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Shale oil is mainly extracted by fracturing. However, it is difficult to determine

the optimum construction parameters to obtain maximum productivity. In this

paper, a fuzzy comprehensive production evaluation model for fractured shale

oil horizontal wells based on random forest algorithm and coordinated principal

component analysis is proposed. The fracturing parameters of the target wells

are optimized by combining this model with an orthogonal experimental

design. The random forest algorithm was used to calculate the importance

of data sample factors. The main controlling factors of the production of

fractured horizontal wells in shale oil were obtained. To reduce the noise of

the sample data, principal component analysis was used to reduce the

dimensions of the main control factors. Furthermore, the random forest

algorithm was used to determine the weight of the principal components

after reducing the dimensionality. The membership function of the main

control factors after reducing dimensionality was established by combining

the fuzzy statistics and assignment methods. In addition, the membership

matrix of the effect prediction of fractured horizontal wells in shale oil was

determined. The fuzzy comprehensive evaluation method is used to score and

evaluate the effect of fractured horizontal wells. Combined with the orthogonal

experimental design method, the optimized parameter design of a fractured

horizontal well considering the comprehensive action of multiple parameters is

realized. After construction according to the optimized parameters, production

following fracturing increases significantly. This verifies the rationality of the

optimization method that is proposed in this paper.
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1 Introduction

Shale oil resources are rich, and show good exploration and

development potential (Rodriguez and Soeder, 2015). Shale oil

reservoirs have strong heterogeneity, small pore throat structure,

complex fluid phase, and oil and gas properties. The success of

exploration and development is due to the effective “liberation”

of the reservoir by multi-cluster volume fracturing of horizontal

wells (Hu et al., 2020). Meanwhile, the hydraulic fracturing effect

of shale oil mainly depends on the matching of construction

parameters and geological parameters. The fracturing

optimization design largely determines the fracturing

improvement effect. The productivity of fractured horizontal

wells for shale oil can be improved by establishing an effective

optimization method for the construction parameters of

fractured horizontal wells for shale oil (Rahmanifard and

Plaksina, 2018).

Currently, there are two main methods for fracturing

parameters optimization. First, a fracture propagation model

is established to simulate the fracture extension process in the

fracturing process. The fracture parameters are optimized by

maximizing the reconstruction volume (Guo et al., 2015).

However, the actual fracture extension is very complex, and

the simplified simulation model cannot accurately reflect the real

situation of reservoir fracture extension. Second, the reservoir

numerical simulationmethod has been used to set the cumulative

production or stimulation period as the objective function, and

the optimal objective function has been used to select the best

fracture parameters (Moradidowlatabad and Jamiolahmady,

2018). However, it is easy to form a multi-scale fracture

network with a highly complex topological structure in the

large-scale hydraulic fracturing of shale oil. In addition, the

non-Darcy seepage of shale nanopores lengthens the time

required for the numerical simulation of a shale reservoir,

which greatly reduces the efficiency of the parameter

optimization (Xiao et al., 2022). The optimization of the

construction parameters of fractured horizontal wells in shale

oil faces considerable challenges thanks to the complexity of the

shale reservoir’s characteristics and fracture system, as well as the

large number of design variables (Ma et al., 2022).

A large amount of valuable fracturing operation and

production performance data have been gathered.

Consequently, data mining and machine learning are

increasingly being used in the study of fracturing parameter

optimization. For the supervised machine-learning model with

small samples, the approximate model of objective function and

constraint function with variable variation is constructed from a

small number of sample points. For wells that need to optimize

fracturing parameters, the stimulation effect of fractured wells

under different parameter combinations is calculated by

changing the combination of fracturing parameters and using

the established approximate model to optimize the fracturing

parameters. Deng et al. (2022) proposed a new integrated

optimization algorithm that is based on the field data, aiming

at NPV, and realized the integrated optimization of continuous

and discrete fracture parameters. Based on a large number of

CFD modeling results, Wang et al. (2022a) established an

artificial neural network model to optimize construction

parameters, which can then be used to optimize the design of

the perforation and fracturing parameters. Li-Yang et al. (2022)

adopted a BP neural network and genetic algorithm to establish a

productivity prediction model and form a genetic optimization

design method for horizontal well fracturing. Zhang et al. (2021)

used the unsupervised K-means clustering algorithm based on

Euclidean distance to cluster reservoirs according to reservoir

seepage and geo-mechanical parameters, identify the

compressible area of the reservoir fracturing stage, and obtain

the fracturing area and fracture morphology through numerical

simulation of the reservoir perforation and fracturing process to

evaluate the fracturing effect. However, these studies only

proposed the optimization of some construction parameters,

which should also include horizontal stage length, number of

fracturing stages, proppant consumption, and fluid volume

(Wang and Chen, 2019). Based on this, some scholars have

further established the optimal design model by considering the

matching of construction parameters and geological parameters.

Shahkarami et al. (2018) used a publicly available data

database from more than 2000 Wells in southwest

Pennsylvania to establish a hydraulic fracturing parameter

optimization design model that is based on linear regression,

support vector machine, artificial neural network, Gaussian

process, and other machine-learning methods. Through

sensitivity analysis, Nguyen-Le and Shin (2019) determined

the framework of controlling factors to put forward a

dynamic economic index, and realized the Np value

optimization model considering the comprehensive influence

of reservoir parameters and fracturing parameters. Duplyakov

et al. (2020) used a boosting algorithm to optimize hydraulic

fracturing design based on the data of 22 oil fields, which

considered the influence of geological parameters on the

optimization of construction parameters. Tan et al. (2021)

took the statistical data of fractured wells in WY block as the

data set and established a production prediction model based on

six machine-learning algorithms, including random forest,

support vector regression, back propagation neural network,

XGBoost, LightGBM, and multiple linear regression. They

then optimized each construction parameter with the goal of

improving yield and the cost-profit ratio. Guo et al. (2022)

adopted the PCA-GRA method to determine the main control

factors of tight oil production. They established a BP neural

network model with tight oil production as output and main

control factors as input. This model could predict production and

optimize construction parameters. Taking 75 fractured

horizontal wells in Mahu area as an example, Ma et al. (2021)

adopted the random forest algorithm to determine the main

control factors of post-pressure productivity according to
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16 influencing factors in two types of reservoirs and engineering.

They established a productivity prediction model that is

optimized by a genetic algorithm with inverse propagation

algorithm and neural network, and then optimized the

fracturing design of horizontal wells based on this. Hui et al.

(2021) used Pearson correlation coefficient and feature selection

process method. They used 13 geological and construction

parameters (e.g., logging and core experiment) as input

variables, and established an optimization model with the goal

of maximizing accumulations in 12 months through the Extra

Trees algorithm. Their results showed that a 73% increase in fluid

volume and a 38% increase in proppant use could double post-

fracture production. Under boundary constraints, Duplyakov

et al. (2022) used the high-dimensional black box

approximation function to optimize fracturing design

parameters based on Ridge regression and CatBoost

algorithm. They also used particle swarm optimization,

sequential least squares programming, surrogate optimization

model and differential evolution optimization method to solve

the problem. Xiao et al. (2022) proposed a machine-learning

assisted global optimization framework that is based on radial

basis functions, K-nearest neighbors, and multi-layer

perceptrons to quickly obtain the optimal fracture parameters.

Syed et al. (2022) established Pearson correlation estimation

between each pair of input parameters and developed a

prediction model using deep learning that could integrate

basic geological information with a completion strategy. Wang

et al. (2022b) used fracturing fluid (e.g., reflux ratio and first

production) as the objective function, based on the least square

method, support vector regression algorithm, and the non-

dominant sorting genetic algorithm. They established a

fracturing parameters optimization design method using

length, horizontal well fracturing series, fracture length,

fracture fluid injection, the viscosity of fracturing fluid,

fracturing fluid volume, and amount of proppant as

optimization variables. They were then able to establish the

optimization framework of objective parameters.

This optimization design method of fracturing parameters

has achieved satisfactory results. However, the fracturing

parameter optimization method based on machine learning

still experiences the following problems. First, the reservoir

parameter values are derived from the limit value and the

average deterministic numerical, without fully considering the

reservoir parameters, due to uncertainties or under

experimental apparatus, experimental method, or

calculation error (e.g., ignoring that these parameters have

a characteristic certain fuzziness). Second, when the reservoir

parameters, fracturing parameters, and stimulation effect of

fractured wells are used to establish a mathematical

relationship through mathematical statistics, there is always

a strong correlation between these influencing factors. When

establishing the optimization model of fracturing parameters,

a large number of parameters are directly input into the

model. However, the network structure constructed is too

complex and the learning of the network model is difficult.

The deviation of optimal fracturing parameters will increase

when there is no definite mathematical relationship between

the stimulation effect and reservoir parameters, and between

the fracturing parameters and reservoir parameters. Finally,

there are too few optimal fracturing parameters to choose and

the final optimization may only be equivalent to finding the

local optimal fracturing parameters rather than the global

optimal fracturing parameters in the true sense.

To tackle the issues of optimizing the shale oil construction

parameters, random forest was used to determine the main

control factors and weights of the fracturing effect. The

dimensionality of the parameters affecting the fracturing effect

was reduced by principal component analysis. The principal

components after reducing dimensionality were used as the

input parameters of the fuzzy comprehensive evaluation

model. The fuzzy mathematical evaluation method was

introduced to establish the fracturing effect evaluation model

considering the comprehensive effects of single factor and

multiple factors, predict the stimulation effect of different

fracturing construction parameters, and to select the optimal

scheme.

2 Data sources and research methods

2.1 Study area overview

The research area is located between Cangxian Uplift, Xuhei

Uplift, and Kongdian Uplift in the hinterland of the Bohai Bay

Basin. It is a fault-depression lake basin that was developed under

the background of Paleogene regional stretching, and is divided

into five tectonic units: Nanpi slope, Kongdong slope, Kongxi

slope, Kongdian tectonic belt, and Shenusi faulting (Ren et al.,

2010). The main sedimentary strata in the lake basin are

Kongdian Formation, which are Kong3 member,

Kong2 member, and Kong1 member (from bottom to top).

Among them, Kong2 member is a lake flood deposition of

Kongdian Formation with thick mud shale and sandstone,

coarse-grained deposition of braided river delta medium fine

sandstone is developed at the edge of the lake basin, and mud

shale is mainly found in the middle of the lake basin. The second

member of the hole can be divided into four fourth-order

sequences (SQEk2
4—SQEk2

1) and 10 fifth-order sequences

(Ek2
1SQ①—Ek2

4SQ⑩) from bottom to top (Pu et al., 2015),

among which SQEk2
3—SQEk2

1 is a shale segment with high

organic matter abundance 300–500 m thick, covering an area of

1187 km2. The 21 layers which can be traced and compared in the

whole region, which were further divided. The preliminary

exploration practice shows that, first, the reservoir has strong

heterogeneity, complex physical properties, and many lithologic

types encountered in a single well. Post-pressure oil production is
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comprehensively affected by geological factors, engineering

parameters and production system, and the fracturing effect is

quite different. It is therefore necessary to further clarify the main

controlling factors that affect the fracturing effect. Second, the

production of different wells varies greatly after fracturing, which

reflects the poor matching between the construction parameters

of some wells and the reservoir, which affects the stimulation

effect. Consequently, research on the optimization of

construction parameters matching the geological

characteristics of single well is urgently required.

2.2 Data source and analysis

In total, 24 fractured horizontal wells of shale oil in area W

were taken as samples to fully collect on-site geological,

engineering, and production parameters, as well as production

data. The collected data results are shown in Table 1. Well

W24 was selected as the test well to verify the rationality of

the proposed method and to optimize the construction

parameters. The remaining fractured wells were used as

training wells to obtain the main control factors of the

production of shale oil fractured horizontal wells. The

function model of fuzzy comprehensive score and production

was fitted.

2.2.1 Main control factors and weight
determination method selection

The characteristics of tight shale oil reservoirs and low-

pressure coefficient in W area determine whether industrial

production can only be obtained through large-scale

reconstruction, and whether the oil production is affected by

geological and engineering factors. To establish an optimization

method for the construction parameters of fractured horizontal

wells, the construction parameters can quickly and efficiently be

optimized by identifying the main controlling factors and

assigning reasonable weights.

In this paper, the random forest algorithm is chosen to

select representative main control factors. Compared with

traditional prediction models, random forest has the

following advantages. First, it has strong adaptability to

data sets, does not need the data to meet the preset

assumptions or specific functional forms, is insensitive to

multivariate collinearity, and is robust to missing data and

unbalanced data. Second, the modeling is simple and efficient,

and the generalization ability is strong, which can quickly

capture the inflection point by using the advantages of multi-

path parallel decision tree. With the increase of the number of

regression trees, the error of random forest model can be

reduced on the whole. Compared with a support vector

machine or an artificial neural network, it has fewer

calibration parameters, and only needs to specify the

number of regression trees and the number of features

sampled from each bifurcation node, consequently the

training process is simpler and faster. Third, it can deal

with high-dimensional data sets and random forest can

avoid the common problems of machine learning (e.g.,

over-fitting and under-fitting). Finally, random forest can

get the weight of each variable and avoid the interference

of subjective factors when the weight is artificially assigned.

Therefore, this paper intends to use random forest to analyze

the main control factors and determine the weight.

2.2.2 Principle of the random forest algorithm
The random forest algorithm is another combination

prediction algorithm that was proposed by Breiman after the

Bagging algorithm (Breiman, 2001). Based on decision trees, it

builds multiple decision trees through random repeated sampling

technology (Boostrap technology; Freeman, 1998) and random

node splitting technology, and finally combines the prediction

results of a large number of decision trees and outputs them as a

whole. Ensemble learning through multiple decision trees can

effectively overcome the problems of over-fitting and low

classification accuracy of a single decision tree, and can

effectively reduce the generalization error of the learning

system (He et al., 2020). The steps that are used by the

random forest method to determine the weight are described

in the following subsections.

TABLE 2 Screening results of the main control factors.

Serial number Property Importance Serial number Property Importance

1 Brittleness index 0.3563 9 OSI 0.0245

2 Water and sand ratio/% 0.1355 10 Natural gamma ray 0.0191

3 Proportion of quartz sand 0.0887 11 Length of horizontal section/m 0.0189

4 S1 0.0745 12 Sliding water ratio 0.0183

5 shut in well time/d 0.0489 13 Mean cluster spacing/m 0.0158

6 Fluid volume per meter/m3/m 0.0476 14 TOC/% 0.0155

7 Angle between wellbore and Principal stress direction/° 0.0380 15 Average displacement/m3/min 0.0152

8 Total length of fracturing section/m 0.0361 16 Poisson’s ratio 0.0120
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2.2.2.1 Screening the main control factors

The data that are randomly sampled and not drawn during

random forest modeling are called out-of-pocket data sets, which

are not involved in the fitting of the training set model and can be

used to test the generalization ability of the model (Lei et al.,

2020). When ranking the importance of the model, the

corresponding out-of-pocket data is used to calculate its out-

of-pocket error r1. The order of a feature in the out-of-pocket

data is then randomly transformed and the out-of-pocket error r2
is calculated again. Assuming that the random forest has N trees,

the importance of a feature I is:

I � 1
N

∑N
I�1
(r1 − r2), (1)

where I is the importance of a feature, and is dimensionless; N is

the number of trees in the random forest, and is dimensionless; r1
is the out-of-pocket error, and is dimensionless; and r2 is the out-

of-pocket error of a feature sequence after random

transformation, and is dimensionless.

The importance of each characteristic parameter of

23 trained fractured horizontal wells can be obtained using

the random forest algorithm, among which the most

important is the main control factor of the production of

fractured horizontal wells in shale oil. The screened results

according to the above principles are shown in Table 2. As

can be seen from Table 2, the rock brittleness index and the sand-

liquid ratio in the main control factors of the production of

fractured horizontal wells in shale oil in this block are

significantly more important than other main control factors

in geological parameters, which indicates that these main control

factors contribute greatly to the production of fractured

horizontal wells in shale oil.

2.2.2.2 Weight determination

With regard to random forests, impurity has been adopted as

the best division of the measurement classification tree and the

impurity calculation has been made with the Gini index method,

which is one of the most widely used segmentation rules.

Assuming that the set T contains records of k categories, then

the Gini index is:

Gini(T) � 1 −∑k
j�1
p2
j , (2)

where Gini(T) is the Gini index of set T, and is dimensionless;

k is the number of categories, and is dimensionless; and pj
denotes the frequency of T occurrence of category j, and is

dimensionless.

The maximum useful information can be obtained when the

Gini(T) minimum is 0 (i.e., all of the records on this node belong

to the same category). Gini(T) is maximum when all of the

records in this node are uniformly distributed with respect to the

category field, which indicates that the minimum useful

information is obtained. If the set T is divided into s parts Ti

(i = 1,2...,s). To calculate the Gini coefficient, the reduction in the

Gini coefficient of the variable xi used to split at each split node is

calculated. Then, the Gini index for this segmentation is:

Ginisplit(T) � ∑s
i�1
Gini(Ti)Ni/(N), (3)

where Ginisplit(T) is the segmented Gini index, and is

dimensionless.

For the classification regression tree, if the node T does not

satisfy that the samples in T belong to the same category or

there is only one sample left in T, then this node is a non-leaf

node. The original segmentation Gini index of the ith

classification regression tree is Ginisplit (xi), and the Gini

index after randomly replacing the variable attribute value j

of the separation point is Ginisplit (xij). Therefore, the

importance of attribute j in the corresponding single

classification regression tree can be expressed as Ginisplit
(xi)-Ginisplit(xij). The importance �Δ j of variable j is

calculated by the average Gini index of trees in the forest;

that is, the average Gini index reduction value is:

�Δ j � ⎛⎝∑B
i�1
(Ginisplit(xi) − Ginisplit(xij)⎞⎠/B, (4)

where �Δ j is the importance of variable j, and is dimensionless;

and Ginisplit (xi) is the original segmented Gini index of the ith

classification regression tree, and is dimensionless. Ginisplit (xij) is

the Gini index after randomly replacing the variable attribute

value j of the separation point, and is dimensionless. B is the

number of trees in the random forest, and is dimensionless.

The weight of indicator variables is:

FIGURE 1
Variance explained by principal components.
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wj �
�Δ j

∑n
j�1

�Δ j

, (5)

where wj is the weight coefficient of the jth index variable, and is

dimensionless; and n is the number of indicator attributes, and is

dimensionless.

Because the dimensionality of the main control factors needs

to be reduced before the weight is determined, the weight results

of each principal component are shown in Section 3.1 (Model

Establishment).

2.3 Optimization of fracturing parameters

2.3.1 Reducing dimensionality with principal
component analysis

The random forest algorithm requires high levels of time and

cost, and is only suitable for small data sets (Chen and Min,

2022). Taking the main control factors of the production of a

large number of shale oil fractured horizontal wells as input

parameters of the model will increase the difficulty and

complexity of the analysis problem, and reduce the

optimization efficiency. The problem can be simplified based

on the principal component analysis of the dimensionality

reduction, integrating multiple correlation factors for the

linear unrelated principal component, using the correlation

between the main control factors with a dimension reduction

after less principal components instead of many factors, and

using the principal component as much as possible to leave the

factors reflected in information. The calculation steps are as

follows:

1) Data collection, withm evaluation fracturing wells and emain

control factor indicators, a sample matrix a with size of m×e

can be formed:

a � ⎛⎜⎜⎜⎜⎜⎜⎝ a11 . . . a1e
..
.

1 ..
.

am1 / ame

⎞⎟⎟⎟⎟⎟⎟⎠ � [ a1 / ae ], (6)

where a is the sample matrix; aij is the main control factor; and aj
is the vector of main control factors.

2) When the index dimensions are inconsistent, the mean and

standard deviation are calculated to obtain standardized

data (Li et al., 2020), and the correlation coefficient matrix

R is established. The original sample matrix is

normalized to:

A � ⎛⎜⎜⎜⎜⎜⎜⎝ A11 . . . A1e

..

.
1 ..

.

Am1 / Ame

⎞⎟⎟⎟⎟⎟⎟⎠ � [A1 / Ae ], (7)

TABLE 3 Characteristics of the principal components corresponding to the main control factors.

Factor Principal
component
1 feature

Principal
component
2 feature

Principal
component
3 feature

Principal
component
4 feature

Principal
component
5 feature

Principal
component
6 feature

Natural gamma ray −0.6294 −0.0382 −0.2730 −0.2370 0.2411 −0.0358

TOC/% −0.3358 −0.2247 −0.0680 0.1522 −0.3050 0.5284

S1 0.0635 −0.4047 −0.0761 −0.1452 −0.2608 0.0660

OSI 0.1721 −0.3788 −0.0489 −0.2933 −0.0891 −0.2678

Brittleness index 0.2358 −0.2054 0.2843 −0.1062 0.2192 0.4102

Length of horizontal
section/m

0.0753 −0.1526 −0.5061 0.0511 −0.1259 −0.0314

Total length of fracturing
section/m

0.2732 −0.0693 −0.4955 −0.0212 −0.1918 −0.0333

Angle between wellbore and
principal stress direction/°

0.2374 −0.4080 0.0840 0.0838 −0.0378 0.1706

Mean cluster spacing/m 0.1084 −0.0592 −0.3744 0.2753 0.3352 0.2641

Fluid volume per meter/
m3/m

−0.0065 −0.2092 0.3009 0.3817 0.0452 −0.0208

Proportion of quartz sand 0.1335 −0.0740 0.1907 −0.5495 −0.0503 −0.0871

Water and sand ratio/% −0.0175 0.3036 −0.0537 −0.2002 −0.4582 0.0982

Shut in well time/d −0.0913 0.0630 0.0060 −0.3884 −0.0054 0.5320

Average displacement/
m3/min

−0.4576 −0.3059 0.1961 0.0761 −0.1979 −0.1695

Poisson’s ratio 0.1283 0.3828 0.0634 0.0135 −0.0783 0.2112

Slick water ratio −0.0328 −0.1226 −0.1030 −0.2680 0.5464 0.0151
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where A is the sample matrix after standardization; Aij is the

main control factor after standardization; and Aj is the

normalized vector of master factors.

Thus, the corresponding correlation coefficient matrix of the

sample matrix can be obtained:

R � (rij)e×e � ⎛⎜⎜⎜⎜⎜⎜⎝ r11 . . . r1e
..
.

1 ..
.

re1 / ree

⎞⎟⎟⎟⎟⎟⎟⎠, (8)

where R is the correlation coefficient matrix; and rij is the

correlation coefficient, where:

rij � 1
m − 1

∑m
q�1

(Aqi − �Ai)(Aqj − �Aj) � 1
m − 1

∑m
q�1

AqiAqj, (9)

�Ai � 1
m
∑m
i�1
Aij. (10)

The correlation coefficient matrix shows the correlation degree

among e indexes.

3) Calculate the eigenvalues and eigenvectors of R.

Eigenvalues: λ1 ≥ λ2 ≥/≥ λm ≥ 0 (R is a positive semidefinite

matrix, tr(R) � ∑m
i�1λi � m)

Feature vector:

c1 � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
c11
..
.

ce1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, c2 � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
c12
..
.

ce2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, . . . , ce � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
c1e
..
.

cee

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (11)

4) Calculate the variance contribution rate bi and cumulative

contribution rate b(o) of each eigenvector of corresponding

eigenvalue:

bi � λi

∑m
o�1
λo

, i � 1, 2,/, m, (12)

b(o) �
∑i
o�1
λo

∑m
o�1
λo

, i � 1, 2,/, m, (13)

where bi is the variance contribution rate of each eigenvector of

the eigenvalue, and is dimensionless; and b(o) is the cumulative

contribution rate of each eigenvector of the eigenvalue, and is

dimensionless.

5) Calculate the number of principal components and

calculate the expression of each principal component. In

general, the number of eigenvectors corresponding to

eigenvalues whose value is greater than or equal to

1 and cumulative contribution rate exceeds 85% is taken

as the number of principal components. The score of each

principal component is calculated according to the linear

expression composed of its corresponding feature vector

and each index. The ith principal component Fi is

calculated as follows:

Fi � c1iA1 +/ + ceiAe, i � 1, 2,/, n, (14)

where Fi is the ith principal component, and is dimensionless.

The data of 16 main control factors selected from the

collected data of 23 fractured horizontal wells were used as

input, and the output was used as the objective function to

reduce the dimension of principal components. The variance

contribution rate of principal components is shown in Figure 1.

The analysis found that the information of the first six principal

components accounted for 87% in total, so the first six principal

components were selected to replace the original 16 feature

parameters.

The characteristics of principal components corresponding to

the factors of the six principal components are shown in Table 3.

According to the data in Table 3, the main control factor data

selected from different fractured horizontal wells are substituted into

Eqs 7, 14 to obtain the principal component values of different

fractured wells. The results are shown in Supplementary Table S1.

The normalized principal componentmatrix is obtained as shown in

Supplementary Table S2.

2.3.2 Fuzzy comprehensive evaluation
mathematical model

The post-fracturing effect of shale horizontal wells

involves geological and engineering parameters, which are

specifically related to petrophysical properties, oil content,

mineral composition, fracturing operation parameters, and

many other contents. However, each project usually includes

multiple parameters, so the optimization of fracturing

parameters based on conventional methods is a huge

challenge. In addition, ambiguity exists in the optimization

of construction parameters for fractured horizontal wells.

There are uncertainties in the boundaries of single factors in

various types of fractured wells, such as the fuzzy boundaries

of porosity, oil content, displacement, sand amount, and so

on. There are many factors affecting the production of

fractured horizontal wells with different advantages and

disadvantages, and each parameter has “I,” “II,” “III,” or

“IV” ratings. It is difficult to evaluate multiple parameters

that are interwoven together. It can also be seen that there are

some defects in using classical mathematical methods to deal

with deterministic problems to deal with fuzzy reservoir

quality evaluation data. Fuzzy mathematics is an effective

tool to deal with the problem of uncertainty fuzziness. It uses

the concept of membership function to describe the problem

where the boundary of objective things is not clear. The steps

of fuzzy comprehensive evaluation are described in the

following subsections.
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2.3.2.1 Establish the evaluation factor set

The factor is the evaluation index that is involved in the

production of fractured wells. In the production evaluation of

fractured wells, the factor set is a fuzzy subset composed of n

principal components involved in the evaluation well, which is

denoted as F=(F1F2, . . . . .., Fn).

2.3.2.2 Establish the evaluation set

Evaluation set v = (v1,v2, . . . ,vn),v is a fully ordered set

(i.e., the rank difference between any two comments in v). Note
that v is the set of evaluation criteria corresponding to the

evaluation factor in F. In the production evaluation of

fractured wells, v is the set of production levels (levels I, II,

III, and IV) corresponding to each evaluation factor. In this

paper, v = [100,75,50,25].

2.3.3.3 Fuzzy weight vector of evaluation factors

Usually, the importance of each factor to the evaluation result

is different, so it is necessary to assign a corresponding weight wi

(i = 1,2,3,......,n) to each factor Fi, thus forming the weight setW.

The determination of the weight of the accurate quantization

index will directly affect the quantization result. Here, random

forest is introduced to seek the primary and secondary

relationship of each factor in the system and find out the

important factors affecting each evaluation index. The weight

wi of different principal component factors can be obtained by

substituting the principal component factor data of different

fractured wells into Eqs 2–5.

W � (w1, w2,/, wn). (15)

2.3.3.4 Determine the single factor evaluation matrix

2.3.3.4.1 Determine the membership function.

Membership functions are generalizations of indicator

functions in general sets. A function can indicate whether

elements in a set belong to a particular subset. An element’s

indicator function may have a value of 0 or 1, while an element’s

membership function may have a value between 0 and 1, which

indicates the “degree of truth” that the element belongs to a fuzzy

set. Membership function is the foundation of fuzzy mathematics

engineering applications. There are generally four methods to

determine the membership function: fuzzy statistical method,

assignment method, borrowing the existing “objective” scale

method, and binary contrast ranking method (Xie and Liu,

2013). In view of the objectivity of membership

determination, this paper relies on the correlation between the

normalized principal component factors and production in

Table 2 in the Appendix, according to the corresponding

reservoir quality grades (I, II, III, and IV) of each evaluation

factor. The fuzzy statistics method and assignment method are

integrated to determine the membership function and three

forms of membership function are selected, which are large,

small, and intermediate. According to the normalization range of

different principal component data, the results of different forms

of membership functions of different reservoir quality grades are

shown in Table 4.

2.3.3.4.2 Membership matrix of fractured wells. We can get

different membership function form of the principal component

factors through the existing m fracturing wells of geological and

engineering parameters dimension reduction after principal

component factors and yield of fitting relationship. The

membership is divided into class I, II, III, and IV level grades,

and into slants big, partial, small, and middle-type membership

function expression, respectively. The n principal component

factors ofm fractured wells were substituted into themembership

function expression of four grades to obtainm n ×4 membership

matrix Hi.

Hi �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
h11 h12 / h14
h21 h22 / h24
..
.

/ / ..
.

hn1 hn2 / hn4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (16)

whereHi is the membership matrix; hij is the membership degree

of different principal components, and is dimensionless.

2.3.2.5 Fuzzy comprehensive evaluation

Di � (d1, d2,/, d4) � W+Hi

� (w1, w2,/, wn)+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
h11 h12 / h14
h21 h22 / h24
..
.

/ / ..
.

hn1 hn2 / hn4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (17)

where Di is the fuzzy set of comprehensive evaluation of the ith

fractured well; and dj is the fuzzy comprehensive evaluation value

of different principal components of fractured wells.

fi � ∑m
j�1
(dj × vj)/∑m

j�1
dj, (18)

where fi is the fuzzy comprehensive score of the ith fractured well.

2.3.3 Optimizing construction parameters
2.3.3.1 Orthogonal experimental design

Orthogonal experiment design, and its analysis of the

variance method and intuitive analysis are based on

probability theory, mathematical statistics, linear algebra

theory of scientific arrangement of the test scheme, and the

correct analysis of the test results. Meanwhile, the qualitative

index quantitatively determines the parameters of the influence

of trend, primary and secondary order, and significant degree to

obtain a mathematical optimization method as quickly as

possible. By introducing the method of orthogonal

experimental design and using the “orthogonal table” to
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arrange the multi-factor experimental schemes, the intrinsic

essential laws contained in a large number of schemes are

reflected by a limited number of typical and representative

schemes, and the influence trend, primary and secondary

order, and the significance degree of parameters on

cumulative yield can be quantitatively determined (Zeng et al.,

2012). In addition, an orthogonal test can eliminate part of the

interference caused by test errors and the results are easy to

analyze (Dai et al., 2022).

The target block of the shale oil fracturing engineering

parameters of horizontal wells can be optimized and compared

through random forest algorithm optimization of fluid, quartz sand

proportion, shut in well time/d, sand amount permeter and slippery

water ratio, average cluster spacing, the average displacement. These

seven factors can influence the production of cumulative gain

according to the factors to select the four levels (Table 5). We

use a four-level experimental design, and therefore the Lα(4
β)

orthogonal table should be selected. There are seven factors in

the experiment. If the interaction between the factors is not

considered, then the orthogonal table with β≥7 should be

selected. L216(4
7) is the minimum Lα(4

β) orthogonal table

meeting the condition of β≥7. The orthogonal table was used to

conduct the 12-month cumulative production experiment, and the

influence of various factors on the cumulative production was

investigated, from which the optimal parameter scheme of

horizontal well was obtained.

Through the orthogonal design, 216 simulation schemes can

be used to complete 47=16384 simulation schemes. This greatly

TABLE 4 Membership function table.

Category Normalized value Membership function

Partial large 1–0.75

G1 �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 0.875≤x

x − 0.625
0.25

0.625≤x≤ 0.875

0 x≤ 0.625

G2 �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0.875≤x

0.875 − x

0.25
0.625≤x≤ 0.875

x − 0.375
0.25

0.375≤x≤ 0.625

0 x< 0.375

G3 �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0.625≤x

0.625 − x

0.25
0.375≤x≤ 0.625

x − 0.125
0.25

0.125≤x≤ 0.375

0 x< 0.125

G4 �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 0.375≤x

x − 0.625
0.25

0.125≤ x≤ 0.375

1 x≤ 0.125

0.75–0.5

0.5–0.25

0.25–0

Partial small 0–0.25

G1 �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 0.375≤x

x − 0.625
0.25

0.125≤x≤ 0.375

1 x≤ 0.125

G2 �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0.625≤x

0.625 − x

0.25
0.375≤x≤ 0.625

x − 0.125
0.25

0.125≤x≤ 0.375

0 x< 0.125

G3 �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0.875≤x

0.875 − x

0.25
0.625≤x≤ 0.875

x − 0.375
0.25

0.375≤x≤ 0.625

0 x≤ 0.375

G4 �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 0.875≤x

x − 0.625
0.25

0.625≤ x≤ 0.875

0 x≤ 0.625

0.25–0.5

0.5–0.75

0.75–1

Middle type 0.375–0.625

G1 �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 0≤x≤ 0.0625
e−[(x−0.0625)/s]

2

0.0625≤ x≤ 0.1875
e−[(x−0.9375)/s]

2

0.8125≤ x≤ 0.9375
1 0.9375≤ x≤ 1

0 other

G2 �
⎧⎪⎪⎨⎪⎪⎩

e−[(x−0.1875)/s]
20≤ x≤ 0.1875

e−[(x−0.8125)/s]
20.8125≤x< 1

0 other

G3 �
⎧⎪⎪⎨⎪⎪⎩

e−[(x−0.3125)/s]
20.0625≤ x< 0.3125

e−[(x−0.6875)/s]
20.6875≤ x< 0.9375

0 other

G4 �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

e−[(x−0.4375)/s]
2

0.3125≤ x< 0.4375
1 0.4375≤x< 0.5625

e−[(x−0.5625)/s]
2

0.5625≤ x< 0.6875
0 other

0.25–0.375

0.625–0.75

0.125–0.25

0.75–0.875

0–0.125

0.875–1

Where G is the membership function; x is the normalized principal component value; and s is the peak value of normal distribution of normalized principal components.
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reduces the simulation workload and is conducive to improving

the efficiency.

2.3.3.2 Procedure for selecting the construction

parameters

1) The random forest method was used to screen out the main

controlling factors that affect the production of m training

fracturing wells.

2) Principal component analysis was used to reduce the

dimensions of the selected main control factors into n

principal components to obtain a principal component

matrix with m rows and n columns.

3) Based on the relationship between the principal component

data of different columns in the principal component matrix

and the yield, the membership function is divided into four

parts. The analytical formula of different intervals is obtained

for each part according to the form of membership function.

4) The membership matrix of m n rows and four columns of

fractured wells can be calculated by substituting the data of

each column in the principal component matrix of m rows

and n columns into the membership function in Step 3.

5) Based on the relationship between the principal component data

of different columns in the principal component matrix and the

production, the weight values of the main control factors of shale

oil fractured horizontal wells can be obtained using random forest.

6) The fuzzy comprehensive scores of different fractured

horizontal wells can be obtained using Eqs 17, 18.

7) The function model of main control factors and production was

obtained by fitting the relationship between the fuzzy

comprehensive score of different fractured horizontal wells

and production.

8) A fracturing construction parameter scheme for U test

fractured horizontal wells based on the principle of

positive price experiment was designed according to the

range of fracturing construction parameters.

9) The schemes in Step 8 are evaluated and compared using the

fuzzy comprehensive evaluation model. The scheme with the

highest score is the optimized construction parameter. The

predicted production of the optimized test fractured

horizontal well can be obtained by substituting the score

into the function model in Step 7.

3 Results and analysis

3.1 Model establishment

3.1.1 Weight determination
Based on the data in Supplementary Table S1, the principal

components of different fractured horizontal wells were applied

to determine the weights by the random forest algorithm. The

results are shown in Figure 2, which shows that the weight of

principal components reaches 0.63.

3.1.2 Fuzzy comprehensive evaluation
The principal component data of different fractured wells in

Supplementary Table S2 were substituted into the membership

function and the fuzzy set results of comprehensive evaluation of

different fractured horizontal wells were obtained using Eqs 16,

17, as shown in Supplementary Table S3. The fuzzy

comprehensive scores of different fractured horizontal wells

can be obtained by substituting the fuzzy set data of

comprehensive evaluation of different fractured horizontal

wells in Supplementary Table S3 into Eq. 18. Figure 3 shows

the fitting result of the score and 12-month kilometer cumulative

production obtained by fitting the score to the 12-month

kilometer cumulative production. Figure 4 is the fitting result

of the score obtained without dimension reduction and the 12-

month kilometer cumulative production. It can be obtained by

comparison that the model accuracy is higher and the fitting

effect is better after dimension reduction. Therefore, the

rationality of the proposed method is fully illustrated.

3.2 Model verification

After reducing the dimensionality of the main control factor

data of well W24 by principal components, the data were

substituted into Eqs 15–17 to obtain the fuzzy comprehensive

score and fitted to obtain the predicted production. A

comparison between the actual production and the predicted

production results is shown in Table 6. It can be found from this

that the relative error of the prediction results is 4.8%, which

verifies the rationality of the model in this paper.

TABLE 5 Factor level table of horizontal well fracturing parameter optimization experiment.

Parameters
of the
horizontal

Fluid
volume per
meter/m3/m

Water
and sand
ratio/%

Slick water
ratio

Proportion
of quartz
sand

Mean cluster
spacing/m

Average
displacement/
m3/min

Shut in
well time/d

1 20.57 3.30 0.43 0.31 5.21 8.63 8

2 25.92 5.33 0.53 0.43 8.02 9.88 13.25

3 31.27 7.36 0.63 0.55 10.83 11.13 18.50

4 41.96 11.42 0.82 0.79 16.45 13.63 29
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3.3 Field application

The data of the L216 (4
7) orthogonal test design scheme can

be substituted into the established fuzzy comprehensive

evaluation model to predict the output under different

construction parameter combinations, as shown in Table 7,

which lists the yield prediction results after optimizing

parameter combination under 216 simulation schemes. It

can be seen that under different construction parameter

combinations, the predicted 12-month cumulative

production of km varies significantly from 2588.81 t/km to

10742.54 t/km. This shows that the optimization of

construction parameters matching with the reservoir can

significantly increase production. The optimal No.

147 scheme is selected for construction and the cumulative

output of 12 months km is 10144.7 T. The cumulative yield

over the 12 months prior to parameter optimization (Table 1)

was significantly improved.

Finally, we compare typical wells (The results are shown in

Table 8): wells w24 (before optimization) and w25 (after

FIGURE 2
Principal component weight values.

FIGURE 4
Fitting results without reducing dimensionality.FIGURE 3

Fitting results after reducing dimensionality.
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optimization) are two adjacent horizontal wells of similar length

on the same platform. The production of well w25 was 2.34 times

that of well w24 after the implementation of optimized

parameters, and the stimulation effect was obvious (Figure 5).

A comparison of the construction scale of the two wells shows

that the fluid volume, the proportion of slick water, the

TABLE 6 Comparison between the actual yield and the model’s prediction results.

Well no. Total score Cumulative oil production
in 12 months km (t/km)

Relative error (%)

Actual production Predicted production

W24 60.72 4339.58 4549.12 4.8

TABLE 8 Comparison table of the optimization parameters and construction effect.

Plan Fluid
volume
per meter/
m3/m

Water
and sand
ratio/%

Slick
water
ratio

Proportion
of quartz
sand

Mean
cluster
spacing/
m

Average
displacement/
m3/min

Shut
in well
time/d

12-month
cumulative
production
in km
(t/km)

w24 31.7 9.1 0.45 0.51 7.71 12.7 15 4339.58

W25 42 3.3 0.8 0.8 8 8.6 8 10144.7

TABLE 7 Design scheme of the orthogonal experiment.

Scheme Fluid
volume
per meter/
m3/m

Water
and sand
ratio/%

Slick
water
ratio

Proportion
of quartz
sand

Mean
cluster
spacing/
m

Average
displacement/
m3/min

Shut
in well
time/d

Forecast
12-month
cumulative
production
in km
(t/km)

1 42 3.3 0.5 0.4 5.2 13.6 13 6094.97

2 25.9 3.3 0.6 0.8 10.8 8.6 13 7351.56

3 42 11.4 0.6 0.4 16.5 9.9 13 3,717.09

4 25.9 11.4 0.6 0.3 5.2 9.9 29 2192.47

5 25.9 3.3 0.5 0.6 8 9.9 29 6384.71

6 42 5.3 0.6 0.6 16.5 8.6 29 7537.50

7 20.6 11.4 0.6 0.6 10.8 9.9 13 2588.81

8 25.9 11.4 0.5 0.4 10.8 13.6 29 3,296.80

. . . . . . . . . . . . . . . . . . . . . . . . . . .

144 31.3 11.4 0.8 0.3 10.8 11.1 8 3,565.52

145 25.9 5.3 0.4 0.4 5.2 11.1 29 4364.63

146 20.6 7.4 0.5 0.6 8 11.1 13 4066.95

147 42 3.3 0.8 0.8 8 8.6 8 10742.54

148 20.6 7.4 0.6 0.6 5.2 13.6 29 5,703.61

149 31.3 11.4 0.5 0.8 5.2 11.1 13 3,830.10

. . . . . . . . . . . . . . . . . . . . . . . . . . .

213 31.3 11.4 0.5 0.4 16.5 13.6 19 3,882.65

214 31.3 5.3 0.6 0.8 10.8 13.6 8 6689.87

215 20.6 3.3 0.6 0.3 5.2 8.6 8 4193.63

216 31.3 5.3 0.6 0.6 8 11.1 13 7072.04
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proportion of quartz sand, and the cluster spacing of well w25 are

increased, while the cluster spacing and the average displacement

are decreased. This shows that the production can be significantly

increased by optimizing the construction parameters.

4 Conclusion

1) Using the random forest method, the main controlling

factors of the production of fractured horizontal wells in

block W are, successively, the brittleness index (mineral),

sand-liquid ratio, quartz sand proportion, S1, soaking

length, meter liquid volume, angle between wellbore and

principal stress direction, total length of fracturing stage,

OSI, natural gamma ray, and so on. Among them, the

brittleness index (mineral) has a far greater impact on the

yield than other main controlling factors, with an

importance of 0.36.

2) After reducing the dimensionality of the 16 original input

variables through principal components, the first six principal

components extracted contain most of the information of the

original variables and these principal components are linearly

independent. Selecting the first six principal components as

input parameters of the model can reduce noise and error.

The R2 value of the model after reducing dimensionality is

0.9 and that of the model without reducing dimensionality is

only 0.84.

3) The fuzzy comprehensive evaluation yield model based on

principal component analysis and random forest algorithm

that we established in this paper shows that the average

relative error of the test well is 4.8%, which verifies the

rationality of the model in this paper.

4) Compared with adjacent wells, the fluid volume, slippage

water proportion, quartz sand proportion, and cluster spacing

of the fractured horizontal well in W25 all increased after

optimized parameters, while the cluster spacing and average

displacement decreased. W25 well was 2.34 times more

productive than the offset well. This shows that the

production can be significantly increased by optimizing the

construction parameters.
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