
ML-misfit: A neural network
formulation of the misfit function
for full-waveform inversion

Bingbing Sun* and Tariq Alkhalifah

Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi
Arabia

A robust misfit function is essential for mitigating cycle-skipping in full-

waveform inversion (FWI), leading to stable updates of the velocity model in

this highly nonlinear optimization process. State-of-the-art misfit functions,

including matching filter or optimal transport misfits, are all hand-crafted and

developed from first principles. With the growth of artificial intelligence in

geoscience, we propose learning a robust misfit function for FWI, entitled

ML-misfit, based on machine learning. Inspired by the recently introduced

optimal transport of the matching filter objective function, we design a

specific neural network architecture for the misfit function in a form that

allows for global comparison of the predicted and measured data. The

proposed neural network architecture also guarantees that the resulting

misfit is a pseudo-metric for efficient training. In the framework of meta-

learning, we train the network by running FWI to invert for randomly

generated velocity models and update the parameters of the neural network

by minimizing the meta-loss, which is defined as the accumulated difference

between the true and inverted velocity models. The learning and improvement

of such anML-misfit are automatic, and the resultingML-misfit is data-adaptive.

We first illustrate the basic principles behind the ML-misfit for learning a convex

misfit function using a travel-time shifted signal example. Furthermore, we train

the neural network on 2D horizontally layered models and apply the trained

neural network to the Marmousi model; the resulting ML-misfit provides robust

updating of the model and mitigates the cycle-skipping issue successfully.

KEYWORDS

machine learning, full-waveform inversion, misfit function, neural network,
unsupervised training

1 Introduction

Full-waveform inversion (FWI) is an advanced seismic imaging method. In contrast

to conventional ray-based methods (Woodward et al., 2008), by taking into account travel

times, amplitude, and phase information together, FWI, in principle, can deliver a model

of the subsurface with resolution up to half of the propagated wavelength (Bleistein et al.,

2013). This feature makes FWI an essential tool for velocity model building in areas with

complex geology.

OPEN ACCESS

EDITED BY

Mehrdad Soleimani Monfared,
Karlsruhe Institute of Technology (KIT),
Germany

REVIEWED BY

Amin Roshandel Kahoo,
Shahrood University of Technology, Iran
Keyvan Khayer,
Shahrood University of Technology, Iran

*CORRESPONDENCE

Bingbing Sun,
bingbing.sun@kaust.edu.sa

SPECIALTY SECTION

This article was submitted to Solid Earth
Geophysics,
a section of the journal
Frontiers in Earth Science

RECEIVED 04 August 2022
ACCEPTED 05 September 2022
PUBLISHED 29 September 2022

CITATION

Sun B and Alkhalifah T (2022), ML-misfit:
A neural network formulation of the
misfit function for full-
waveform inversion.
Front. Earth Sci. 10:1011825.
doi: 10.3389/feart.2022.1011825

COPYRIGHT

© 2022 Sun and Alkhalifah. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Earth Science frontiersin.org01

TYPE Original Research
PUBLISHED 29 September 2022
DOI 10.3389/feart.2022.1011825

https://www.frontiersin.org/articles/10.3389/feart.2022.1011825/full
https://www.frontiersin.org/articles/10.3389/feart.2022.1011825/full
https://www.frontiersin.org/articles/10.3389/feart.2022.1011825/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2022.1011825&domain=pdf&date_stamp=2022-09-29
mailto:bingbing.sun@kaust.edu.sa
https://doi.org/10.3389/feart.2022.1011825
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2022.1011825

FWI is generally described as a local non-linear data-fitting

procedure, and it is usually solved using gradient-descent based

algorithms. Given an initial model with reasonable accuracy,

FWI improves the initial estimation by minimizing the mismatch

between the predicted (simulated) and the measured

seismography. The predicted data are simulated using a wave

equation solver based on an assumed physical model of the Earth.

The gradient, often forming the main component for updating

the model, is calculated by zero-lag cross-correlating the source-

generated forward-propagated wavefield and the backward-

propagated wavefield from receiver sides with the data

residuals as excitation sources. This adjoint-state based update

was initially proposed by Lailly (1983) and Tarantola (1984);

subsequently, many variations of FWI formulations and

implementations have appeared, such as frequency-domain

FWI (Pratt, 1999; Sirgue & Pratt, 2004), Laplace-domain FWI,

and Laplace-Fourier-domain FWI (Shin & Cha, 2008; Shin &

Cha, 2009).

FWI is a highly nonlinear optimization problem common in

any non-linear optimization problem, and thus it is prone to

converge to a local minimum of the optimization rather than a

global one. In particular, as FWI is trying to fit oscillating seismic

signals, such a local minimum issue becomesmore severe when the

initial model is far from accurate, or there is limited low-frequency

content in the signal. In FWI, we refer to this phenomenon as the

cycle-skipping problem. A typical solution for mitigating the cycle-

skipping in FWI is to build a more accurate initial velocity model

or acquire an ultra-low frequency dataset. Current velocity model

building technology relies heavily on ray-based methods; however,

in complex regions, such as salt bodies and the near-surface with

topography, ray-based methods can hardly recover an accurate

velocity model for further FWI processing. A cost-effective

solution for reducing cycle-skipping is to design a robust misfit

function to allow the model to converge to the global minimum

gradually, from a far-away cycle-skipped initial model.

Conventional L2-norm misfit functions and their variations

with trace energy normalizations are widely used for their

simplicity, high resolution potential, and robustness with

respect to noise (Tape et al., 2009, Zhu et al., 2015, Chen et al.,

2015, Fichtner & Villaseñor, 2015). However, their inherent local

sample-by-sample comparison makes them highly sensitive to the

initial model and severely prone to the cycle-skipping problem.

Thus, designing a robust misfit for FWI is the key to a successful

application of FWI. This subject has drawn a number of

investigations. Recently, a series of more advanced misfit

functions have been proposed, including, but not limited to, the

matching-filter based misfit (Warner & Guasch, 2016; Sun &

Alkhalifah, 2019b) and the optimal transport approach

(Engquist & Froese, 2014; Métivier et al., 2016; Sun &

Alkhalifah, 2019a). Specially, the optimal transport of the

matching filter (OTMF) misfit (Sun & Alkhalifah, 2019a) was

introduced by combing the matching filter and the optimal

transport methods.

All the above-mentioned misfit functions are hand-crafted.

In principle, they try to compare the seismic data in a more global

way to avoid the cycle-skipping issue. Such global comparisons

are achieved by incorporating deconvolution and/or the

Wasserstein distance. Though these methods have been

applied successfully, their form is fixed, and they may fail for

specific datasets. Improvement of their performance tends to be

difficult as it requires an in-depth understanding of such

algorithms, as well as the data. In this paper, we seek to learn

a misfit function, entitled the ML-misfit, for FWI using machine

learning (ML) that can provide robust updates of the Earth

model, and avoid cycle-skipping.

Using ML to build the subsurface velocity model is not new.

Roethe and Tarantola (1991) trained a neural network with a

Monte-Carlo optimization technique to infer the depth of a

seismic interface and the layer velocity from recorded arrival-

times. Röth and Tarantola (1994) utilized a neural network to

accept a synthetic common shot gather to compute the

corresponding one-dimensional velocity model. Langer et al.

(1996) used one station of seismographs as input to the

neural network, and inverted for the parameters of the source,

the layer thicknesses, the seismic velocities, and the attenuation

along the path. Macías et al. (1998) trained a neural network to

map the common midpoint (CMP) gathers to interval velocities

by minimizing a loss function defined in terms of the NMO

(normal moveout)-corrected data. Nath et al. (1999) performed

travel-time tomography using neural networks combined with a

genetic algorithm and evolutionary programming techniques.

Baronian et al. (2009) tried to invert for a dipping layered model

from picked travel times using a neural network. These early

studies were promising, but the use of supervised learning with

shallow, fully connected neural networks limited their

performance and their ability to scale up in size for real

seismic data and applications.

Recently, Araya-Polo et al. (2018) showed the potential of

mapping the semblance of the record data to gridded velocity

models with a deep neural network. Inspired by the information

flow in semblance analysis, Fabien-Ouellet and Sarkar (2020)

further replaced the semblance analysis with a deep

convolutional neural network (CNN), and the velocity analysis

was performed with a recurrent neural network (RNN). Park and

Sacchi (2020) used the entire semblance as well as its subfigure in

a specific range as inputs to a deep CNN that allows the trained

model to focus on a specific time as well as considering the overall

trend of the semblance. Wu et al. (2018) considered multi-shot

seismic records as multi-channels for the input to the CNN to

invert for the velocity model directly. In order to fulfill the

requirement of a large dataset for training, Araya-Polo et al.

(2019) used generative adversarial networks (GANs) to generate

a geologic representation from a finite number of model

examples.

The aforementioned ML-based velocity inversion algorithms

try to find the inverse function to transform the data to the model

Frontiers in Earth Science frontiersin.org02

Sun and Alkhalifah 10.3389/feart.2022.1011825

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1011825

directly. We refer to this category of methods as direct velocity

inversion methods byML. Another category, which we refer to as

indirect methods, tries to improve or replace part of the velocity

analysis or FWI steps using ML. For example, Ovcharenko et al.

(2019) performed low frequency extrapolation in the frequency

domain using common shot records as input. In their approach,

the high and low passed record pairs were used to train a CNN to

map high frequencies to low ones. After training, and still within

the framework of FWI, they replaced the adjoint source withML-

learned low-frequency signals, and as a result they injected

crucial low wavenumber components into the model. Sun and

Demanet (2018) and Sun andDemanet (2019) proposed a similar

CNN-based low-frequency extrapolation, but in the time

domain. Jin et al. (2018) and Hu et al. (2019) guided the

CNN training using a beat-tone generated dataset together

with the raw waveform dataset. All these approaches try to

use ML to modify the adjoint source to help in mitigating the

cycle-skipping in FWI by extrapolation to the low frequencies.

Although a neural network is considered to be a universal

approximator (Cybenko, 1989), the ill-posedness of the non-

convex optimization problem for training a deep neural network

makes it hard to find the mapping from the data to the model

directly (Maass, 2019). Also, the increasingly large amount of

seismic datasets makes the direct ML approach infeasible in

practical applications. Thus, the aforementioned indirect, ML-

aided FWI is more promising. Our work follows this logic and

proposes replacing the hand-crafted misfit function in FWI by a

machine-learned one. In our approach, we utilize the meta-

learning techniques in ML to fulfill this goal. Meta-learning is

a kind of semi-supervised ML technology (Schmidhuber, 1987;

Vilalta & Drissi, 2002). It is flexible in solving learning problems

and tries to improve the performance of existing learning

algorithms or to learn (extract) the learning algorithms

themselves. This is also referred to as “learning to learn.”

During meta-learning, an outer (or upper meta) algorithm

updates the inner learning algorithm, such that the model

learned by the inner learning algorithm improves an outer

objective. For instance, this objective can be the generalization

performance or learning speed of the inner algorithm. Based on

the concept of meta-learning, we can optimize the architecture of

the neural network (Zoph & Le, 2016), find the optimal initial

value for the neural network (Finn et al., 2017), learn an

optimization algorithm (Andrychowicz et al., 2016), or learn a

better loss for efficient training (Chebotar et al., 2019).

Previously, using meta-learning, we proposed learning an

optimization algorithm, such as those mimicking the L-BFGS

algorithm, for the fast convergence of FWI (Sun & Alkhalifah,

2020).

In this work, we further expand the application of the meta-

learning methodology in FWI and try to learn a robust misfit

function (distance, metric). In computation science (CS), metric

(distance) learning is a branch of ML that aims to learn distances

from data. The metric learning method developed in CS can be

used to improve data classification and reduction (Suárez et al.,

2019). Thus, the methodology proposed differs from the classic

metric learning problem by learning a misfit to improve the

convergence of an optimization problem, specifically for FWI.

Similar attempts along this line can be found in the arXiv

preprint website (Andrychowicz et al., 2016), using meta-

learning to learn a loss for better training of the classification

and reinforcement of the learning problem. In their approach,

the learned loss is a black-box represented by a neural network

and might not be a metric defined in mathematics (needing to

comply with several rules, such as the triangle inequality).

Moreover, inspired by the hand-crafted misfit, the neural

network architecture for our misfit function is designed to be

of a specific form. A specifically designed architecture leads to the

resulting misfit function having some critical properties for a

metric, including the global comparison features for a cycle-

skipping-free objective.

In summary, the ML-misfit proposed in this article is specific

to FWI and has the following features:

• Uniform framework: We formulate the general meta-

learning framework for learning a misfit in FWI.

• Unique neural network architecture: Rather than

formulate the misfit function as a fully black-box neural

network, we design a specific neural network architecture

for the ML-misfit, which in principle mimics the OTMF

approach (Sun & Alkhalifah, 2019a) to achieve a global

comparison of predicted and measured data.

When compared to direct ML-based inversion methods, our

proposed approach introduces the following novel components:

• Meta-learning rather than supervised learning: Naive

application of ML for velocity inversion attempts to

replace the entire velocity inversion flow with a

supervised learned function. In contrast, the proposed

method learns an algorithm, i.e., the misfit function, in

an unsupervised manner.

• Domain-knowledge-guided neural network design: We

design the architecture of the misfit function neural

network in a special form based both on physical

intuition (focusing a matching filter) and mathematical

justification (in a pseudo-metric form).

• Alleviating the need for multi-dimensional data: The ML-

misfit, as a normal misfit function such as the L2 norm, takes

as input single one-dimensional traces, which alleviates the

data requirement significantly; conventional ML-based

velocity inversion methods are expensive both in terms of

training and inference considering the need for high-

dimensional seismic data gathers.

In Section 2, we describe the meta-learning framework for

learning the ML-misfit for FWI, and detail the neural network

Frontiers in Earth Science frontiersin.org03

Sun and Alkhalifah 10.3389/feart.2022.1011825

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1011825

architecture and the training procedure of the meta-learning. In

Section 3, we demonstrate the success of learning a convex misfit

for time-shifted signals, and subsequently present the results of

training the neural network on a 2D layered model and its

inversion result for the Marmousi model. These results are

further discussed in Section 4, and conclusions are presented

in Section 5.

2 Methods

2.1 The neural network architecture of the
ML-misfit

In the ML-misfit, we parametrize the misfit function with a

neural network. We can consider the neural network as a black

box and do not assign any specific form to the network. For

example, we can define the neural network as having the

predicted and measured data as input and a scalar value as

output to represent the misfit. Though such a design is simple

and straightforward, a black-box approach is not optimal as the

neural network has to rely on the training step to learn everything

needed to become a proper misfit, which makes the training

complicated.

Thus, to better constrain the function space and stabilize the

training of the neural network, we suggest the following neural

network architecture for the ML-misfit Φ(p, d; θ):

Φ p, d; θ() � 1
2
‖ϕ p, d; θ() − ϕ d, d; θ()‖22 +

1
2
‖ϕ d, p; θ()

− ϕ p, p; θ()‖22, (1)

where ϕ(p, d; θ) represents a neural network with inputs given by

the predicted data p and measured data d in vector form (single

trace), and its output is also a vector. Here, θ represents the neural

network parameters, which we will train later. The form of the

ML-misfit in Eq. 1 is inspired by the OTMF misfit function (Sun

& Alkhalifah, 2019a). In the Supplementary Text S1, we include a

brief review of the OTMF methodology and discuss the

inspiration for Eq. 1.

The misfit function of Eq. 1 consists of two terms. Let us

focus on the first term:Φ1 � ‖ϕ(p, d; θ) − ϕ(d, d; θ)‖22 (Figure 1),
as the second term Φ2 � ‖ϕ(d, p; θ) − ϕ(p, p; θ)‖22 is introduced
to guarantee symmetry of the misfit function with respect to the

inputs [in the second term, d and p are switchable for the ML-

misfit, i.e.,Φ(p, d; θ) =Φ(d, p; θ)]. The network ϕwith parameters

θ takes two traces of data as input (p, d) or (d, d), and their

outputs are given as vectors, which characterize the properties of

the input (which are expected through intuition to be similar to

the mean and variance in the OTMF approach). The (squared)

L2 norm of the difference between ϕ(p, d; θ) and ϕ(d, d; θ) will

measure the departure of the predicted data p from the measured

data d, and this operation mimics the Wasserstein distance

computation step in the OTMF approach. Refer to support

information Supplementary Text S1 for a detailed analysis of

the connections between the ML-misfit of Eq. 1 and the OTMF

misfit.

Using the form we introduced in Eq. 1, we can verify that the

ML-misfit satisfies the following rules for a pseudo-metric:

Φ p, d()≥ 0, (2)
Φ f, f() � 05f � f, (3)
Φ p, q() � Φ q, p(), (4)

where p, d, f, q are arbitrary input vectors and, from this point on,

we omit the ML-misfit dependency on the neural network

parameter θ for brevity. Thus, the resulting ML-misfit

guarantees symmetry with respect to the predicted data p and

measured data d, and when the predicted data resemble the

measured data, the resulting misfit value becomes zero

immediately without ever being trained.

We can use CNN and (or) a feedforward neural network for

the neural network ϕ; we will describe the details of the neural

network parameters for specific problems in Section 3.

2.2 Training the neural network

In this section, we describe how to train the neural network of

the ML-misfit defined in Section 2.1 using meta-learning.

FIGURE 1
Schematic plot of the neural network architecture of the ML-
misfit. The predicted data p and measured data d correspond to a
single trace of the seismic data in vector form. They are packed to
form two inputs, i.e., (p, d) and (d, d). These inputs go through
the neural network ϕ with parameters θ, and outputs ~p and ~d,
respectively. The resulting misfit function is defined to be the
L2 norm of the difference between the outputs of ~p and ~d. See
Section 2.1 for more information.

Frontiers in Earth Science frontiersin.org04

Sun and Alkhalifah 10.3389/feart.2022.1011825

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1011825

In meta-learning, the training dataset is a series of tasks,

rather than labeled data in supervised learning problems such as

classification. Our loss for the training, referred to as the meta-

loss function, is defined as measuring the performance of the

current neural network for the implementation of those tasks.

Returning to our ML-misfit learning problem, the tasks are

formulated by running FWI applications, and the process is

the same as conventional iterative waveform inversion, except for

replacing the L2-norm misfit (or any other misfit) with a neural

network, i.e., the ML-misfit. We run many FWI applications, e.g.,

using different models. In the training phase, as the true models

are available, we define the meta-loss as the normalized L2 norm

of the difference between the true model and the inverted one:

Loss � 1
2
∑k+K
k′�k

‖mk′ −mtrue‖22, (5)

where mk′ denotes the inverted model at step k′ and mtrue is the

true model. K is the unroll integer, meaning that every K FWI

iterations we sum over the model difference as in Eq. 5 and

update the neural network parameters of the ML-misfit.

In the training, to update the neural network parameters, we

need to figure out the dependency of the meta-loss on the neural

network parameters θ. Given modelmk at the current iteration k,

we perform the forward modeling to obtain the predicted data pk.

Here, for clarity, we only consider the first-order dependency;

i.e., we assume mk does not depend on the neural network

parameters of the ML-misfit and so does the predicted data pk.

The derivative of the ML-misfit with respect to the predicted

data leads to the adjoint source (data residual):

sk � zΦ pk, d()
zp

. (6)

Note that the resulting adjoint source is dependent on the

parameter θ of the ML-misfit.

We back-propagate the adjoint source to get the model

perturbation:

gk � ADJOINT sk(), (7)
where ADJOINT denotes the operator for computation of the

FWI gradient. Thus, the model can be updated accordingly:

mk+1 � mk − γkgk. (8)

We can easily figure out that the model mk+1 depends on the

neural network parameter θ through the gradient gk, which

further depends on the adjoint source sk through the gradient

computation process, i.e., the operator ADJOINT. Thus, we can

accumulate the associated meta-losses given by Eq. 5 for K steps

and then compute the gradient with respect to the neural network

parameters θ to update these parameters:

θnew � θ − η
zLoss
zθ

, (9)

where η is the learning rate. The gradient computation is based

on automatic differentiation, which is provided in most modern

ML frameworks, such as “PyTorch” (which is used in our

research and the implementation of the ML-misfit). Eq. 9

represents a standard gradient descent updating scheme. For

efficiency and accuracy, we normally adopt more advanced

optimization algorithms such as Adam or RMSprop. Those

algorithms incorporate moments information for an adaptive

learning rate and provide faster convergence for training the

neural network, especially when the network is large and deep.

We can only measure the meta-loss at the last FWI iteration

step and back-propagate the residual to update neural network

parameter. However, for stability consideration, we unroll and

accumulate K steps for neural network parameter updating.

Initially, we assume that the current model mk does not

depend on the neural network parameters. However, there is

actually a high-order dependency between the inverted model

and the neural network parameters θ (granted the iteration step is

larger than 1, which is normal). In fact, mk+1 depends on the

neural network parameters not only through the gradient

ADJOINT(sk) but also through mk (we ignore this

dependency in our first-order analysis), which further depends

on the model mk−1 and ADJOINT(sk−1) and so on. This high-

order dependency will cause instability, such as gradient

explosion in the training process.

Another aspect we need to point out is that the updating of

the parameters θ of the neural network requires dealing with

high-order derivatives, i.e., the gradient of a gradient. This is

because sk is already the derivative of the ML-misfit (with respect

to the predicted data). Updating of the neural network requires

the explicit computation of the derivative of the adjoint source sk
with respect to the parameters θ. Most modern ML frameworks

include modules for such functions; e.g., in PyTorch, we can use

the function “torch.autograd.grad” to deal with this issue.

To better understand the dependency between the models

and the neural network parameters, we draw a typical FWI flow

using the ML-misfit in Figure 2. The gradient flows for updating

the neural network parameter are the blue curves. The red curves

correspond to high-order dependency as described above. We

also present the pseudo code for training the ML-misfit in

Algorithm 1. Note that, in step 20, we detach the current

model from the computation graph and this step corresponds

to the exclusion of the higher-order dependency between the

model and the neural network parameter. Thus, the gradient flow

for updating will only follow the blue curves shown in Figure 2.

In summary, the loss function of Eq. 5 asks the ML-misfit to

converge faster with the least model residuals, and this is

equivalent to optimization for a cycle-skipping-free objective,

as a cycle-skipped model will always correspond to large model

residuals. Considering that the ML-misfit already satisfies Eqs

2–4, the optimization based on Eq. 5 will lead to a cycle-skipping-

free misfit function and at the same a pseudo-metric (distance) in

Frontiers in Earth Science frontiersin.org05

Sun and Alkhalifah 10.3389/feart.2022.1011825

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1011825

mathematics. In Section 3, we demonstrate these desirable

features of the ML-misfit learned by the machine.

3 Examples

We start with simple travel-time shifted signals, beyond

the cycle constraint, to teach the neural network to overcome

this limitation of classic misfits. Subsequently, we use a 2D

model to teach the neural network to deal with more realistic

nonlinearity.

3.1 Developing a convexmisfit function for
travel-time shifted signals

We normally use shifted signals to evaluate the convexity of a

misfit function in FWI. Similarly, in this section, we design a

light-weight “FWI” for inverting a single travel-time, which

controls the shift in the signal. Based on the proposed meta-

learning framework, we teach the ML-misfit to invert such a

travel-time shift efficiently. We first share an in-detail description

of the setup of the experiment.

3.1.1 Experiment setup
In this example, we propose a simplified FWI to evaluate our

method efficiently. In this mini-FWI, we only invert for a single

parameter, i.e., the travel-time shift τ. An assumed forward

modeling produces a shifted Ricker wavelet representing the

predicated data p(t; τ):

p t; τ() � 1 − 2π2f2 t − τ()2[]e−π2f2 t−τ()2 , (10)

where f is the dominant frequency. Eq. 10 leads to a fast

simulation of the predicted data p(t; τ) from the travel-time

shift parameter τ, which significantly accelerates the testing and

evaluation of our methodology.

The meta-loss function of Eq. 5 for training is modified

accordingly:

Loss � 1
2
τtrue − τ()2, (11)

where we omit the summation over multiple steps for brevity (in

this example, the unroll parameter K is 5).

In this example, we discretize the waveform of the signal

using nt = 128 samples with a sampling interval dt = 0.02 s, and

thus simulate a record of length about 2.5 s. In general, the neural

network architecture of ϕ in Eq. 1 uses 1D convolutional layers

and mimics the AlexNet neural networks (Krizhevsky et al.,

2012) in that it uses larger kernels at the earlier convolution layers

and smaller kernel sizes with more channels at later layers. In

total, we have eight convolution layers. The inputs to the neural

network of ϕ are two vectors, i.e., the predicted and measured

data of one trace, and they are considered as two channels for the

first convolution layer. We follow each convolution layer with a

LeakyRelu activation function, followed by MaxPooling. We set

the channel numbers to (256, 512, 512, 1024, 1024, 1024, 1024, 2)

FIGURE 2
Schematic plot describing the flow for the FWI using the ML-misfit function. The green block is the neural network with parameters θ
representing the ML-misfit function. The blue block represents the adjoint operator [reverse time migration (RTM) operator]. The red block refers to
the computation of the meta-loss defined by Eq. 5. The yellow block denotes the velocity modelmk. pk is the predicted data modeled by the velocity
model and d is themeasured datasets. sk is the adjoint source computed from theML-misfit. gk is the gradient output from the RTM block given
an adjoint source sk. The blue and red curves denote the gradient flow for updating parameters θ for the ML-misfit. The blue curves are related to the
first-order dependency between the meta-loss and the parameters θ, while the red curves correspond to higher-order dependencies.

Frontiers in Earth Science frontiersin.org06

Sun and Alkhalifah 10.3389/feart.2022.1011825

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1011825

for the eight convolution layers, while the corresponding kernel

sizes are set to (17, 9, 9, 5, 5, 3, 3, 1) with a stride of 1 (we set a

relatively large kernel size of 17 for the first convolution layer to

accommodate the source signature, because in the training, we

use a minimum frequency of 3 Hz whose period is approximately

17 samples for our setup). The kernel and stride size are both set

to be 2 for the MaxPooling layer, and thus we halve the length of

the data after the MaxPooling operation. Note the last channel

number is 2, which indicates outputting a vector of length 2

(which is similar to the mean and variance in the OTMF

approach). To keep the output in a specific range, we adopt a

Tanh activation function after the last convolution layer. We do

not use DropOut or BatchNormalization in our application.

We generate 26,400 true and initial travel times with τ in Eq.

10 ranging between 0.4 s and 2.1 s for training. To inject more

variety in the training, we also randomly set the main frequency

in Eq. 10 to between 3 Hz and 10 Hz. We invert for 64 travel

times, simultaneously. We run 10 iterations for each inversion

and set the learning rate for updating the travel-time shift to be

20. We update the neural network parameters every 10 iterations

(the unroll parameter K = 10), and the batch size is set to 320. We

adopt the Adam algorithm for training the neural network. The

learning rate is set to a constant of 1e-6 and we train for

20 epochs. We also create another 6,400 inversion problems

for testing. No regularization is used in the training of the ML-

misfit. Note that, in the setup described here, the travel-time

difference can be as large as 1.7 s, which is clearly far larger than

the half cycle of the dominant frequency of 3 Hz. This

challenging dataset will drive the ML-misfit to learn to

construct a robust misfit to handle such a strong cycle-

skipping circumstance.

3.1.2 Results and discussion
Figure 3 shows the curve for the meta-loss (mean value over

batch size) of Eq. 11 for the training and testing datasets. Here, we

normalize the loss value for the first-epoch training loss to 1. The

continuous reduction in the loss for the training shows

convergence and demonstrates the success of the training of

the ML-misfit neural network. The loss for the testing tasks also

becomes rather small, indicating the good generalization

property of the trained neural network.

To evaluate the convexity of the ML-misfit with respect to the

travel-time shifts, we compute the ML-misfit between a target

signal and its shifted version with varying time shifts. In the

computation, we choose the main frequency to be 3 Hz, 6 Hz,

and 10 Hz, and the travel-time for the target signal is set as 1.25 s,

while the time shifts with respect to the target signal vary

from −0.85 s to 0.85 s. Figure 4 shows the resulting

normalized misfit value for the L2 norm and the ML-misfit. It

is obvious that the non-convexity of the L2 norm with respect to

time shifts results in local minima, while the machine-learned

ML-misfit shows good convexity with respect to time shifts

across different frequencies. This indicates that the ML-misfit

does learn a more robust way to compare the predicted data and

measured data to avoid cycle-skipping. Figure 5 shows the

derivates of the misfit function with respect to the travel-time

shifts, and such derivatives mimic the gradient in FWI, which is

computed via the following equation:

gτ � zp

zτ
[]

T
zF p, d()

zp
, (12)

where T denotes transpose operation and F is the misfit function.

δp � zF(p,d)
zp is the adjoint source by ML-misfit, and zp

zτ is the

derivative of the predicted data with respect to the travel-time

shift and can be evaluated by Eq. 10. Note that gτ is a scalar here,

as we invert for single time-shift values. From Figure 5, we can see

that as expected, the L2 norm shows an incorrect gradient for

large time-shift differences, while the ML-misfit gradient always

has the correct sign, and the magnitude is in line with the travel-

time difference.

To further evaluate the accuracy of the inversion resulting

from the ML-misfit function, we show the histogram of the

travel-time difference (between the true and inverted travel time)

for the testing dataset before and after training in Figure 6. We

can see that both the mean and standard deviation are reduced

considerably. In Figure 7, we sample and plot 100 true and

inverted travel times for the testing datasets. Note that, in this

figure, the x-axis (labeled “index”) denotes different experiments,

and the y-axis corresponds to the travel time. The ML-misfit

inverted travel time shows high accuracy even though the initial

travel time is far from the true one, thus indicating a strong cycle-

skipping issue (note that the frequency range is between 3 Hz and

10 Hz).

Thus, given the setup described in Section 2, we have

successfully trained the ML-misfit, and the resulting misfit

function shows good convexity with respect to the time shifts.

We consider the results obtained and the setup described as the

FIGURE 3
Example of the loss over epochs for training the ML-misfit for
the travel-time shifted signals. The loss is the squares of the
difference between the inverted travel time and the true travel time
defined in Eq. 11.

Frontiers in Earth Science frontiersin.org07

Sun and Alkhalifah 10.3389/feart.2022.1011825

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1011825

baseline. Subsequently, we test the following aspects to better

understand the features of the ML-misfit, and except for the

changes specified explicitly below, we use the same setup as the

baseline:

• Low-frequency muted: In the training of the baseline

model, we input the raw time-shift signals. We may

expect that the resulting ML-misfit will learn to filter out

the low frequency part of the signal. Thus, we implement

a test with input data in which we filter out energy below

2 Hz. We denote this experiment as “low-frequency

muted.” In Figure 8, the red curves show the loss for

this setup. We can see that, compared to the baseline

(black curves), muting low-frequency does not affect the

convergence, and this proves that the ML-misfit does

learn how to compare the predicted and measured data

rather than just perform low-frequency filtering. As

expected, the misfit curves over time shifts in

Figure 9 also show good convexity.

• Limited training dataset: We know that a ML algorithm is

data-hungry, and we need to prepare a proper dataset for

training. In this test, as before, we still randomly generate

FIGURE 4
Misfit curves for the L2 norm and the ML-misfit with respect to time shifts for data with main frequency (A) 3 Hz, (B) 6 Hz, and (C) 10 Hz.

FIGURE 5
Derivatives of the L2 norm and the ML-misfit functions with respect to travel-time shifts for data with main frequency (A) 3 Hz, (B) 6 Hz, and (C)
10 Hz.

FIGURE 6
Histogram of the travel-time difference between the true and initial travel-time shift inverted by ML-misfit (A) before training and (B) after
training.

Frontiers in Earth Science frontiersin.org08

Sun and Alkhalifah 10.3389/feart.2022.1011825

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1011825

the true and initial travel-time shift to produce the dataset

for training. However, we restrict the maximum travel-

time shift between the true and shifted signal to be within

half a cycle of the dominant frequency. The testing dataset

and other setup parameters are the same as before. In

Figure 8, the training loss (solid blue) drops quickly, while

the testing loss (dotted blue) remains at a high level. This

demonstrates the importance of providing a dataset

including cycle-skipping features so that the machine

can properly learn a robust misfit function.

• Black-box approach: Here, we want to test and prove that

our specially designed neural network architecture helps

with training convergence. We compare the black-box

approach while no special structure is applied to the

ML-misfit. For a fair comparison, and to make sure the

resulting neural network has a similar number of

parameters, we use the function ϕ in Eq. 1 as the ML-

misfit, by simply modifying the output of size (i.e., the last

channel number) to 1. In Figure 8, the solid green curves

show the training loss for this setup. Compared to the

baseline, the convergence is slow, and the loss remains at a

large value at the end. The convexity of the misfit over time

shifts, shown in Figure 9, by the black-box approach is also

negatively affected. This experiment further demonstrates

the importance of pseudo-metric architecture for the ML-

misfit.

The performance of each setup is also reflected in the

derivatives with respect to the time difference shown in

Figure 10.

This simple, while illustrative, travel-time shifted signals

example demonstrates that, based on the proposed meta-

learning framework, neural networks can learn a cycle-

skipping-free misfit function. The introduction of a specific

architecture for the misfit function can improve the efficiency

of the training as well as the convexity of the resulting misfit

function. In Section 3.2, we train the neural network on 2D

layered models by running FWI (not a simplified version as in

this section) and apply the resulting learned ML-misfit to the

Marmousi model.

3.2 The Marmousi model

In this section, we present the result of applying the ML-

misfit to the Marmousi model.

As shown in Figure 11B, Marmousi is a complex 2D

structural model, and it contains large horizontal and vertical

FIGURE 7
Results for 100 true and inverted travel times for the testing
dataset for the ML-misfit after training.

FIGURE 8
Training loss for ML-misfit with different setups.

FIGURE 9
Misfit curves for the L2 norm and the ML-misfit trained with
different setups. The main frequency is 10 Hz.

Frontiers in Earth Science frontiersin.org09

Sun and Alkhalifah 10.3389/feart.2022.1011825

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1011825

velocity variations. It is a standard benchmark model to evaluate

depth-migration and velocity-determination methodologies.

We generate random 2D layered models for training, and

these random models are designed to be similar to Marmousi

(such as the velocity range, water depth, etc.) while at the same

time including randomness. The model size is 3 km in depth and

9 km wide, with a sampling interval of 20 m in both directions,

and wemimic a marine geologic setup with velocity ranging from

1,500 m/s to 4,200 m/s. The 2D random layered model is created

with a general increase of velocity with depth. Specifically, we

randomly create a series of layers zi with z0 = 0 km. Thus, the top

of the layer i is at depth zi−1, and the layer bottom is at depth zi.

The interval velocity for layer i is determined by vi = 1,500 +

1.35ϵzi, where ϵ is a random number in [0, 1]. To mimic a shallow

marine setup and also to stabilize the inversion, we set the first

layer of the model to have a water velocity of 1,500 m/s and fix it

during the inversion. The water depth for the water layer is also

randomly drawn from 100 m to 500 m. With these semi-random

velocity models, we utilize the finite-difference method to

generate the data. The initial model used to start the FWI is

obtained by applying strong smoothing to the true model with a

Gaussian smoother of a standard deviation of 2 km.

As the model is a horizontally layered model, we only need to

compute a one-shot record to perform the inversion (and a

follow-up with summarization over the horizontal direction).We

select one shot on the surface with location equals 0. We place

100 receivers evenly spaced at the surface with a maximum offset

of 9 km. The recording time is 7.2 s, with 256 samples. We use a

7-Hz central frequency Ricker wavelet (we use the same wavelet

both in training and in the application to Marmousi). This is

reasonable, as we can usually invert for an accurate wavelet. We

mute the energy of the wavelet below 3 Hz, thus guaranteeing

that the learned ML-misfit can mitigate cycle-skipping without

low frequencies. We perform the FWI based on the pressure wave

equation utilizing the full-band data without frequency

continuation. Furthermore, we also add total variation (TV)

regularization to the model (Alkhalifah et al., 2018; Esser

et al., 2018) in the training stage.

In the training stage, we use another 64 models for testing

(validation) and, in each epoch, we randomly generate

256 models for training. The neural network architecture of ϕ

in Eq. 1 is defined as follows: in total, we have three 1D

convolution layers and three fully connected layers. We use

MaxPooling after each convolution layer and Tanh as the

activation function. The number of channels of the three

convolution layers are (128, 256, 512). The kernel size for the

three layers is set to (17, 9, 5) correspondingly, and the number of

neurons of the fully connected layers are (256, 128, 128).

As shown in Eq. 5, we adopt the L2 norm of the model

difference as the meta-loss. We update the parameters of the ML-

misfit every 10 FWI iterations (unroll integerK = 10). Thus, given

that we have 100 receivers, the batch size for training is 1,000.

We train the neural network for 100 epochs. Figure 11A

shows the normalized meta-loss for the training and testing tasks

over iterations, the reduction of the loss value suggests the

convergence of the training. In Supplementary Figures S1, S2,

we show the profiles of the inverted models selected from the

testing data using the ML-misfit before and after training. From

these profiles, we can see that the inversion of the layered models

improves after training, especially for the shallow part of the

model. We apply this trained ML-misfit to the modified

Marmousi model. Similarly, this Marmousi model extends

2 km in depth and 8 km in distance. We simulate 80 shots

and 400 receivers spread evenly on the surface. In order to

use the ML-misfit trained on the horizontally layered model,

the size of the input must be consistent. Thus, we simulate the

record time up to 7.2 s, the same as that used in the training

step. Figure 11C shows the initial model for starting the

inversion. As before, we perform a full-band inversion (band-

passing the data in the frequency range of 3 Hz–7 Hz) without

frequency continuation. Figures 11D,E show the inversion results

after 150 iterations using the L2 norm and ML-misfit,

respectively. The result using an L2 norm shows obvious

cycle-skipping artifacts and fails to update the model properly,

while theML-misfit shows considerably improved results with an

ability to recover the low-wavenumber components of the model.

Taking a smoothed version of Figure 11E as the initial model, we

perform FWI for a further 100 iterations using the L2 norm. We

obtain the inverted model shown in Figure 11F. Due to the

resolved low-wavenumber components of the model for the ML-

misfit, the “L2” norm demonstrates its high-resolution features

and the resulting model shows high consistency with respect to

the true model. The convergence speed of the ML-misfit-based

inversion tends to be slightly slower than the conventional “L2”-

norm misfit. This is the usual case for any cycle-skipping-free

FIGURE 10
Derivatives of the L2 norm and the ML-misfit trained with
different setups. The main frequency is 10 Hz.

Frontiers in Earth Science frontiersin.org10

Sun and Alkhalifah 10.3389/feart.2022.1011825

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1011825

misfit function, as the ML-misfit is trying to find the global

solution rather than the local minimum.

4 Discussion

In this section, we dig deeper into the meta-learning

framework for learning an ML-misfit and try to explain how

the machine learned such anML-misfit function. To simplify our

discussion, we only consider one step of the model updating,

assuming a first-order approximation (the initial model m does

not depend on the parameters θ of the neural network). Ignoring

the normalization term in Eq. 5, we choose the meta-loss as the

L2 norm of the difference between the inverted model and true

model, i.e., L � 1
2‖m −mtrue‖22. If the adjoint source s computed

using Eq. 6 leads to the minimum value (0) for the meta-loss, it

should satisfy the following equation:

γA s() � m −mtrue. (13)

Here A(s) denotes ADJOINT(s) in Eq. 7. Without loss of

generality, we can reasonably assume that the model-updating

step length γ = 1. Furthermore, given that the operatorA defined

in Eq. 7 is a linear operator with respect to the adjoint source s, we

use AT to represent its adjoint, i.e., the Born approximation.

Thus, the adjoint source, by solving Eq. 10, can be represented as

s � ATA()−1AT m −mtrue(). (14)

We observe that one step of first-order meta-learning is

equivalent to a supervised learning. Given an initial model m

and a true model mtrue, such supervised learning takes the input

data predicted data p and measured data d, and outputs the

adjoint source, which takes the right-hand side of Eq. 14 as its

target:

zΦ p, d; θ()
zp

: x � p, d() → y � ATA()−1AT m −mtrue(), (15)

where (x, y) are training data pairs, with x the input and y the

target (label), and the mapping function aims to learn zΦ(p,d;θ)
zp .

Note that the term (ATA)−1 corrects for illumination and

resolution while the travel-time information is mostly recovered

by AT(m −mtrue). Thus, we can deduce that with this kind of

supervised learning, the machine tries to learn an adjoint source,

which tends to be the Born-modeled wavefield computed from

the velocity perturbation corresponding to the difference

between the initial and true models. Thus, we provide an

intuitive explanation of our meta-learning training strategy

using the concept of the supervised learning approach.

5 Conclusion

We have developed a framework for learning a robust misfit

function, entitled ML-misfit, for FWI using meta-learning. A

specific neural network architecture inspired by the OTMFmisfit

is suggested, and mathematically, it is strictly a pseudo-metric.

The meta-learning approach for training the ML-misfit is a

bilevel-optimization problem. The inner optimization is the

conventional FWI with the usual human-designed misfit

function replaced by the ML-misfit. In contrast, the outer

optimization minimizes the meta-loss (which is defined as the

FIGURE 11
Application of the ML-misfit to the Marmousi model: (A) the loss over epochs for training the ML-misfit on the randomly generated 2D model;
(B) the true Marmousi model; (C) the initial model for starting the inversion; (D) inversion result for the L2 norm; (E) inversion result for the ML-misfit;
(F) inversion result for the L2 norm using (E) as the starting model.

Frontiers in Earth Science frontiersin.org11

Sun and Alkhalifah 10.3389/feart.2022.1011825

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1011825

difference between the true and inverted models) to update the

neural network of the ML-misfit. We have demonstrated that,

when trained on randomly generated 1D layered models, the

resulting ML-misfit can invert for the Marmousi model free of

cycle-skipping using data without frequencies below 3 Hz.

Algorithm 1. Training of the ML-misfit

Plain language summary

In many optimization (inverse) problems such as FWI, the

nonlinearity between the model and the corresponding data

often causes the inversion process to converge to a local

minimum of the optimization rather than a global one,

which corresponds to an inaccurate model of the Earth.

Often, this situation is alleviated by designing a robust

misfit function, which provides a better measurement of

the data difference. However, such hand-crafted misfit

functions are often ad hoc and require considerable

mathematical and physical insights to adapt them to work

on a specific dataset. Here, we propose a data-driven misfit

function, a method that uses ML to systematically and

automatically design the misfit measure for nonlinear

inverse problems. This misfit function trained on one-

dimensional models performed well on the complex

Marmousi model and mitigated the local minimum

problem, demonstrating that a machine-learned misfit

function is both possible and effective.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material; further

inquiries can be directed to the corresponding author.

Author contributions

Study conception and design: BS; data collection: BS;

analysis and interpretation of results: BS and TA; draft

manuscript preparation: BS and TA. All authors reviewed

the results and approved the final version of the manuscript.

Acknowledgments

We thank KAUST for supporting the research. The data

regarding the Marmousi model is available in Bourlioux et al.

(1991). We also show the samples of the data (randomly

generated models) in Supplementary Figures S1, S2 for

reference.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors, and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/feart.2022.

1011825/full#supplementary-material

References

Alkhalifah, T., Sun, B., and Wu, Z. (2018). Full model wavenumber inversion:
Identifying sources of information for the elusive middle model wavenumbers.
Geophysics 83 (6), R597–R610. doi:10.1190/geo2017-0775.1

Andrychowicz, M., Denil, M., Colmenarejo, S. G., Hoffman, M. W., Pfau, D., Schaul,
T., et al. (2016). Learning to learn by gradient descent by gradient descent. arXiv:
1606.04474.

Frontiers in Earth Science frontiersin.org12

Sun and Alkhalifah 10.3389/feart.2022.1011825

https://www.frontiersin.org/articles/10.3389/feart.2022.1011825/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/feart.2022.1011825/full#supplementary-material
https://doi.org/10.1190/geo2017-0775.1
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1011825

Araya-Polo, M., Farris, S., and Florez, M. (2019). Deep learning-driven velocity model
building workflow. Lead. Edge 38 (11), 872a1–872a9. doi:10.1190/tle38110872a1.1

Araya-Polo, M., Jennings, J., Adler, A., and Dahlke, T. (2018). Deep learning
tomography. Lead. Edge 37 (1), 58–66. doi:10.1190/tle37010058.1

Baronian, C., Riahi, M. A., and Lucas, C. (2009). Applicability of artificial neural
networks for obtaining velocity models from synthetic seismic data. Int. J. Earth Sci.
98 (5), 1173–1184. doi:10.1007/s00531-008-0314-3

Bleistein, N., Cohen, J. K., and John, W. (2013).Mathematics of multidimensional
seismic imaging, migration, and inversion. Springer Science & Business Media.

Bourlioux, A., Bourget, M., Lailly, P., Poulet, M., Ricarte, P., and Versteeg, R.
(1991). “Marmousi, model and data,” in Proceedings of the 1990 EAGE
Workshop on Practical Aspects of Seismic Data Inversion.

Chebotar, Y., Molchanov, A., Bechtle, S., Righetti, L., Meier, F., and Sukhatme, G.
S. (2019). Meta-learning via learned loss. arXiv:1906.05374.

Chen, M., Niu, F., Liu, Q., and Tromp, J. (2015). Mantle-driven uplift of Hangai
Dome: New seismic constraints from adjoint tomography. Geophys. Res. Lett. 42
(17), 6967–6974. doi:10.1002/2015GL065018

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.
Math. Control Signal. Syst. 2 (4), 303–314. doi:10.1007/BF02551274

Engquist, B., and Froese, B. (2014). Application of the Wasserstein metric to seismic
signals. Commun. Math. Sci. 9 (11), 979–988. doi:10.4310/CMS.2014.v12.n5.a7

Esser, E., Guasch, L., van Leeuwen, T., Aravkin, A., and Herrmann, F. (2018).
Total variation regularization strategies in full-waveform inversion. SIAM
J. Imaging Sci. 11 (11), 376–406. doi:10.1137/17m111328x

Fabien-Ouellet, G., and Sarkar, R. (2020). Seismic velocity estimation: A deep recurrent
neural-network approach. Geophysics 85 (1), U21–U29. doi:10.1190/geo2018-0786.1

Fichtner, A., and Villaseñor, A. (2015). Crust and upper mantle of the Western
Mediterranean – constraints from full-waveform inversion. Earth Planet. Sci. Lett.
428, 52–62. doi:10.1016/j.epsl.2015.07.038

Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic meta-learning for fast
adaptation of deep networks. arXiv:1703.03400.

Hu, W., Jin, Y., Wu, X., and Chen, J. (2019). A progressive deep transfer learning
approach to cycle-skipping mitigation in fwi, 2019. SEG Technical Program
Expanded Abstracts, 2348–2352. doi:10.1190/segam2019-3216030.1

Jin, Y., Hu, W., Wu, X., and Chen, J. (2018). Learn low-wavenumber
information in FWI via deep inception-based convolutional networks, 2018.
SEG Technical Program Expanded Abstracts, 2091–2095. doi:10.1190/
segam2018-2997901.1

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “ImageNet classification with
deep convolutional neural networks,” in Advances in neural information processing
systems. Editors F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Curran
Associates, Inc.), 25, 1097–1105. Available at: http://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-networks.pdf.

Lailly, P. (1983). “The seismic inverse problem as a sequence of before stackmigrations,”
in Conference on Inverse Scattering, Theory and application (Philadelphia, Expanded
Abstracts: Society for Industrial and Applied Mathematics), 206–220.

Langer, H., Nunnari, G., and Occhipinti, L. (1996). Estimation of seismic
waveform governing parameters with neural networks. J. Geophys. Res. 101
(B9), 20109–20118. doi:10.1029/96JB00948

Maass, P. (2019). “Deep learning for trivial inverse problems,” in Compressed sensing
and its applications: Third International MATHEONConference 2017 (Cham: Springer
International Publishing), 195–209. doi:10.1007/978-3-319-73074-5_6

Macías, C. C., Sen, M. K., and Stoffa, P. L. (1998). Automatic NMO correction and
velocity estimation by a feedforward neural network. Geophysics 63 (5), 1696–1707.
doi:10.1190/1.1444465

Métivier, L., Brossier, R., Mérigot, Q., Oudet, E., and Virieux, J. (2016). Measuring
the misfit between seismograms using an optimal transport distance: Application to
full waveform inversion. Geophys. J. Int. 205 (11), 345–377. doi:10.1093/gji/ggw014

Nath, S. K., Chakraborty, S., Singh, S. K., and Ganguly, N. (1999). Velocity
inversion in cross-hole seismic tomography by counter-propagation neural

network, genetic algorithm and evolutionary programming techniques. Geophys.
J. Int. 138 (1), 108–124. doi:10.1046/j.1365-246x.1999.00835.x

Ovcharenko, O., Kazei, V., Kalita, M., Peter, D., and Alkhalifah, T. (2019). Deep
learning for low-frequency extrapolation from multioffset seismic data. Geophysics
84 (6), R989–R1001. doi:10.1190/geo2018-0884.1

Park, M. J., and Sacchi, M. D. (2020). Automatic velocity analysis using
convolutional neural network and transfer learning. Geophysics 85 (1),
V33–V43. doi:10.1190/geo2018-0870.1

Pratt, R. G. (1999). Seismic waveform inversion in the frequency domain, part 1:
Theory and verification in a physical scale model. Geophysics 64 (3), 888–901.
doi:10.1190/1.1444597

Roethe, G., and Tarantola, A. (1991). Use of neural networks for inversion of seismic
data. Seg. Tech. Program Expand. Abstr. 1991, 302–305. doi:10.1190/1.1888938

Röth, G., and Tarantola, A. (1994). Neural networks and inversion of seismic
data. J. Geophys. Res. 99 (B4B4), 6753–6768. doi:10.1029/93JB01563

Schmidhuber, J. (1987). Evolutionary principles in self-referential learning. on learning
now to learn: The meta-meta-meta-hook (Diploma Thesis. Germany: Technische
Universitat Munchen. Available at: http://www.idsia.ch/~juergen/diploma.html.

Shin, C., and Cha, Y. (2008). Waveform inversion in the Laplace domain.
Geophys. J. Int. 173 (33), 922–931. doi:10.1111/j.1365-246X.2008.03768.x

Shin, C., and Cha, Y. (2009). Waveform inversion in the Laplace–Fourier domain.
Geophys. J. Int. 177 (33), 1067–1079. doi:10.1111/j.1365-246X.2009.04102.x

Sirgue, L., and Pratt, R. G. (2004). Efficient waveform inversion and imaging: A
strategy for selecting temporal frequencies. Geophysics 69 (11), 231–248. doi:10.
1190/1.1649391

Suárez, J. L., García, S., and Herrera, F. (2019). A tutorial on distance metric
learning: Mathematical foundations, algorithms and experiments. arXiv:1812.05944.

Sun, B., and Alkhalifah, T. (2020). ML-descent: An optimization algorithm for
full-waveform inversion using machine learning. Geophysics 85 (2), R477–R492.
doi:10.1190/geo2019-0641.1

Sun, B., and Alkhalifah, T. (2019b). Robust full-waveform inversion with radon-
domain matching filter.Geophysics 84 (5), R707–R724. doi:10.1190/geo2018-0347.1

Sun, B., and Alkhalifah, T. (2019a). The application of an optimal transport to a
preconditioned data matching function for robust waveform inversion. Geophysics
84 (6), R923–R945. doi:10.1190/geo2018-0413.1

Sun, H., and Demanet, L. (2019). Extrapolated full waveform inversion with
convolutional neural networks, 2019. SEG Technical Program Expanded Abstracts,
4962–4966. doi:10.1190/segam2019-3197987.1

Sun, H., and Demanet, L. (2018). Low-frequency extrapolation with deep learning,
2018. SEG Technical Program Expanded Abstracts, 2011–2015. doi:10.1190/
segam2018-2997928.1

Tape, C., Liu, Q.,Maggi, A., and Tromp, J. (2009). Adjoint tomography of the southern
California crust. Science 325 (5943), 988–992. doi:10.1126/science.1175298

Tarantola, A. (1984). Inversion of seismic reflection data in the acoustic
approximation. Geophysics 49 (88), 1259–1266. doi:10.1190/1.1441754

Vilalta, R., and Drissi, Y. (2002). Jun 01) A perspective view and survey of meta-
learning. Artif. Intell. Rev. 18 (2), 77–95. doi:10.1023/A:1019956318069

Warner, M., and Guasch, L. (2016). Adaptive waveform inversion: Theory.
Geophysics 81 (6), R429–R445. doi:10.1190/geo2015-0387.1

Woodward, M. J., Nichols, D., Zdraveva, O., Whitfield, P., and Johns, T. (2008). A
decade of tomography. Geophysics 73 (55), VE5–VE11. doi:10.1190/1.2969907

Wu, Y., Lin, Y., and Zhou, Z. (2018). Inversionet: Accurate and efficient
seismic-waveform inversion with convolutional neural networks, 2018. SEG
Technical Program Expanded Abstracts, 2096–2100. doi:10.1190/segam2018-
2998603.1

Zhu, H., Bozdağ, E., and Tromp, J. (2015). Seismic structure of the European upper
mantle based on adjoint tomography.Geophys. J. Int. 201 (1), 18–52. doi:10.1093/gji/ggu492

Zoph, B., and Le, Q. V. (2016). Neural architecture search with reinforcement
learning. arXiv:1611.01578.

Frontiers in Earth Science frontiersin.org13

Sun and Alkhalifah 10.3389/feart.2022.1011825

https://doi.org/10.1190/tle38110872a1.1
https://doi.org/10.1190/tle37010058.1
https://doi.org/10.1007/s00531-008-0314-3
https://doi.org/10.1002/2015GL065018
https://doi.org/10.1007/BF02551274
https://doi.org/10.4310/CMS.2014.v12.n5.a7
https://doi.org/10.1137/17m111328x
https://doi.org/10.1190/geo2018-0786.1
https://doi.org/10.1016/j.epsl.2015.07.038
https://doi.org/10.1190/segam2019-3216030.1
https://doi.org/10.1190/segam2018-2997901.1
https://doi.org/10.1190/segam2018-2997901.1
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.1029/96JB00948
https://doi.org/10.1007/978-3-319-73074-5_6
https://doi.org/10.1190/1.1444465
https://doi.org/10.1093/gji/ggw014
https://doi.org/10.1046/j.1365-246x.1999.00835.x
https://doi.org/10.1190/geo2018-0884.1
https://doi.org/10.1190/geo2018-0870.1
https://doi.org/10.1190/1.1444597
https://doi.org/10.1190/1.1888938
https://doi.org/10.1029/93JB01563
http://www.idsia.ch/%7Ejuergen/diploma.html
https://doi.org/10.1111/j.1365-246X.2008.03768.x
https://doi.org/10.1111/j.1365-246X.2009.04102.x
https://doi.org/10.1190/1.1649391
https://doi.org/10.1190/1.1649391
https://doi.org/10.1190/geo2019-0641.1
https://doi.org/10.1190/geo2018-0347.1
https://doi.org/10.1190/geo2018-0413.1
https://doi.org/10.1190/segam2019-3197987.1
https://doi.org/10.1190/segam2018-2997928.1
https://doi.org/10.1190/segam2018-2997928.1
https://doi.org/10.1126/science.1175298
https://doi.org/10.1190/1.1441754
https://doi.org/10.1023/A:1019956318069
https://doi.org/10.1190/geo2015-0387.1
https://doi.org/10.1190/1.2969907
https://doi.org/10.1190/segam2018-2998603.1
https://doi.org/10.1190/segam2018-2998603.1
https://doi.org/10.1093/gji/ggu492
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1011825

	ML-misfit: A neural network formulation of the misfit function for full-waveform inversion
	1 Introduction
	2 Methods
	2.1 The neural network architecture of the ML-misfit
	2.2 Training the neural network

	3 Examples
	3.1 Developing a convex misfit function for travel-time shifted signals
	3.1.1 Experiment setup
	3.1.2 Results and discussion

	3.2 The Marmousi model

	4 Discussion
	5 Conclusion
	Plain language summary
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

