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The day/night band channel on the JPSS series of satellites can detect the light

and dark fringes of oceanic internal waves due to the reflectivity difference

caused by the roughness of the sea surface under moon flare conditions. After

optical imaging of oceanic internal waves, three image processing algorithms,

i.e., the two-dimensional S transform, windowed Fourier transform, andwavelet

packet transform methods, can be used to extract the parameter features of

horizontal wavelength and propagation direction. The wave domain with

known parameters is established through data simulation, and both image

quality and image resolution are analyzed to assess algorithm performance

in terms of relative errors. Finally, the experimental conclusions are verified in

two examples of satellite observations in the South China Sea in 2020.We found

that the windowed Fourier transform and wavelet packet transform methods

exhibit better noise immunity, and the two-dimensional S transform method

exhibits less calculation error and is more applicable to cases with small

wavelengths. For large wavelengths, the windowed Fourier transform

method is more suitable for calculating the horizontal wavelength, and the

wavelet packet transform method is more suitable for calculating the

propagation direction. By evaluating the applicability of these algorithms, this

study provides a theoretical basis to support the analysis and processing of

internal wave characteristics in future.
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Introduction

Oceanic internal waves are fluctuations that are generated

and propagated inside seawater due to seawater density

stratification and disturbances to the seawater stratification.

Internal oceanic waves exist in seasonal and permanent

thermocline regions, and they cause changes in ocean

temperature, salinity, and currents. They also have important

impacts on turbulent mixing, underwater nutrient transport, and

submarine navigation (Villamaña et al., 2017; Huarong et al.,

2020). Internal waves can easily occur in continental shelves,

straits, and marginal seas; thus, they are common in the

Andaman Sea, South China Sea, White Sea, and Arabian Sea

(Liu and D’Sa, 2019). In a layered ocean with internal waves, the

density difference between the upper and lower layers is

approximately three orders of magnitude less than that of the

air-sea interface; thus, the horizontal scale and frequency of

internal waves are frequently greater than those of surface

waves, and the occurrence of these internal waves has many

uncertainties, while satellite remote sensing canmake continuous

observations over a large area and a long period of time, and is

often able to capture useful information about internal waves, so

satellite remote sensing has been an important tool for observing

oceanic internal waves (Liu et al., 2014).

Currently, the primary remote sensing instruments for

internal wave observation are active microwave synthetic

aperture radar (SAR) and the passive visible band radiometer.

SAR interacts with the sea surface by emitting an electromagnetic

pulse. It then uses the received backscattered energy to generate

image. Internal waves change the microscale wave distribution

on the sea surface through the flow field and form irradiated and

scattered areas, which results changes in the roughness of the sea

surface, which is manifested as bands of light and dark stripes in

SAR images (Bao et al., 2020). SAR has the advantages of all-

weather, all-day time and high spatial resolution, so SAR is often

used in the research of internal wave observation (Liu, 2014).

Similar to the SAR imaging mechanism, visible remote sensing is

also imaged using sunlight reflected from the sea surface. Internal

waves change the roughness of the sea surface, which affects the

reflected light energy received by the satellite sensor; thus, the

visible remote sensing is also expressed in a visible image as a set

of alternating light and dark stripes (Jackson, 2007; Zhang et al.,

2020; Ma et al., 2021). Visible band radiometers have high

temporal resolution and wide spatial coverage, and can

frequently observe internal wave phenomena in visible images.

However, internal wave phenomena observed using traditional

visible light remote sensing must be observed in the solar flare

region. The solar flare area is an area where a satellite can receive

the specular reflection of sunlight, which depends on the relative

geometry of the Sun and the satellite, as well as several

conditions, e.g., sea surface wind and waves (Christopher

et al., 2010). Similar to solar flares, with the increasing

sensitivity of satellite sensors, oceanic internal waves under

moon flare conditions can able be observed (Miller et al.,

2013; Hu, 2021; Meetei et al., 2020). Miller et al. used the

day/night band (DNB) sensor of the Visible/Infrared Imaging

Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting

Partnership (Suomi-NPP) to observe nighttime internal wave

phenomena in the Celebes Sea region, and they demonstrated the

potential application of DNB images to observe nighttime

internal wave phenomenon (Miller et al., 2013).

Satellite remote sensing images can present the horizontal

two-dimensional spatial distribution characteristics of the

oceanic internal wave field; however, the dynamic parameters

of oceanic internal waves, e.g., wavelength, amplitude, and

propagation direction, cannot be obtained directly. Thus, it is

necessary to extract the internal wave characteristic parameters

from satellite images using algorithmic inversion (Gan et al.,

2007; Chen et al., 2014; Chen et al., 2018; Hu et al., 2019; Zhang

et al., 2021). Algorithms for inversion of internal wave

parameters from satellite images mainly include Fourier

transform, wavelet analysis, empirical mode decomposition

(EMD), two-dimensional Stockwell transform (two-

dimensional S transform), etc. The Fourier transform is a

good reflection of the main wave information of internal

wave, while the wavelet transform can obtain the information

of internal wave waveform, but it is necessary to choose a suitable

wavelet base function (Zhang et al., 2021). The EMD algorithm

decomposes the signal into multiple eigenmode function

components, and uses the maximum normalized variance to

represent the characteristics of the internal wave signal (Chen

et al., 2018). The two-dimensional S transform is a widely used

spectral analysis technique capable of providing range-

wavenumber localization of spatial profiles. This capability is

well suited for texture feature analysis of various geophysical data

(F. Gao et al., 2016; Hindley et al., 2016). Gan et al. used the fast

Fourier spectral analysis method to extract the internal wave

wavelength in the Bashi Channel region from the ERS-1 SAR

image. The results show that the method has good consistency

with the EMD and wavelet analysis methods (Gan et al., 2007).

Chen et al. proposed a fully automatic extraction method of

internal wave parameters in SAR images by using two-

dimensional continuous wavelet transform, which can well

locate the image areas where the internal waves are located,

and automatically extract the internal wave parameters in these

areas (Chen et al., 2014). Hu et al. used the two-dimensional S

transform method to measure the internal wave wavelength and

propagation direction in the DNB image. The horizontal

wavelengths measured by the three observation experiments

were concentrated at 3–15 km, and the propagation direction

was 110°–170° counterclockwise. These results are generally

consistent with the estimation result from the spacing pixel

number (Hu et al., 2019). However, while these algorithms

can invert the characteristic parameters of oceanic internal

waves and achieve good results, different algorithms may

affect the calculation results for the same internal wave
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phenomenon observed from different satellite images. Thus, a

systematic analysis of the applicability of different algorithms in

different cases is expected to effectively reduce the inversion

errors caused by such algorithms.

The purpose of this research is to find suitable algorithms for

satellite images of different qualities, and expect to more

accurately extract the characteristic parameters of internal

wave streaks in the images. The experiment focuses on both

satellite image quality and spatial resolution to analyse the effects

on the two-dimensional S transform, windowed Fourier

transform, and wavelet packet transform methods. The wave

domain with known parameters is established through data

simulation, and the relative error is employed to characterize

algorithm performance. The results of the simulation

experiments are verified relative to known internal oceanic

wave events, and the applicability of the three algorithms in

different situations is identified, so that a good algorithm can be

selected to reduce the calculation error which we expect to

facilitate quantitative monitoring of oceanic internal waves in

the future. The data used and the region where the

experimentally selected internal wave events are located was

described in Introduction, the characteristics of the three

algorithms for calculating the internal wave parameters was

described (Introduction), simulation experiments and DNB

observation validation experiments were conducted in

Introduction, respectively, and finally concluded with a

summary of conclusions (Introduction).

Dataset and study area

As the first test satellite of the JPSS series satellite systems of

polar-orbiting meteorological and environment, the NPP satellite

carries a VIIRS/DNB channel that can provide relatively accurate

nighttime radiance data through on-orbit radiometric

calibration. The spectral response range of DNB is

0.5–0.9 μm, the dynamic range of the detected radiation

reaches 107 orders of magnitude, the lowest detectable

radiation intensity is approximately 0.02 nWcm−2·sr−1, and it

has a swath width of approximately 3,000 km and spatial

resolution of 742 m. Since its launch in 2011, the NPP

satellite has demonstrated strong day and night observation

capabilities. Up to 2017, the JPSS-1 operated, which serves as

the official satellite of the NPP satellite and carried the same

performance VIIRS/DNB channel. A number of studies have

used DNB images to observe oceanic internal waves (Miller et al.,

2013; Yang et al., 2014; Tensubam et al., 2021). The experimental

data of nighttime observation of internal waves comes from the

VIIRS/SDR data products publicly released by the

Comprehensive Large Array-data Stewardship System

(CLASS) under NOAA, using the NPP satellite version of the

DNB channel data, which are respectively the Sensor Data

SVDNB product and Geographic Information GDNBO

product. They consist of 3,072×4064 pixels, and the SVDNB

product provides the pupil irradiance and its quality mark

information after operational radiometric calibration, and the

GDNBO product provides the corresponding geometric

information, e.g., latitude, longitude, lunar phase angle, and

satellite zenith angle.

Oceanic internal waves occur frequently in the South China Sea

region (Bai et al., 2014). This region exhibits vertical stratification of

seawater with seasonal variation and has an underwater topography

with obvious seabed undulation, thereby providing many

observational events to study the generation and propagation of

large amplitude internal waves (Farmer et al., 2011; Zhao et al.,

2014). Internal waves in the South China Sea primarily occur in the

area between the Luzon Strait and the South China continental shelf.

These internal waves are stimulated by the interactions among tides

and the terrain near the Luzon Strait, and then they propagate

northwestward to the South China continental shelf (Liu and Hsu,

2004). In this study, we collected observation data from theNPP and

JPSS-1 satellites transiting in the northern South China Sea in 2020,

and we selected the nighttime DNB descending orbit data forMarch

9 and April 7 as experimental observation events, as shown in

Figure 1. The extraction of internal wave characteristic parameters

by the algorithm is essentially an application of image processing

technology to internal wave research. It is assumed that the two

internal wave events used in the experiments, as long as the internal

wave streak features are clearly presented on the satellite images and

all three algorithms are able to extract the internal wave parameters

accurately for the original images, it means that the internal wave

events do not affect the performance of the algorithms and have no

impact on the experimental conclusions.

Oceanic internal wave algorithms

Two-dimensional S transform

The two-dimensional S transform algorithm has been

widely used in medical image analysis and mechanical

exploration since its introduction in 1996. In 2016, Hindley

et al. introduced the two-dimensional S transform algorithm

to atmospheric and oceanic sciences by processing bright

temperature images to analyze atmospheric gravity wave

features (Hindley et al., 2016). The two-dimensional S

transform algorithm has a strong ability to process and

analyze two-dimensional digital image signals. For a two-

dimensional spatial image h(x, y), the analytic form of its

two-dimensional S transform under the wave number domain

can be expressed as follows.

S τx, τy, kx, ky( ) � ∫∫∞
−∞

h x, y( ) × kx
����ky∣∣∣∣ ∣∣∣∣

8π2c2
e

− 2π2 c2αx2

k2x
+2π2 c2αy2

k2y
( )

ei αxτx+αyτy( )dαxdαy . (1)

Frontiers in Earth Science frontiersin.org03

Li et al. 10.3389/feart.2022.1013550

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1013550


Here, S(τx, τy, kx, ky) is the four-dimensional wave number

spectrum, and τx and τy are the transition variables in the x and y

directions, respectively. kx and ky are the spatial angular wave

numbers in the x and y directions, respectively, and c is the

scaling parameter. The corresponding form of the two-

dimensional Gaussian window can be determined, which can

be expressed as follows.

wg x, y, , kx, ky( ) � kx
����ky∣∣∣∣ ∣∣∣∣

8π2c2
e
− 2π2c2αx2

k2x
+2π2c2αy2

k2y
( )

. (2)

From Eqs 1, 2, the horizontal wavelength and propagation

direction of the oceanic internal waves can be obtained as follows.

λ τx, τy( ) � kx τx, τy( )( )2 + ky τx, τy( )( )2, (3)

θ τx, τy( ) � arctan
kx τx, τy( )
ky τx, τy( )⎛⎝ ⎞⎠, (4)

Here, λ(τx, τy) is the horizontal wavelength, and θ(τx, τy) is the
propagation direction.

Windowed fourier transform

The two-dimensional discrete windowed Fourier transform

method is a two-dimensional form of short-time Fourier

transform. The short-time Fourier transform is one of the

most commonly used methods for time-frequency analysis

because it makes up for the lack of time domain information

in the basic Fourier transform method by including a time

window to obtain the frequency characteristics at a certain

time (Li et al., 2019). The two-dimensional discrete windowed

Fourier transform is an extension of the one-dimensional time

domain into the two-dimensional discrete space domain. This

extension allows us to obtain information in both the spatial and

wave number domains, e.g., we can find the wave number

information in a particular space. The two-dimensional

discrete windowed Fourier transform final expression is given

as follows.

X τx,τy,fx,fy( )�∑M

τx
∑N

τy
ω τx,τy,kx,ky( )

× z x,y( )e−j2π fxτx+fyτy( ), 1≤τx≤M;1≤τy≤N( ). (5)

Here, the corresponding form of the rectangular window is

expressed as follows.

ω τx, τy, kx, ky( ) � 1, 1≤ τx ≤M; 1≤ τy ≤N( )
0, else

{ . (6)

The windowed Fourier transform method in the wave

number domain can achieve greater computational efficiency.

As τx and τy increase from the frequency center (near the zero

frequency) toward the high-frequency, the rectangular window

in the wave number domain shifts the sliding window

continuously to obtain the spatial domain features at a

specific wave number. By integrating wave number windows

in the horizontal and vertical directions, we can obtain the wave

number information of pixels in each spatial domain of the

complete image.

Wavelet packet transform

A wavelet is a function defined in finite time with an average

value of zero amplitude, finite duration, and abrupt frequency

and amplitude. Wavelet transform can decompose a signal into a

series of wavelet functions through the translation and scaling of

the parent wavelet; thus, it can characterize the local

characteristics of the signal in both the time and frequency

domains (Wu et al., 2012). Let the two-dimensional image be

FIGURE 1
Nighttime DNB images of oceanic waves occurring in the South China Sea acquired by (A) the NPP satellite on 7 April 2020 at 17:23 UTC and (B)
the JPSS-1 satellite on 9 March 2020 at 17:18 UTC.
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f(x, y). Then, the two-dimensional discrete wavelet transform is

defined as follows.

Wf a,b1,b2( ) �∑M

n1
∑N

n2
f x,y( )1

a
φ

n1,n2( )− b1,b2( )
a

( ),
n1,n2ϵZ2( ) (7)

Here, the function φ((n1, n2) − (b1, b2)/a) is referred to as the

parent wavelet, where a is the scale parameter, which is inversely

related to the signal frequency (i.e., a smaller a value results in a

narrower waveform and greater frequency), and b1,2 is the

translation parameter. The parent wavelet is scaled by a to

generate different wavelet functions, which are referred to as

wavelet bases. The frequency information at a specific position

can be obtained by translating the spatial domain by parameters

b1,2. By integrating a and b1,2, different wavelet bases are fitted

with different parts of the original signal to generate the

coefficients of wavelet transform. These coefficients

characterize the weight of the original signal on these wavelet

bases, where larger weights indicate a better fit.

However, the wavelet transform algorithm continuously

decomposes the low-frequency components of the signal and

does not decompose the high-frequency components. To

decompose the complete spectrum of the signal and obtain a

particular frequency component from the signal, the high-

frequency components of the signal must be decomposed

further, which introduces the concept of wavelet packet

transform (Xu et al., 2021). Based on the wavelet transform,

the wavelet packet transform allows for multi-level

decomposition of both the low-frequency and high-frequency

components of the signal, which allows for finer frequency

resolution in the high-frequency part.

Simulation experiments

The spatial resolution and imaging quality of remote sensing

instruments are not the same; thus, the images obtained by

different satellite sensors to observe the same internal wave

phenomenon may also differ. In addition, the actual satellite

observation of internal waves requires spatial geometric

correction of the satellite image, from which partial images

containing oceanic internal wave streak features are

intercepted. After resampling, the resolution of the local

image differs from that of the original image, and the change

in spatial resolution also causes changes to the spatial wavelength

of the oceanic internal wave in the image. Thus, it is necessary to

evaluate algorithm performance on different satellite images for

oceanic internal wave features in order to determine whether

there is any impact on the results of the internal wave

calculations.

The truth value of internal wave characteristics of satellite

images cannot be obtained in large quantities to analyze the

general rule, and there are many factors affecting the algorithm to

extract internal wave parameters. Thus, this study draws on the

analysis method of gravitational waves by Hindley et al., in 2016,

using the simulation wave domain for analysis (Hindley et al.,

2016). The analysis factor is used as the only independent

variable through the control variable method and the

remaining factors that may influence it are set as uniform

parameters. Simulation experiments were conducted to

analyze the effect of the independent variables on the

performance of the algorithm by gradually adjusting the

parameters of the independent variables for a known wave

domain, without changing the other parameter settings. The

experiment mainly focuses on image quality and image

resolution as independent variables for two research analyses,

where image quality is achieved by adding random noise to the

image. Since image resolution affects the spatial wavelength of

the internal wave, the spatial wavelength of the internal wave

(represented by the number of image pixel intervals) is

characterized as the image resolution for simulation

experiments. The relative errors in the calculation of the

horizontal wavelength and propagation direction are used to

characterize the performance of the algorithm by comparing the

calculated results of the internal wave streaks in the simulated

wave domain with the true values of the set parameters. The

calculation equation of relative error is expressed as follows:

δ � x −X| |
X

, (8)

where δ is the relative error, x is the experimental measurement

and X is the agreed true value of the actual internal wave

obtained.

Image quality analysis

The signal-to-noise ratio SNR, as the ratio of the signal S to

the noise R, can reflect the blurring degree of the image. In

practical applications, the image quality can be obtained by

the SNR (Zhang et al., 2013). The image quality analysis

experiment in this study were performed by adding

random noise to change the image quality. Here, let the

original image be h(x, y). Then, the image H(x, y) after

adding noise can be expressed as follows:

H x, y( ) � h x, y( ) × 1 − f × rand h x, y( )( )( ), (9)

where f × rand(h(x, y))) represents the added random noise.

Here, f is the noise ratio, which takes a value between 0 and 1,

and the rand function can generate random values from 0 to

1 with the same number of ranks as h(x, y). Note that a larger f
value results in greater noise in the image. In order to explore the

relationship between the noise ratio f and the SNR, let the original

image h(x, y) without random noise be the signal S, and the

image H(x, y) after adding the noise as S-R (R>0), Arrange the
formula to get:
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SNR � 1
f
, (10)

That is, the SNR and the noise ratio f are reciprocal of each

other. It can thus be shown that the noise ratio f can be used as

an independent variable in this experiment to analyse the quality

of satellite images.

To ensure that no other variables deteriorate the

performance of the algorithm, the original image must

satisfy the two-dimensional S transform, the windowed

Fourier transform, and the wavelet packet transform

methods with small computational errors. The calculation

errors of these three algorithms changes successively by

gradually superimposing random noise, as shown in

Appendix Figure A1. To avoid the experimental

contingency of the calculation results, the average value of

100 simulation experiments is used as the final experimental

result, and this average value is compared to the set true value

to obtain the relative error of the calculation under different

random noise conditions, as shown in Figure 2.

Figure 2A shows the calculation errors of the three

algorithms in the horizontal wavelength under different

noise conditions. The calculation errors of the three

algorithms are essentially constant below 0.4 noise. As can

be seen, the two-dimensional S transform method has the

smallest relative error (approximately 0.13), and the

windowed Fourier transform and wavelet packet transform

methods exhibit similar relative errors (approximately 0.2).

When the random noise is greater than 0.4, the calculation

error of the two-dimensional S transform method changes

first, and as the noise increases, the calculation error of the

two-dimensional S transform method changes greatly. With

the wavelet packet transform method, the calculation error

changes after the random noise becomes greater than 0.7.

With the windowed Fourier transform method, the

calculation error changes when the random noise is greater

than 0.8, and the range of change is small in this case.

Figure 2B shows the calculation errors of the three

algorithms in the propagation direction under different

noise conditions. As can be seen, the calculation errors of

the two-dimensional S transform and wavelet packet

transform methods are smaller and similar when the noise

is below 0.5, and the relative errors are all approximately 0.1.

When the noise becomes greater than 0.4, the calculated

results of the two-dimensional S transform method change

first, and the relative error increases to 0.2. The calculated

results of the wavelet packet transform and windowed Fourier

transform methods are similar to those shown in Figure 2A,

i.e., they change only after the random noise reaches 0.7 and

0.8, respectively, and the relative error increases by a small

margin.

As shown in Figure 2, all three algorithms exhibit relatively

stable calculation performance when the random noise is less

than 0.4. When the algorithm performance is stable, the two-

dimensional S transform method demonstrates the smallest

calculation error for both the horizontal wavelength and

propagation direction. Although the calculation errors of the

windowed Fourier transform and wavelet packet transform

methods are relatively larger, the noise immunity of these

algorithms is better than that of the two-dimensional S

transform method. Thus, when the image quality is good, it is

preferable to select the two-dimensional S transform algorithm to

calculate the characteristics of internal waves. The windowed

Fourier transform and wavelet packet transform methods are

recommended when the image quality is poor, which may affect

the observed internal wave characteristics.

FIGURE 2
Computational errors of oceanic internal wave characteristics under different noise: (A) horizontal wavelength and (B) propagation direction.
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Image resolution analysis

The horizontal wavelength of an internal wave in a satellite

image is calculated from the number of pixels separating the two

wave peak lines, and the number of pixels obtained for different

spatial resolutions of the image will vary. Thus, for an internal

wave event with the same actual wavelength, different image

spatial wavelengths may be obtained. The simulation experiment

takes the image space wavelength as an independent variable to

characterize different image space resolutions. In this

experiment, the relative errors in the calculation of spatial

wavelengths within 0–50 pixels using the two-dimensional S

transform, windowed Fourier transform, and wavelet packet

transform methods were analyzed by building a random wave

domain with 101 × 101 pixels. As with the image quality analysis,

here, the average of 100 calculations is taken as the experimental

result, which is compared to the set true value to obtain the

relative error at different wavelengths, as shown in Figure 3.

Figure 3A shows the calculation errors of the three

algorithms at different wavelengths for the horizontal

wavelengths. As can be seen, the calculation error of the two-

dimensional S transform method increases monotonically with

increasing wavelength. The calculation errors of the windowed

Fourier transform and wavelet packet transform method

decrease with increasing wavelength when the wavelength is

less than 20 pixels, and the errors increase with increasing

wavelength when the wavelength is greater than 20 pixels.

When the wavelength is less than 10 pixels or greater than

30 pixels, the calculation error of the two-dimensional S

transform method is the smallest. When the wavelength is

10–20 pixels, the calculation errors of all three algorithms are

relatively similar, and when the wavelength is 20–30 pixels, the

calculation error of the windowed Fourier transform method is

the smallest. Figure 3B shows the calculation errors of the three

algorithms in the propagation direction at different wavelengths.

As can be seen, the calculation errors of the wavelet packet

transform method in the propagation direction decrease with

increasing wavelength. When the wavelength is greater than

20 pixels, the calculation errors of the wavelet packet

transform method are relatively consistent with those of the

two-dimensional S transform method. The calculation errors of

the windowed Fourier transform and two-dimensional S

transform methods increase with increasing wavelength when

the wavelength is less than 20 pixels, and they calculation errors

decrease with increasing wavelength when the wavelength is

greater than 20 pixels. However, the calculation error of the

two-dimensional S transform method is small, and the change

with wavelength is not obvious.

As shown in Figure 3, the two-dimensional S transform

method exhibits the most stable performance among the three

algorithms, and the error is relatively small. When the

wavelength is small (i.e., the number of pixels is less than 20),

it is better to use the two-dimensional S transform method to

calculate the horizontal wavelength and propagation direction. In

contrast, when the wavelength is large (i.e., the number of pixels

is greater than 20), it is better to use the windowed Fourier

transform method to calculate the horizontal wavelength, and

either the wavelet packet transform method or two-dimensional

S transform method should be used to calculate the propagation

direction.

Actual satellite measurement data

Image quality analysis

An internal wave event that occurred in the South China Sea

region (eight to nine N, 118–119 E) on 7 April 2020 was selected

FIGURE 3
Computational errors of oceanic internal wave characteristics at different wavelengths: (A) horizontal wavelength (B) propagation direction.
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to verify the analysis of image quality in the simulation

experiment. Here, we simulated different satellite sensors

capturing low light images of different image quality by

adding random noise to the original satellite images, as shown

in Figure 4. Figure 4A shows the original image without

additional noise, and Figures 4B, D show the corresponding

images with random noise of 0.2, 0.4, and 0.6, respectively. From

the characteristics of internal wave fringes shown in Figure 4, we

find that the image appears blurred to varying degrees until the

internal wave feature fringes in Figure 4D are nearly

unrecognizable. The internal wave phenomena in Figure 4 can

be handled by drawing software such as Photoshop to make a

tangent to the maximum crest line of the internal wave at the

pixel level and judge the propagation direction based on the

tangent tilt angle, while the actual wavelength can be handled by

Hu et al. through the estimated value of the number of pixels

spacing the internal wave crest line (Hu et al., 2019), which can be

summarized as follows:

HWf � R × HWn, (11)

Where HWf on the left side of the equation represents the actual

wavelength of the internal wave in kilometres; HWn on the right

side of the equation represents the number of pixels between the

two crest lines of the internal wave in the diagram, the horizontal

wavelength that the algorithm is able to calculate from the

satellite image, while R represents the image resolution, the

part image intercepted after spatial geometric correction, the

spatial resolution may vary and needs to be specifically analysed

in conjunction with the latitude and longitude information and

the number of pixels in the image.

According to formula (11), the four partial images are all

composed of 201 × 201 pixels. After performing spatial geometric

correction using the latitude and longitude information, the

approximate spatial resolution of the images is 662 m. Thus,

the maximum spatial wavelength of the internal wave fringes in

the figure (i.e., the maximum pixel interval between the two wave

crest lines) is 10, the actual wavelength is about 6.6 km, and the

propagation direction is −50°.

Here, to assess the effect of image quality on algorithm

performance, we verify that the two-dimensional S transform,

windowed Fourier transform, and wavelet packet transform

methods can calculate the internal wave characteristic

parameters accurately without additional noise. The three

algorithms were used to calculate the horizontal wavelength

and propagation direction of the internal wave fringes shown

in Figure 4A, and the calculation results are shown in Figure 5. As

FIGURE 4
DNB image of internal wave phenomenon in the South China Sea region on 7 April 2020(8.0–9.2N, 118.2–119.4E), (A) is the original image
without any noise added, (B) is the image with 0.2 random noise added on the basis of (A), (C) is the image with 0.4 random noise added on the basis
of (A), (D) is the random noise image with 0.6 added on the basis of (A).
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shown in Figure 5, the internal wave phenomenon is clearly

characterized in the images, where Figures 5(A) to 5(C) show the

horizontal wavelengths calculated by the two-dimensional S

transform, windowed Fourier transform, and wavelet packet

transform methods, respectively. Here, by averaging the values

of multiple points in the internal wave region, we find that the

horizontal wavelengths are 8.93, 8.86, and 8.83, respectively, and

the actual wavelengths calculated by the algorithm are about

5.91 km, 5.87 km and 5.85 km when combined with the image

resolution. Combined with Eq 8, we can thus obtain the relative

errors of this internal wave event as 0.10, 0.11, and

0.11 respectively. In contrast, the relative errors of the

simulation experiments for the horizontal wavelengths are

0.13, 0.18, and 0.19, respectively, when no random noise is

added. Figures 5D, F show the propagation directions

calculated by the three algorithms with values of −53.97°,

47.49° and −45°, respectively. Also, according to formula (8),

the relative errors are 0.07, 0.05, and 0.10, respectively, and the

relative errors in the propagation directions calculated in the

simulation experiments are 0.08, 0.08, and 0.16, respectively.

Thus, in the absence of random noise, the calculation results are

essentially consistent with the simulation results.

By gradually adding image noise to the original satellite

image, the target features are covered up, which reduces the

algorithm’s calculation effect. In this experiment, the three

algorithms were used to calculate the internal wave fringe

characteristics in Figure 4, and the calculation results are

given in Table 1. As shown in Table 1, the degree noise

immunity of the two-dimensional S transform method is

poor, and a large calculation error occurs in the horizontal

wavelength and propagation direction of wave (c). In

addition, when the image noise reaches 0.4 or greater, the

computational performance of the two-dimensional S

transform method changes, and the computational error

continues to increase as the noise increases. In contrast, the

windowed Fourier transform and wavelet packet transform

methods exhibit better noise immunity. For the calculation

error of the horizontal wavelength, the windowed Fourier

transform methods maintains an error of 0.11, and the

wavelet packet transform maintains an error of 0.12. For the

propagation direction, the windowed Fourier transform and

wavelet packet transform methods exhibit calculation errors of

0.05 and 0.10, respectively. Until the wavelet packet transform

result changes at wave (d), the calculation performance

deteriorates when the image noise becomes greater than 0.6.

Through the above analysis, we find that the calculation error in

terms of propagation direction is less than that of the horizontal

wavelength. The two-dimensional S transform method

demonstrates relatively poor noise immunity, while the

windowed Fourier transform method demonstrates the best

FIGURE 5
Horizontal wavelength internal wave without noise (Figure 4) calculated by (A) two-dimensional S transform, (B) windowed Fourier transform,
and (C)wavelet packet transform, and propagation direction of internal wave without noise (Figure 4) calculated by (D) two-dimensional S transform,
(E) windowed Fourier transform, and (F) wavelet packet transform.
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noise immunity. Overall, the calculated results are essentially

consistent with the simulation results.

Image resolution analysis

To verify the analysis of the wavelength of the internal wave

in the simulation experiment, an internal wave event that

occurred in the South China Sea region (5.8–7.8 N,

118–120 E) on 9 March 2020 was considered to perform

geometric correction according to the latitude and longitude

information of the pixel points to obtain different partial low

light images at latitude and longitude, as shown in Figure 6. Here,

the number of pixels in the resampled partial image is changed

compared to the original image; thus, the spatial resolution of the

partial image differs. The spatial resolution of the image changes

the spatial wavelength (expressed as the number of pixels) that

causes the internal waves in the image. The approximate spatial

resolution of each partial image is calculated according to the rule

that the actual distance difference is 111 km for every 1°

TABLE 1 Calculation errors of internal wave fringe in Figure 4 relative to (A) horizontal wavelength and (B) propagation direction.

(1) Horizontal wavelength Wave (a) Wave (b) Wave (c) Wave (d)

Two-dimensional S transform 0.10 0.13 0.25 0.43

Windowed Fourier transform 0.11 0.11 0.11 0.11

Wavelet packet transform 0.12 0.12 0.12 0.23

(2) Propagation direction Wave (a) Wave (b) Wave (c) Wave (d)

Two-dimensional S transform 0.07 0.10 0.14 0.30

Windowed Fourier transform 0.05 0.05 0.05 0.05

Wavelet packet transform 0.10 0.10 0.10 0.12

FIGURE 6
DNB images of internal wave phenomena in the South China Sea region on 9 March 2020 (5.8–7.8N, 118–120E). The spatial resolution of (A) is
185 m, (B) is 370 m, (C) is 518 m and (D) is 740 m.
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difference in latitude. Figures 6A, D show that the image

resolution is 148 m, 370 m, 518 m, and 740 m, respectively.

The Canny algorithm (Canny, 1986) is used for image edge

detection in Figure 6, and the peak line of the extracted

internal wave in the image is shown in Figure 7. Here, the

tangent line is obtained from the peak line, and the vertical

distance between the two tangent lines is calculated manually

as the spatial wavelength of the internal wave. According to

the calculation, the spatial wavelengths of the internal waves

in Figure 7 are 40, 16, 12, and eight pixels, respectively.

Combined with the spatial resolution of each image, the

actual wavelength of the internal waves is calculated as

approximately 6 km. Three algorithms based on image

processing is based on the spatial wavelength of the

FIGURE 7
The peak line and spatial wavelength of the internal wave shown Figure 6 were extracted. The spatial wavelengths are (A) 40 pixels, (B) 16 pixels,
(C) 12 pixels, and (D) eight pixels.

TABLE 2 Calculation errors of (a) horizontal wavelength and (b) propagation direction for the internal wave case shown in Figure 7.

(1) Horizontal wavelength Wave (a) Wave (b) Wave (c) Wave (d)

Two-dimensional S transform 0.24 021 0.14 0.04

Windowed Fourier transform 0.23 0.18 0.03 0.24

Wavelet packet transform 0.37 0.26 0.25 0.38

(2) Propagation direction Wave (a) Wave (b) Wave (c) Wave (d)

Two-dimensional S transform 0.13 0.07 0.15 0.03

Windowed Fourier transform 0.23 0.17 0.07 0.02

Wavelet packet transform 0.13 0.12 0.34 0.37
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internal wave, and different spatial wavelengths may change

the performance of the algorithm.

The four internal wave examples with different spatial

resolutions in Figure 6 are calculated by the three algorithms.

In Table 2, Eq 1 shows the horizontal wavelength calculation

errors, and (2) shows the propagation direction calculation

errors. As can be seen, the spatial wavelengths from waves (a)

to (d), which represent the four wavelength cases selected with

the wavelength distribution in the simulation experiment,

decrease gradually. For the horizontal wavelength, the

calculation error of the two-dimensional S transform method

decreases with wavelength decreases, and the windowed Fourier

transform and wavelet packet methods are more suitable for

calculating internal wave cases with wavelengths in the range

of 15–25 pixels, e.g., wave (b). In terms of the propagation

direction, the calculation error of the two-dimensional S

transform method is generally small, the calculation error

of the windowed Fourier transform method decreases with

wavelength decreases, and the calculation error of the wavelet

packet transform method increases with wavelength

decreases. The calculated results shown in Table 2 are in

general agreement with the simulation results, and validate

the conclusions of the image resolution analysis to a certain

extent.

Discussion and conclusion

The internal wave algorithm is an analysis and processing

technology for satellite images that converts the spatial domain of

the image into a frequency domain and uses a window function

to extract feature information. As the window function varies, the

effect of the algorithm to extract the internal wave parameters

will also be different. The motivation of this study is to investigate

whether differences between different low light images affect the

calculation results of internal wave algorithms, i.e., the two-

dimensional S transform, windowed Fourier transform, and

wavelet packet transform algorithms. Simulation experiments

were performed to analyze the effects of image quality and image

resolution on the calculation of the horizontal wavelength and

propagation direction of the internal wave, respectively, and the

relative error compared to the known true value was considered

to characterize algorithm performance. In addition, the

applicability of the two-dimensional S transform, windowed

Fourier transform, and wavelet packet transform methods

were summarized for different situations. Finally, two internal

wave events that occurred in the South China Sea region in

2020 were investigated to simulate the same internal wave

characteristic streak images observed by different satellite

sensors by adding random noise and pixel resampling to the

DNB images, and the computational results of the three

algorithms were compared to the simulation results to verify

the accuracy of the simulation experiments.

The image quality analysis demonstrated that the two-

dimensional S transform, windowed Fourier transform, and

wavelet packet transform methods exhibited relatively stable

calculation errors when the image noise was less than 0.4. For

the horizontal wavelength calculation, the two-dimensional S

transform method showed the smallest calculation error. For the

propagation direction calculation, the two-dimensional S

transform and wavelet packet transform methods exhibited

the smallest calculation errors, and the results of these

methods were similar. In practical applications, the noise ratio

value in this experiment can be obtained by evaluating the SNR of

satellite images, so as to select an appropriate algorithm. In

general, when image quality is good, it is better to select the

two-dimensional S transform algorithm. However, the noise

immunity of the two-dimensional S transform method is

poor, and the noise immunity of the windowed Fourier

transform and wavelet packet transform methods is better

than that of the two-dimensional S transform. Thus, when the

quality of the satellite image is poor, it is recommended to select

the windowed Fourier transform or wavelet packet transform

method.

The image resolution analysis demonstrated that the two-

dimensional S transform method generally exhibited the most

stable performance among the three algorithms, and the error

of this method was relatively small. Thus, when the

wavelength is small, it is recommended to use the two-

dimensional S transform method to calculate the horizontal

wavelength and propagation direction. In contrast, when the

wavelength is large, it is better to use the windowed Fourier

transform method to calculate the horizontal wavelength and

use the wavelet packet transform or two-dimensional S

transform method to calculate the propagation direction.

Note that the spatial wavelength size of the internal wave is

determined relative to the number of pixels that make up the

image and is not a specific value. In practice, the number of

image pixels in an algorithmic system must be fixed, and the

spatial wavelength threshold, which algorithm performance,

must be determined. Considering that the horizontal

wavelength of the internal wave may be hundreds of meters

to tens of kilometers, which will cause the horizontal

wavelength in the image to have a large variation range

and it is not possible to determine which algorithm is more

suitable, so the algorithmic system can perform a secondary

calculation of the internal wave events. This is because the

three algorithms have different performance but the error is

not significantly different from the agreed true value. For the

first time, choose an algorithm (such as two-dimensional S

transform) to calculate the internal wave and get the

wavelength value. It may not be the most accurate, but it is

not much different from the actual value. Then, select a more

suitable algorithm according to the interval range of this value,

and perform the second calculation to obtain a more accurate

result.
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These experiments were conducted to analyze algorithm

performance in terms of only image quality and image

resolution; thus, the influences of other factors were not

considered. However, various factors may affect the algorithm’s

relative error in the calculation of the simulated wave domain, but

these do not prevent the regular conclusions in terms of the

variation of algorithm performance with independent variables.

We hope that future studies will analyze other factors relative to the

applicability of these algorithms under different situations and

provide algorithmic analysis support for internal wave monitoring

systems. Xie et al., 2022.
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APPENDIX FIGURE A1 Simulation
experiment of image quality analysis
by self-built wave domain.

APPENDIX FIGURE A2 Simulation
experiment of image resolution
analysis by self-built wave domain.
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