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The archeological site at Sanxingdui preserves a considerable amount of

ancient ivory tusks in its artifact pits, and accurately and quantitatively

analyzing the original chemical signatures of these ivory tusks is a critical

step in interpreting their buried history. In this study, 123 unearthed ivory

tusks were characterized using Fourier-transformed infrared spectroscopy

(FTIR), and seven in situ heating experiments were conducted. The

hydroxylapatite crystallinity and carbonate concentration were quantitatively

determined in line with the absorbance peak intensities of the corresponding

bands. The average values of splitting factor (SF), type B carbonate/type A

carbonate ratio (BC/AC), carbonate/phosphate ratio (C/P), type B carbonate/

phosphate ratio (BPI), type A carbonate/phosphate ratio (API), and water–amide

on the phosphate index (WAMPI) were calculated to be 3.84, 0.98, 0.12, 0.37,

0.38, and 0.11, respectively. The ratios of the 1,416 cm−1–1,454 cm−1 carbonate

bands of the ivory tusks were used to quantitatively estimate the different types

of carbonate content in the ivory tusks. Heating experiments were designed to

simulate the effect of heat on the hydroxylapatite structures. We suggest that

the SF and the C/P indices can serve as distinctive preservation indices of

ancient ivory tusks as well as the BC/AC index and hydroxyl types.
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1 Introduction

The Sanxingdui site, which is located in Sichuan Province, China, has fascinated

archeologists due to its unparalleled archeological treasure trove of artifact pits (Shi, 2005;

Xu, 2008; Chi, 2013; Ge and Linduff, 2015; Yang and Xu, 2022). Buried underground for

more than 3,000 years, the ancient ivory tusks found at the site deserve careful protection

and research (Zheng et al., 2013; Lai, 2015). As a physical carrier of an ancient civilization,
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these artifacts need to be studied in detail using modern testing

technology (Flad, 2012). Ivory tusk is a type of mineral composite

consisting of hydroxylapatite (HA) and collagen (Locke, 2008;

Jantou-Morris et al., 2010). The primary inorganic mineral

component of ivory tusks is HA, with a stoichiometric

composition of Ca5(PO4)3-x(CO3)x(F, Cl, OH)y(CO3)1-y
(Jantou-Morris et al., 2010; Virág, 2012), in which carbonate

from the HA reflect the composition of the living environment of

the elephant. As a mineral that connects the biosphere with the

abiotic sphere, its composition and mineral structure can provide

a variety of research information in a wide range of chemical and

biological sciences. Ivory tusks store biological information from

the time when the elephant they came from was alive. Hence,

they can be used to extract significant information, such as the

elephant species and the elephant’s living environment (Banerjee

et al., 2008).

To accurately identify their original chemical signature, we

need to evaluate the preservation state of the mineral structure

and chemical compositions of the ivory tusks as they were

exposed to burial and weathering (Müller and Reiche, 2011).

The HA in ivory tusks is always a poorly crystalline

nonstoichiometric mineral composed of nanoparticles or

microparticles. Specifically, the carbonate, hydroxyl, and

collagen matrix of the HA induces disorder in the mineral

lattice and thus limits its degree of crystallinity (Lebon et al.,

2008). Organic matter decomposes during burial, leaving behind

an inorganic mineral skeleton, and post-burial diagenesis

induced by high temperatures or collagen decomposition

typically causes the recrystallization of HA (Surovell and

Stiner, 2001). The structure of the ivory tusks may also be

affected by high temperatures incurred by climatic events or

artificial fires (Lebon et al., 2008; Yan et al., 2022). Archeological

studies have shown that high temperatures and weathering can

cause the degradation of collagen and increase mineral

crystallinity (Bortolaso, 2008; Gong et al., 2019).

Hence, assessing the preservation state of ivory tusks has

become the primary focus of research. Fourier-transformed

infrared (FTIR) spectroscopy is often used to determine the

mineral composition and structure of a substance (Edwards

and Farwell, 1995; Paris et al., 2005). The preservation indices

for bone and dentin have been established using FTIR absorption

band ratios (Thompson et al., 2009; Shaltout et al., 2011;

Thompson et al., 2011; France et al., 2020). For example, the

percentage of carbonation attributed to the stretching vibrations

of carbonate and phosphate can be analyzed with the A1420/

A565 ratio. IR spectroscopy can provide quali-quantitative

results regarding the types of carbonate substitutions in HA

(Wright and Schwarcz, 1996; Krajewski et al., 2005; Thompson

et al., 2009; Hammerli et al., 2021). Because it is easy to use and

does not destroy the subject of its analysis, FTIR has become an

increasingly widely used method for determining the bioapatite

preservation state in archeological research. For archeological

burnt bone samples, the degree of bone heating can be evaluated

by the sum of the fourth-derivative spectra of the peak positions

at 961, 1,022, and 1,061 cm−1 (Lebon et al., 2008). However,

diagenetic processes will have partially removed the heating

signal by alteration of the peak position, even for HA in

bones (Lebon et al., 2008), and an evaluation system based on

modern and archeological bones (Lebon et al., 2008; Lebon et al.,

2010; Ellingham et al., 2016) will not function well for ancient

ivory tusks. Furthermore, the sample concentrations and

wavenumber positions produced by curve fitting can be

personalized depending on the data analysis. As a result,

lateral contrast has become a troublesome issue. Due to the

small size of apatite and the presence of micropores in ancient

ivory tusks, the absorption of a large amount of molecular water

can occur, and previous tests have not been able to distinguish the

hydroxyl structures with accuracy.

In this study, we present the preservation state of ancient

ivory tusk fragments from the Sanxingdui site. In situ heating

experiments were performed, and the hydroxyl vibration

behavior upon heating was analyzed. The crystallinity,

carbonate content, and temperature effect of the ivory tusks

were then evaluated using FTIR.

2 Experimental method

2.1 Samples

In this study, 123 ancient ivory tusks, labeled s8–s210, were

unearthed at the Sanxingdui site.

2.2 Instrumentation and operating
conditions

The FTIR spectra were collected using a Bruker Vertex 70V

spectrometer. The samples were prepared using potassium

bromide (KBr) pellets with ca. 2% by mass of the sample in

KBr at the Institute of Geology and Geophysics, Chinese

Academy of Science (IGGCAS). The FTIR spectra were

recorded in 64 scans between 400 and 4,000 cm−1 with a

resolution of 4 cm−1. A Hyperion 2000 IR microscope with a

mercury cadmium telluride (MCT) detector cooled with liquid

nitrogen connected to the Bruker Vertex 70V spectrometer was

used to obtain the microscopy IR spectra for the in situ heating

experiments. All spectra from the heating experiments were

obtained in a spectral range from 4,000 to 650 cm−1 using

64 scans at a resolution of 4 cm−1.

For the heating experiments, the effect of temperature on the

FTIR spectra of the samples was investigated using a Linkam TS

1400XY heating stage (Linkam Scientific Instruments) at the

IGGCAS. In situ heating experiments were conducted from room

temperature to 800°C with 50°C intervals. The temperature

accuracy and stability were ±1°C. Nitrogen was circulated at a
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flow rate of approximately 60 ml/min through the furnace during

the test. The original ivory tusk powder samples were placed on a

sapphire disc within the temperature stage. The upper window of

the temperature stage was made of quartz. Each test was

conducted after 5 min of temperature retention.

2.3 Data processing

The raw data were baseline-corrected using the “concave

rubberband” algorithm (10 iterations and 64 baseline points)

using OPUS 7.5 software from Bruker in order to precisely

measure the absorbance.

The infrared splitting factor (SF), also known as the

phosphate crystallinity index or the crystallinity index, was

calculated using the absorption bands labeled in Figure 1. The

splitting function was measured as the heights of the phosphate

double peaks divided by the heights of the troughs between them.

We calculated the SF by measuring the relative lengths of the X

(564–565 cm−1 peak), Y (604–605 cm−1 peak), and Z (the height

of the valley between the X and Y peaks) of the 123 samples

(Thompson et al., 2009, 2011; France et al., 2020).

The carbonate/phosphate ratio (C/P) was calculated based on

the 1,416 cm−1 peak divided by the peak at 1,035 cm−1 (France

et al., 2020).

The amount of type B carbonate to phosphate (BPI) ratio was

calculated by dividing the intensity of the 1,416 cm−1 band by the

intensity of the 604 cm−1 band. Similarly, the type A carbonate to

phosphate (API) ratio was obtained by dividing the band

intensity at 1,454 cm−1 by the intensity of the 604 cm−1 band

(Sponheimer and Lee-Thorp, 1999; France et al., 2020).

The type B carbonate/type A carbonate ratio (BC/AC) was

determined by dividing the band intensity of the peak at

1,416 cm−1 (type B) by the peak at 1,454 cm−1 (type A)

(Wright and Schwarcz, 1996; Thompson et al., 2009;

Thompson et al., 2011).

Water–amide on the phosphate index (WAMPI) was

calculated by dividing the intensity of the band at

1,630–1,650 cm−1 by the intensity of the phosphate band at

604–605 cm−1 (Snoeck and Pellegrini, 2015; Roberts et al.,

2020; Fernandes et al., 2022).

3 Results

3.1 Relationships between the Fourier-
transformed infrared spectroscopy indices

By way of example, Figure 1 shows the FTIR spectra of the

s186 ancient ivory obtained from the Sanxingdui site. In general,

the FTIR spectra obtained from the KBr pellets indicated the

presence of phosphate, hydroxyl, and carbonate ions in all of the

ivory tusks, while the characteristic C-H absorption bands in the

organic parts were absent in all of the samples. The remaining

molecular water in these samples was predominant.

As shown in the spectra, the broadband at approximately

3,440 cm−1 was assigned to molecular water (Figure 1) that was

adsorbed on the surfaces or micropores of HA (Ooi et al., 2007),

while the 1,633–1,650 cm−1 peak was thought to correspond to

the vibrations of the N-H or O-H bonds (Botha et al., 2004;

Pekounov and Petrov, 2008). The absorption bands of carbonate

were observed as doublet peaks at 1,452–1,458 cm−1 and

1,411–1,416 cm−1 (Yoder et al., 2018). The v2 mode of the

carbonate band was at approximately 875–870 cm−1 (Fleet,

2009; Madupalli et al., 2017). The strong absorption bands at

1,105 and 1,035 cm−1 were assigned to the phosphate ions, and

the peak at 964 cm−1 referred to the stretching mode of the P–O

bond (Ooi et al., 2007). The FTIR spectra of all of the samples

showed pronounced peaks at 564 and 604 cm−1 due to the

presence of the phosphate group (Wright and Schwarcz, 1996;

Miller et al., 2001; Grunenwald et al., 2014). Table 1 presents the

band regions of these bands for all of the samples, with similar

peak positions as in previous studies (Farlay et al., 2010; Roche

et al., 2010; Yoder et al., 2012; Mandair and Morris, 2015).

As for the presently studied ivory tusks, Figure 2 shows a

comparison of the indices (SF, BC/AC, C/P, BPI, API, and

WAMPI) of all of the 123 samples measured in the

transmission mode, with value ranges of [3.0, 4.7], [0.77, 1.1],

[0.07, 0.20], [0.59, 0.21], [0.55, 0.25], and [0.02, 0.44],

respectively. The average values of SF, BC/AC, C/P, BPI, API,

and WAMPI were 3.84, 0.98, 0.12, 0.37, 0.38, and 0.11,

respectively. Crystallinity has been of interest to archeologists

as a rough quantitative measure or index of the extent of ivory

tusk preservation and diagenetic alterations (France et al., 2020;

FIGURE 1
FTIR spectra for the s186 ancient ivory tusk, where the
chemical groups and absorption bands are indicated. X, Y, and Z
denote the heights of the peaks and the valleys. The numbers in
parentheses represent the approximate positions of the
apparent bands.
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Fernandes et al., 2022). The SF, indicating the degree of

separation of the 564–565 cm−1 and the 604–605 cm−1 band,

has typically been applied in the evaluation of the mineral

crystallinity of HA (Weiner and Bar-Yosef, 1990). The SF, a

measure of crystal order based on phosphates in HA, will

increase after embedding (Lebon et al., 2008).

The hexagonal structure of the HA can accommodate

carbonate ions in the c-axis structural channel where they will

substitute hydroxyls (type A carbonate, Ca10(PO4) 6[(OH)2-

2x(CO3)x]) or phosphate groups (type B carbonate, Ca10-x
[(PO4)6-x(CO3)x](OH)2-x) (Tacker, 2008). Typically, HA

contains less than 10 wt.% carbonate ions (Featherstone et al.,

1984; Krajewski et al., 2005). For the ivory in this assessment,

carbonate was partially removed as recrystallization of HA

occurred (Figure 3). The C/P index, API, and BPI also

correlated well, as shown in Figure 4. We could fit their

relational equations as follows:

y � 1.8365x + 0.1622(API) (1)
y � 2.2332x + 0.1071(BPI) (2)

However, the API value was higher than the BPI value when

the C/P index was less than 0.14, while the opposite situation

occurred when the C/P index was larger than 0.14. The BC/AC

and SF indices showed a weak negative correlation (Figure 5),

whereas a linear relationship between the BC/AC and C/P indices

TABLE 1 Positions and assignments of the FTIR bands for all of the analyzed samples.

Position (cm−1) Assignments Intensity Chemical groups

3,568 O-H stretching of hydroxyl groups w OH

3,440 O-H stretching of molecular water (ν1 and ν3) m H2O

1,633–1,650 N-H or O-H bond w NH; OH; CO

1,543–1,547 Carbonate asymmetric stretching (ν3) w C-O (type A)

1,502 Carbonate stretching n3 w C-O

1,452–1,458 Carbonate asymmetric stretching (ν3) m C-O (type A)

1,411–1,416 Carbonate asymmetric stretching (ν3) m C-O (type B)

1,097 Phosphate stretching (ѵ3) s P-O

1,035 Phosphate asymmetric stretching (ѵ3) vs P-O

964 Phosphate symmetric stretching (ѵ1) vs P-O

880–878 Carbonate bending (ѵ2) w C-O (type A)

874 Carbonate bending (ѵ2) w C-O (type B)

604 Phosphate bending (ѵ4) m P-O

564 Phosphate bending (ѵ4) m P-O

473 Phosphate bending (ѵ2) w P-O

w, weak; m, medium; s, strong; vs, very strong.

FIGURE 2
SF, BC/AC, C/P, BPI, API, andWAMPI values for the unearthed
ancient ivory tusks.

FIGURE 3
Relationship between the API, BPI, and SF for the unearthed
ancient ivory tusks.
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was minimally observed (Figure 6). For most studied ivory tusks,

the WAMPI and SF have been negatively correlated (Figure 7),

while the WAMPI and BC/AC have shown a positive correlation

(Figure 8).

Although the BPI and API indices were correlated with one

another (Figure 4), as shown in Figure 9, the BPI and API, which

measure type B and type A carbonate, had a significantly

different relationship with the BC/AC index. For the samples

with a BC/AC value less than 0.98, the API value was usually

larger than the BPI value (Figure 9). However, for the samples

with higher BC/AC values, the BPI became dominant.

Furthermore, the mass fraction of type B carbonate decreased

with an increase in the SF value (Figures 3, 5).

3.2 Heating experiments

Figure 10 presents the FTIR spectra of the in situ heated

unearthed ancient ivory tusks with increasing temperature. The

broadband centered at approximately 3,400 cm−1 showed that the

porous HA absorbed a significant amount of molecular water

(Figure 10) (Meejoo et al., 2006; Madhavasarma et al., 2020). This

broad and strong absorption peak of molecular water often

overlapped the peak of the hydroxyl group in apatite, causing

the hydroxyl peak to be unresolved between 25°C and 100°C

(Figures 10A, B). The weak absorption peak located at 3,568 cm−1

became well-resolved only when the temperature was higher than

150°C (Shaltout et al., 2011; Yoder et al., 2012). The intensity of

the molecular water stretching band also increased with the

FIGURE 4
Relationship between the API, BPI, and C/P for the unearthed
ancient ivory tusks.

FIGURE 5
Scattergrams of the BC/AC plotted against the SF.

FIGURE 6
Scattergrams of the C/P plotted against the BC/AC.

FIGURE 7
Scattergrams of the SF plotted against the WAMPI.

Frontiers in Earth Science frontiersin.org05

Li et al. 10.3389/feart.2022.1008139

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1008139


cooling of temperature (data not shown), indicating reabsorption

of the molecular water on the HA surface or internal channels.

As the temperature increased from 25°C to 800°C, the peak of

the structural hydroxyl at 3,568 cm−1 gradually decreased in

wavenumber with increasing temperature. The hydroxyl peak

showed a wavenumber shift of 10 cm−1 between 25°C and 800°C,

which was attributed to the thermal effect. For the s5 sample,

however, the 3,543 cm−1 hydroxyl peak remained relatively stable

because it was newly formed at about approximately 400°C

(Rujitanapanich et al., 2014). For the s61 sample, the 3,543 cm−1

hydroxyl peak already existed before heating (Figures 10A), which

possibly indicated that this sample was previously subjected to high

temperatures (Figures 10, 11). The group of weak intensity bands in

the 1,950–2,200 cm−1 region was derived from the overtones and

combinations of the v3 and v1 PO4
3− modes (Markovic et al., 2004;

Ooi et al., 2007).

The “unheated HA” carbonate possessed 1,416 and 1,454 cm−1

peaks with nearly equal intensities (Thompson et al., 2009;

Thompson et al., 2011; France et al., 2020). However, for the

presently studied ivory tusks, the BC/AC dropped notably after the

800°C heating process (Figure 12). This meant that the type B

carbonate decomposed when heated over 400°C, and this was also

indicated by the emergence of the new hydroxyl peak (Figure 10B).

4 Discussion

4.1 The preservation state

Previous studies have made similar observations where

recrystallization during burial may result in a more ordered

crystal structure and higher SF values. It has been reported

that well-preserved archeological bone has an upper SF value

of 3.86 and a lower BC/AC value of 0.95 (France et al., 2020), and

these are similar to the average values obtained in this study. For

the most studied bioapatite samples, the API and BPI ratio

decreases slightly with increases in the SF (Lebon et al., 2008;

Thompson et al., 2011; Pedrosa et al., 2020; Seredin et al., 2020).

This was due to the loss of organic matter during burial. The use

of the WAMPI values in an ivory tusk evaluation may fail to

determine the small fraction of some well-preserved samples due

to the influence of water. Approximately 48% of the studied

samples showed SF values greater than 3.86, and 37% of the

studied samples showed BC/AC values less than 0.95. This

indicated a poor preservation level. In general, the SF and BC/

AC index values showed that approximately 60% of the

unearthed ivory tusks were well-preserved if the bone

preservation indices were applied (France et al., 2020). In this

manner, we obtained a threshold C/P value of 0.10 for well-

preserved ivory tusks according to the C/P value range. However,

the value range of the C/P index was small, and the calculation

error possibly affected the evaluation results.

The BC/AC values showed a relative concentration of type B

carbonate and type A carbonate, where type B carbonate

accounted for approximately 50% of the total carbonate of the

studied samples. The observed differences in the BPI and API

indices were possibly due to the alternative thermal decomposition

of type B carbonate with the emergence of Ca-OH. In the natural

environment, the decomposition rate of type B carbonate is higher

than that of type A carbonate; thus, the value of BC/AC decreased

with organic loss. For this reason, a combined assessment of C/P

and BC/AC indices could be applied to produce a reliable result

when monitoring the preservation state of ancient ivory tusks.

4.2 Possible heating event

The FTIR spectra of the unearthed ivory tusks measured at

room temperature typically exhibit a broadband of molecular

FIGURE 8
Scattergrams of the BC/AC plotted against the WAMPI.

FIGURE 9
Scattergrams of the API and BPI plotted against the BC/AC.
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water located in the cavities that are generated by the loss of

original organic matter. The superimposition of the broad

absorption band for molecular water onto the O-H peak at

3,568 cm−1 (Figure 10) possibly resulted in a misinterpretation

of the FTIR peak. In situ heating FTIR can be applied as a valuable

tool to exclude this effect. Molecular water species exist in these

ivory tusks but are not structurally bound in the apatite channel

(Yoder et al., 2012). Molecular water would leave the HA crystal

structure through the termination sites of the c-axes channels at

temperatures above approximately 100°C. The decrease of the

FIGURE 10
IR spectral changes in the shape and position of hydroxyl absorption with temperature for (A) the s61 sample and (B) the s5 sample, and the (C)
temperature dependence of the peak position of the hydroxyl of the s5 and s61 samples.

FIGURE 11
IR absorption spectra before and after 800°C heating of the (A) s61 sample and the (B) s5 sample.
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3,300–3,417 cm−1 broadband between 25°C and 200°C primarily

corresponded to the molecular water loss upon heating.

The bands at 3,568 cm−1 represented the structural

hydroxyl bands, while the new band at 3,543 cm−1 indicated

the formation of Ca-OH. We can make a speculation that

decarbonization begins from approximately 400°C through

reactions 3–6 listed in this section, which is lower than that

of the synthetic HA (Lafon et al., 2008; Tonsuaadu et al., 2012).

This was possibly due to the porous structure and larger specific

surface area resulting from the loss of organic matter that

increased the reactivity of carbonate. According to an

analysis of the peak intensity before and after the heating

experiments, the carbonate composition of the analyzed

ivory tusks was altered with a drop in the BC/AC index

(Figure 12) (Munro et al., 2007). It was clear that the

ν3 region of the type B carbonate had less FTIR intensity

after heating, indicating the partial decomposition of

carbonate to CO2 through the following reactions:

CO2−
3 +H2O � 2OH− + CO2 (3)
CaCO3 � CaO + CO2 (4)

CaO +H2O � Ca(OH)2 (5)

As a result of the heating process, the mineral maturity and

hydroxyl substitution percentage increased. This showed that

high temperatures not only enhance the crystallinity of HA but

also affect the chemical compositions of hydroxyl and

carbonate (Ooi et al., 2007). These reactions suggested that

the selective loss of type B carbonate ions contributed (at least

partially) to the increase in the API during fossilization.

Therefore, as mentioned earlier, we present a

recommendation of 0.95 as the boundary value of the BC/

AC index and 0.10 for the C/P index as preservation indicators

of well- and poorly preserved ivory tusks.

The bands at 3,543 cm−1 were observed with different

intensities in the spectra at greater than 400°C, while they

were practically absent in the spectra of the unheated samples

and samples heated below 400°C. Hence, the 3,543 cm−1 band

could also be used to characterize the heating history of ivory

tusks.

5 Conclusion

FTIR spectra were applied to estimate the preservation state

of ancient ivory tusks from the Sanxingdui site. The average SF

value of approximately 3.84 for the ancient ivory tusks from the

Sanxingdui site was below the threshold of the well-preserved

state of bone, indicating a generally well-preserved state. A strong

correlation was observed between the API, BPI, and C/P, where

the concentrations of the API and BPI decreased approximately

linearly as the molar concentration of total carbonate increased

in the ivory structure. A BC/AC index value of 0.95 and a C/p

value of 0.10 can be used to help identify burnt samples. Thus, the

combined evaluation using these indices can contribute to a more

efficient evaluation of the preservation state of ancient ivory tusks

prior to engaging in expensive and destructive analyses. The in

situ heating experiments proved that temperature played a role in

the preservation results of this study. It can be inferred that the

decomposition of the type B carbonate of ancient ivory tusks

occurred at over 400°C. The peak position of the structural

hydroxyl (3568 cm−1 at 25°C) decreased for the samples

heated from 25 to 800°C; however, the 3,543 cm−1 hydroxyl

peak was relatively stable, regardless of whether it was newly

formed or had already existed. It was clearly verified that an in

situ high-temperature FTIR spectral analysis can serve as a

valuable tool to evaluate the preservation state of ivory tusks.
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