly available dataset, including

45 shots with 8 ms sample rate. Each shot has 201 ×

201 receiver grids with 625 time samples per trace. We use

the sliding window method to expand the data, selecting

1,710 cubes with the size of 128 × 128 × 128 from the

whole dataset, of which 1,026 are used for training,

342 and 342 for validation and testing, respectively.

Training, validation, and test dataset are extracted from

shots with index number 1–27, 28–36, and 37–45,

respectively, in order to ensure the generalization

performance of the network. This ensures no overlapping

on training, validation, and testing datasets. For each 128 ×

128 × 128 cube, we randomly selected 30% traces in crossline

FIGURE 9
Wiggle plots on the SEG C3 synthetic data: (A) No.60 crossline slice of Unet; (B) No.60 crossline slice of DS-Unet, (C) No.110 crossline slice of
Unet (Figure 8C), and (D) No.110 crossline slice of DS-Unet (Figure 8D); black dashed lines indicate reconstruction results and red solid line, ground
truth.

TABLE 1 Comparison of two networks on SEG C3 synthetic data (the bold font indicates the best value).

Model MSE SSIM Parameter quantity Training time (s/epoch)

Unet 1.7138e−05 0.9984 13,555,409 698.5647

DS-Unet 1.0822e−05 0.9990 7,942,033 561.0426
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direction and set the corresponding value to zero. We used the

Adam optimization method with initial learning rate 0.001 in

our paper. The number of training epochs is 25, and the batch

size is 1. All network training in the experiments is

implemented under the Pytorch framework, and GPU

(GeForce RTX 2080 Ti) is used to speed up the computation.

Unet with standard convolution alone and DS-Unet with

both standard and depthwise separable convolution are trained

under the same conditions. We emphasize that both the models

adopt hybrid loss function and switchable normalization, and the

only difference between them is whether the depthwise separable

convolution is used. The loss curves of two networks are shown

in Figure 5; we can see that after 10 epochs, the training loss

curves of the two models have coincided. For the validation loss,

although the curves of the two models do not coincide, there is

little difference, and the validation loss of DS-Unet even

converges to a smaller value.

Figure 6, Figures 7, and 8 are the time, inline, and crossline

slices of the interpolation results obtained by the two networks on

the SEG C3 synthetic dataset, respectively. The reconstruction

results obtained by DS-Unet (Figure 6D, Figures 7D, 8D) are, in

general, comparable with those obtained by Unet (Figure 6C,

Figures 7C, 8C), and the different between them is almost

indiscernible to the naked eye. Meanwhile, the results of the

two models are very close to the ground truth (Figure 6B, Figures

7B, 8B).

FIGURE 10
Residual of (A) Unet on No.60 crossline slice, (B) DS-Unet on No.60 crossline slice, (C) Unet on No.110 crossline slice (Figure 8C), and (D) DS-
Unet on No.110 crossline slice (Figure 8D).

FIGURE 11
Loss curves of the two networks on field data.
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To compare the interpolation results from a different

perspective, we drew wiggle plots of crossline slice which

display the reconstruction result of single trace, as shown

in Figure 9. It is evident that the reconstruction result of Unet

(Figure 9 left column) and DS-Unet (Figure 9 right column)

represented by the black dashed line are very similar and

almost coincide with the ground truth (red solid line).

Inspecting these results, we can find that the reconstruction

profiles obtained by our proposed DS-Unet are not

significantly different from those obtained by Unet, and

they are both close to the ground truth.

To further compare the performance of the two models, we

also calculated two quantitative indicators: MSE and SSIM, and

the number of parameters and training time of the model, shown

in Table 1. The interpolation results of the two networks are only

slightly different in two metrics. However, comparing the

number of parameters and training time of the model, the

parameters of DS-Unet account for only 58% of Unet, which

greatly reduces the memory usage of Unet. Moreover, the

training time of DS-Unet is shortened by about 20% per

epoch, compared to Unet. Experiments show that the DS-

Unet can effectively reduce the operation cost of the network

while maintaining the accuracy of network reconstruction

results.

For better visualization and comparison, we draw the

waveform of the interpolated traces and ground truth on 60th

and 110th crosslines in Figure 9. As shown in Figure 10, the

residual of interpolation results for the 110th crossline slice are

presented. The left side of Figure 10 shows the residual of Unet,

and the right side is that for DS-Unet; the SNR values are 19.1211

(Figure 10A), 23.7704 (Figure 10B), 19.5989 (Figure 10C), and

23.2223 (Figure 10D). Both the residual and SNR value show that

signal leakage is more significant in the result of Unet compared

to DS-Unet, indicating that DS-Unet has better reconstruction

performance.

4.2 Field data

The experiment on field data is conducted on Mobil AVO

Viking graben line 12, which is a public dataset composed of

1,001 shots. Each shot has 120 traces, and each trace has

FIGURE 12
Time slice of interpolation results on field data: (A) missing traces data, (B) ground truth, (C) Unet (Chai et al., 2021), and (D) DS-Unet.
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1,500 samples. The time sampling interval and space sampling

interval are 4 ms and 25 m, respectively. It is worth noting that

although the dataset is 2D profile, it can be regarded as 3D data

composed of three dimensions: shot position, receiver position,

and time. A similar processing can be seen in the study by Chai

et al. (2021), which also treated this 2D field seismic data as 3D

data for 3D seismic data interpolation tests. We still use the

sliding window method to divide the whole 3D data volume into

a large number of small cubes to expand the training samples.

Additionally, the size of each cube is set to 96 × 96 × 96. We

perform the sliding window method on the first 600 shots to

obtain 1,092 cubes as training samples, and perform the same

operation on the subsequent 400 shots to obtain 504 samples,

252 of which are taken as the validation dataset and others as test

dataset. Traces are still 30% randomly missing in the receiver

direction. We test the performance of DS-Unet and Unet on this

field dataset. Except for the number of epochs which is set to 30,

other hyperparameter settings and training conditions are same

as those of the experiment of synthetic data.

Figure 11 shows the convergence curves of DS-Unet and

Unet. It can be observed that although the training loss of Unet

finally converges to a smaller value, the difference between the

training losses of the two models are both very small after

20 epochs. In addition, for validation loss curves, the two

models almost coincide after 20 epochs.

Figures 12–14 compare the reconstruction results of the two

models in three dimensions: time, shot position, and receiver

position. Figures 12C–13C–14C and Figures 12D–13D–14D

show the seismic data reconstructed by Unet and DS-Unet in

three dimensions, respectively. It can be observed that they are

very close to the ground truth (Figures 12B–13B–14B), indicating

both models can achieve good interpolation results. Further

comparing the reconstruction results of the two models, we

can find that the differences between them are visually

undetectable in the three dimension slices. In conclusion, DS-

Unet with depthwise separable convolution reduces the memory

and computation required when training the network and

achieves comparable interpolation accuracy as Unet.

FIGURE 13
Shot slice of interpolation results on field data: (A) missing traces data, (B) ground truth, (C) Unet (Chai et al., 2021), and (D) DS-Unet.
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In addition, we also drewwiggle plots of common receiver gather,

that is, plot seismic trace with a fixed receiver number for different

shots to compare the reconstruction results of single seismic trace,

shown in Figure 15. It indicates that the reconstructed seismic data of

the two models represented by the black dashed line well fit the real

seismic data represented by the red solid line.

Quantitative indicators are shown in Table 2. Comparing

MSE and SSIM in the table, it can be seen that Unet outperforms

DS-Unet by small margins. However, the parameter quantity and

training time of DS-Unet are significantly decreased compared to

Unet, which are reduced by 40% and 13%, respectively.

Therefore, although DS-Unet using depthwise separable

convolution has performance similar to Unet using standard

convolution alone, DS-Unet is superior to Unet in terms of both

memory and time.

Figure 16 is the residual corresponding to Figure 15. We can

see that for the 49th receiver (the first row of Figure 16), the

residual of Unet (Figure 16A) is not very different from DS-Unet

(Figure 16B), and the SNR values are also very close, which are

11.5034 and 11.1270, respectively. There is no significant

difference in signal leakage between them. For the 24th

receiver (the second row of Figure 16), the residual of Unet

(Figure 16C) is with smaller amplitude than DS-Unet

(Figure 16D), and the SNR values are 8.6916 and 6.6798,

respectively, which are not very different from each other.

Additionally, we think such a gap is acceptable compared with

the significant advantage of DS-Unet in the number of

parameters and calculation.

4.3 Ablation study

In order to further illustrate the improvement of

interpolation results by hybrid loss and switchable

normalization, we conduct ablation experiments on the

SEG C3 synthetic dataset. The network structure used in

the experiments is DS-Unet. The results are shown in

Figure 17 and Table 3. Figure 17C shows the interpolation

results of the model using the MSE loss function, with more

detail missing and notable white bar artifacts in the red box

FIGURE 14
Receiver slice of interpolation results on field data: (A) (complete receiver) missing traces data, (B) ground truth, (C) Unet (Chai et al., 2021), and
(D) DS-Unet.
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compared to Figure 17E, which is the result of the model using

hybrid loss function. The interpolation result using batch

normalization (Figure 17D) also has evident line-like

artifacts in the blue box, with poor continuity. Table 3

shows the quantitative evaluation indicators of the

interpolation results. The MSE indicator of the model using

batch normalization is 20.5329e−05, which is more than three

times worse than that of the model using switchable

normalization, indicating that using batch normalization

instead of switchable normalization will significantly

degrade the interpolation performance of the model.

Additionally, from the the second and third rows in

Table 3, we can conclude that the hybrid loss function has

better interpolation effect than the MSE loss function. In

summary, the model using both the hybrid loss function

and switchable normalization performs best in both the

MSE and SSIM indicator, and it is also closest to the

ground truth in Figure 17B.

FIGURE 15
Wiggle plots on field data: (A)No.49 receiver slice of Unet, (B)No.49 receiver slice of DS-Unet, (C)No.24 receiver slice of Unet (Figure 14C), and
(D) No.24 receiver slice of DS-Unet (Figure 14D); black dashed lines indicate reconstruction results, and red solid line, ground truth.

TABLE 2 Comparison of two networks on field data (the bold font indicates the best value).

Model MSE SSIM Parameter quantity Training time (s/epoch)

Unet 5.3011e−05 0.9936 13,555,409 351.6281

DS-Unet 6.5978e−05 0.9915 7,942,033 306.8100
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FIGURE 16
Residual of (A)Unet on No.49 receiver slice, (B)DS-Unet on No.49 receiver slice, (C)Unet on No.24 receiver slice (Figure 14C), and (D)DS-Unet
on No.24 receiver slice (Figure 14D).

FIGURE 17
Interpolation results using different loss functions and normalization methods on the SEG C3 synthetic data: (A)missing traces data, (B) ground
truth, (C) swichnorm+MSE loss, (D) batchnorm+hybrid loss, and (E) swichnorm+hybrid loss.
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5 Discussion

Deep learning has been widely used in seismic data

processing. However, for high-dimensional seismic data, they

are often limited by computer memory due to the huge number

of parameters. To solve this problem, we propose DS-Unet,

which replaces the standard convolution with the depthwise

separable convolution in some layers of Unet, so that the

number of parameters and computation can be greatly

reduced while ensuring the accuracy of interpolation results. It

is worth noting that we did not replace all the standard

convolution in Unet with the depthwise separable

convolution. Standard convolution is still used in the shallow

layers of DS-Unet. However, determining which layer can use the

depthwise separable convolution is not discussed in depth in this

work, and we believe that there is still much room for

exploration. The method proposed in this paper is relatively

simple, but we think depthwise separable convolution may better

show its advantages in more complex network architectures,

which is also one of the directions we will explore in the future.

Moreover, we only conduct experiments on irregular missing

cases. For other more complex missing cases, such as consecutive

missing, our proposed method is difficult to achieve a good

interpolation effect. In the future, we will explore other effective

network architectures to reconstruct complex missing seismic

data. Finally, the depthwise separable convolution may be

extended to the unsupervised seismic data interpolation/

denoising and also other tasks to reduce the parameter and

computation cost without degradation results.

6 Conclusion

In this paper, we propose an interpolation method for 3D

irregular missing seismic data. Using the depthwise separable

convolution, the quantity of parameters and computation cost of

the network can be reduced, so that the network becomes more

lightweight. Experiments on synthetic data and field data show

that the convergence trend of loss curves of DS-Unet and Unet is

very similar and finally converges to almost the same value.

Additionally, the difference between the interpolation results of

the two models in three different dimension slices is visually

undetectable. For better evaluation, we calculate the values of two

quantitative indicators. They are slightly different in the two

datasets: DS-Unet performs better on the synthetic data set, but

on the field data, we find that Unet performs better. However, no

matter which dataset, the difference of quantitative indicators

between the two models is very small. The advantage of DS-Unet

is that it requires less parameters and calculation. Compared with

Unet, it reduces the number of parameters by about 40%, and the

training time for the two datasets is also reduced to varying

degrees. The aforementioned results indicate that the proper use

of the depthwise separable convolution can significantly improve

operation efficiency and reduce the required parameters on the

premise of ensuring the reconstruction accuracy. We also use the

hybrid loss function LossL1+SSIM and switchable normalization to

further improve the reconstruction results, and ablation study

shows that they make the interpolation results more detailed and

reduce artifacts.
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