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Paleohydrological investigations were carried out in the Yellow River source area

on the northeast (NE) Tibetan Plateau. During our fieldwork investigations, two

units of overbank flood deposits (OFD) were found in the Maqu-Kesheng reach.

These OFD units were studied using a multi-index approach, including magnetic

susceptibility, hygroscopic water, grain size distribution and micro-morphological

features. It can be inferred that they have recorded two episodes of overbank

flooding of the YellowRiver. Using the optically stimulated luminescence (OSL) and

AMS 14C dating techniques, the first episode was dated to 34,680 ± 1880-29000 ±

1790 a and correlated with the late Marine Isotope Stage 3a (MIS 3a) with a warm

andwet climate. The second episode occurred at 16,500± 1,250-14000± 1,280 a,

which is coincidedwith the Bølling-Allerødwarm stage during the last deglaciation,

a period of coexisting global warming and rapidly shrinking ice sheets. At these two

periods, the water was mainly derived from the accelerated melting of mountain

glaciers surrounding the basin and/or the large-scale precipitation, which led to the

overbank flooding events. At the same time, the related overbank flood deposits

were interbeddedwithin glacial outwash/flashflooddeposits in the valley bottomof

the Yellow River, which intensified the valley aggradation. These results are of great

significance in enriching the paleoflood records in the Yellow River source area,

recognizing the effect of river system on the development of valley landform, as

well as understanding the hydro-climatic response of the Tibetan Plateau to global

climate warming occurring presently.
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1 Introduction

Paleoflood hydrology sub-discipline of paleohydrology that

involves expertise from geomorphology, sedimentology,

hydrology, modeling, and statistics, and concerns the study of

past or ancient flood events using physical or botanical

information, irrespective of any direct human observation

(Schulte et al., 2019; Baker et al., 2022). The primary goal of

paleoflood hydrology is to extend flood records over periods of

time ranging from decades to millennia. The result is of great

significance in providing data on the magnitude and frequency of

floods and can indicate a limit to floodmagnitude over a specified

time interval (England et al., 2010; Guo et al., 2017; Munoz et al.,

2018; Liu et al., 2019; Greenbaum et al., 2020; Panda et al., 2020;

Baker et al., 2022; Benito et al., 2022; Mao et al., 2022), and

understanding environmental and disaster effects of the

interaction of hydrological processes, climate change,

geomorphic factors and human activity (Knox, 2000; Benito

et al., 2008; Huang et al., 2011; Srivastava et al., 2017; Wu

et al., 2017; Liu et al., 2019; Zhang et al., 2019; Chen et al.,

2021; Sharma et al., 2022). Consequently, since Kochel and Baker

(1982) introduced “Paleoflood hydrology” in the journal Science,

paleoflood investigates have been carried out over much of the

world.

The geographic location of the Yellow River source area,

influenced by the interplay among the Asian summer monsoon

(ASM), Plateau monsoon, and Westerlies, provides great

potential for elucidating climatic or environmental changes

from sedimentary archives (Li et al., 1995; Wang et al., 1995;

Shen et al., 1996; Zhou et al., 2010; Zhao et al., 2011; Wang et al.,

2017; Hu et al., 2018; Li et al., 2020; Jia et al., 2022). The

sensitivity of the region is shown in the temporal and spatial

variability of natural indicators, such as floods, desertification,

droughts and biodiversity, which are closely related to the global

change drivers, climate and human activity (Li et al., 2011; Peng

et al., 2014; Meng et al., 2016; Guo et al., 2022). In particular, the

extreme floods in the Yellow River source area, characterized by

high peak discharge, large area of influence, and long duration,

can result in great damage and the loss of life and property (Peng

et al., 2014). At present, scholars mainly rely on the measured

data (no more than 60 years) from hydrometeorological stations

and very limited historical documents to reveal the occurrence

regularity of floods (Wang et al., 2009; Wang et al., 2012).

However, extreme floods are events with low probabilities

(IPCC, 2007). Therefore, it is necessary to carry out

paleoflood studies and extend flood records to reveal the

temporal spatial variability of extreme floods and the

evolution tendency of the catchment system in the Yellow

River source area.

The connection of the Zoige Basin with the Yellow River and

the start of the basin excavation occurred at approximately

35,000 a BP (Li et al., 1995; Wang et al., 1995). After the

endorheic Zoige catchment was captured by the Yellow River

from the downstream basin at a much lower elevation, a rapid

valley aggradation phase occurred at ca. 35,000-14600 a BP in the

Maqu-Kesheng reach in the Yellow River source area (Wang

et al., 2021). Scholars have revealed that valley aggradation often

requires high sediment production from the catchment

(climatically or human induced) and overbank (moderate or

extreme) flows (Starkel, 2003; Benito et al., 2008; Srivastava et al.,

2008; Chaudhary et al., 2015; Chahal et al., 2019; Prizomwala

et al., 2019). It’s worth noting that our research team has indeed

found two units of late Pleistocene overbank flood deposits 2-6 m

in thickness in the sediment sequences at Chameiqu (CMQ) and

Zuhaka (ZHK) sites in the reach. And thus, the objectives of this

study are as follows: 1) to enrich identification characteristics of

these two units of overbank flood deposits; 2) to establish the

chronology of overbank flooding by using the AMS 14C and OSL

dating techniques; and 3) to explore the possible triggering

factors and climate background of overbank flooding. These

results are very useful for reasonable utilization of water

resources and mitigation of flood disasters in the Yellow River

source area, and they will enrich theoretical results of the

interaction of hydrological processes, climate change and

geomorphic factors.

2 Geographical setting

The Yellow River source area is generally defined as the

upstream catchment above the Tangnaihai (TNH) hydrological

station, situated between 95°50′45″ E-103°28′11″ E and

32°12′10″ N-35°48′7″ N on the NE Tibetan Plateau

(Figure 1). It has a main flow length of 1,553 km, a drainage

area of 121,972 km2, and an average channel gradient of ca. 1.1‰

(Li et al., 2014). The river flows southeast from the bedrock

gorges into the Zoige Basin, which is a late Cenozoic faulted basin

formed by tectonic movement (Lehmkuhl and Spönemann,

1994; Xue et al., 1998). The Zoige Basin is a relative

subsidence area surrounded by East Kunlun Fault,

Bailongjiang Fault, Awangcang Fault and so on (Figure 1B

and Figure 2A). Originally, this basin was a paleolake (Zoige

paleolake) with lacustrine sediments >300 m thick in the center

(Xue et al., 1998).

The Yellow River meets the Jiaqu, Baihe and Heihe Rivers

within the basin, and flows northwest into the Maqu-Kesheng

reach forming a huge U-shaped bend (Figure 2A). In the Maqu-

Oula reach, the well-developed huge pluvial fans from the Xiqing

Mountains forced the Yellow River to move southward to the

foot of bedrock hills of the northern Anyemaqen Mountains

(Figure 2B). However, in the Oula-Kesheng reach, the huge

pluvial fans from the Anyemaqen Mountains forced the

Yellow River to move northward to the foot of bedrock hills

of the Xiqing Mountains.

The climate in the Yellow River source area is sub-humid and

semi-arid area characterized by low temperatures, drastic seasonal
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variations in precipitation, frequent strong winds, high evaporation,

and strong solar radiation. The mean annual temperature varies

between -3.5°C and 2.4°C from southeast to northwest (1961-2014)

(Shi et al., 2018). The mean annual precipitation ranges from

753.3 mm in the southeast to ca. 322.3 mm in the northwest

(1961-2014) (Shi et al., 2018). Up to 75%-90% precipitation

occurs between June and September because of the alpine hydro-

climatic conditions with high seasonal variability. In addition, mean

annual potential evaporation is 884.4 mm in the area (2000-2014)

(Shi et al., 2018).

The Yellow River source area is often referred to as the water

tower of the Yellow River as it contributes about 35% of the total

annual runoff of the entire Yellow River (Hu et al., 2011). The

area is covered with mountain glaciers, permafrost, snow,

wetlands, lakes and grasslands, etc., forming a unique

hydrological ecosystem. This causes extraordinary floods in

the area with mixed recharge in the catchment derived from

precipitation, snow melting and glacier ablation (LiG F et al.,

2013). The hydrological data observed at the TNH gauge station

show that the mean annual runoff volume is 1.78×1010 m3, and

the mean annual sediment concentration is 0.60 kg/m3 (1991-

2011) (Li et al., 2014). The gauged maximum flood discharge

since 1955 is 5,450 m3/s, which occurred in September 1981

(Peng et al., 2014).

3 Sampling sites and methods

3.1 Sampling sites

The Maqu-Kesheng reach in the Yellow River source area, is

located in the downstream of the Zoige Basin and upstream of the

Lajia Gorges (Figures 1, 2). The river valley is ca. 4-5 km in width

developed along the East Kunlun Fault extending WNW-ESE

between the Anyemaqen Mountains and the Xiqing Mountains

(Zhou et al., 2021). Sediment sequences consist of aeolian loess-

soil deposits, glacial outwash/flashflood deposits and periglacial

slope deposits are widely distributed on the cliff river banks in the

river reach. According to a variety of sedimentological criteria

used in paleoflood hydrology (Benito et al., 2008; Huang et al.,

FIGURE 1
(A) Map showing the Maqu-Kesheng reach downstream of the Zoige Basin (red square) in the Yellow River source area on the NE Tibetan
Plateau. (B)Map showing drainage basin, major fault zones (marked with ‘‘ ’’) (He et al., 2006) and topographical features of the Yellow River source
area on the NE Tibetan Plateau.
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2011), two units of overbank flood deposits (OFD) inserted into

the large clastic sediments deposited from glacial outwash or

flashflood have been identified on the right bank adjacent to

Chameiqu (CMQ) and Zuhaka (ZHK) sites (Figure 3A,B).

These sedimentological criteria include 1) sediment

consisting of silt and medium sand with parallel beddings; 2)

abrupt vertical change in color, grain size, texture and structure;

3) stratigraphic breaks between the beds; 4) a thin clay cap on

top of a bed resulting from sorted deposition (Supplementary

Figure S1); 5) presence of clastic sediments deposited from

glacial outwash or flashflood between the units. The top of

sediment profile at the CMQ site (102°0′30.5″ E, 33°59′36.8″ N;
3,341 m a.s.l.) is about 28 m above the normal water level of the

Yellow River. The ZHK site is located ca. 13.5 km downstream

from the CMQ site (Figure 2B). The front of the sediment

profile at the ZHK site (101°53′9.9″ E, 34°1′13.6″ N; 3,437 m

a.s.l.) is ca. 29 m above the normal water level of the Yellow

River.

Pedo-stratigraphic subdivisions and sedimentological

characteristics in the sediment sequences at the CMQ and

FIGURE 2
(A)Map showing the location of the CMQ and ZHK profiles (marked with ‘‘ ’’) in the Maqu-Kesheng reach downstream of the Zoige Basin. (B)
Google Earth image showing the location and the landscape at the CMQ and ZHK profiles (marked with ‘‘ ’’).
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ZHK sites were observed and described in detail during the

fieldwork (Figure 3A,B; Tables 1, 2). After detailed observations

and establishment of pedo-stratigraphical subdivisions, 228 bulk

samples for sedimentary analysis were collected from modern

soil, paleosol, loess, OFD units and paleochannel deposits in

these two profiles. Four bulk samples for micro-morphological

feature analysis were taken from paleosol, OFD1 unit in the CMQ

profile and aeolian loess, OFD1 unit in the ZHK profile,

respectively. Sixteen luminescence samples for OSL dating and

nine organic sediment samples were collected from the ZHK and

FIGURE 3
Photo showing the overbank flood deposits within the sediment profiles at the CMQ and ZHK sites in the Yellow River source area on the NE
Tibetan Plateau.
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CMQ profiles according to the location of the lithostratigraphic

boundaries (Table 3 and Table 4).

3.2 Methods

3.2.1 Paleo-environmental proxy analysis
Magnetic susceptibility can indicate the concentration of

ferromagnetic minerals in the sediments and used for

manifesting the changing intensity of weathering and

pedogenic modification to accumulated dust in semi-humid

and semi-arid regions (Liu, 1985; Kukla and An, 1989; Liu

et al., 1993; Maher, 1998). Magnetic susceptibility was

measured on a mass of 10 g of ground sediment with a

Bartington MS-2B magnetic susceptibility meter (0.47/

4.7 kHz) under the condition of no interference from

magnetic objects.

Hygroscopic water concentration is closely related to the

distribution of sediment grain size, which can indirectly reflect

the intensity of soil weathering and pedogenisis as well as climate

change (Huang, 2001; Zhao et al., 2012). The determination of

hygroscopic water concentration is that 5 g of dried soil sample is

put in an aluminum box and baked at 105°C for more than 24 h

to constant weight, and then the percentage of hygroscopic water

content is calculated.

Grain size distribution can be used to differentiate the

paleoflood deposits from other kinds of sediments in the river

valley (Zha et al., 2015; Mao et al., 2016; Zhang et al., 2019; Chen

et al., 2021). Grain size distribution was analyzed using a

LS13320 laser analyzer with (NaPO3)6 as a dispersing agent

after pre-treatment with 30% H2O2 and 10% HCl to remove

organic matter and carbonates, respectively.

Micro-morphological features can provide the key

information that enables reconstruction of the pedo-

sedimentary processes and associated paleoclimatic controls

responsible for the formation of pedocomplexes (Kemp 1999;

Przemyslaw, 2013; Zhang et al., 2018). The micro-morphological

feature was observed under the Leica-DMRX polarizing

microscope.

3.2.2 Optically stimulated luminescence and
AMS 14C dating

Sixteen OSL samples were prepared under subdued red light

in the OSL laboratory in the Shaanxi Key Laboratory of Earth

Surface System and Environmental Carrying Capacity, Xi’an.

The outer 2-3 cm of deposits within the sample tubes were

removed and reserved for measurement of U, Th, K and Rb

concentrations. The remaining deposits within the tube were

pretreated with 30% H2O2 (to remove organic materials), 10%

HCl (to dissolve carbonates), and wet sieving to obtain the 90-

125 μm grain fractions from the paleosol, transitional loess,

aeolian loess, OFD and paleochannel deposits. And the 90-

125 mm grain fractions were etched with 40% HF for 50 min

(followed by an HCl rinse) to remove the outer (alpha-irradiated)

layer of quartz grains and to eliminate feldspars.

Optically stimulated luminescence (OSL) dating was carried

out on a Risø-TL/OSL-DA20 Dating System using the single-

aliquot regenerative-dose (SAR) protocol (Murray and Wintle,

2000). The Risø-TL/OSL-DA20 Dating System was equipped

with a new automated detection and stimulation head (DASH).

TABLE 1 Pedo-stratigraphic subdivisions and descriptions of the CMQ profile in the Yellow River source area on the NE Tibetan Plateau.

Depth
(m)

Pedo-stratigraphic
subdivisions

Pedo-sedimentary descriptions

0.7–0 Modern soil Grayish brown (7.5YR6/2), dark brown (7.5YR3/1) when wet, silt, crumb-clumpy structure, loose and porous,
abundant plant roots

1.4–0.7 Paleosol Brownish grey (7.5YR6/1), silt, crumb-clumpy structure, some pores with abundant calcareous pseudomycelium,
vertical cracks, well-developed

2.1–1.4 Transitional loess Dull yellowish orange (10YR7/4), fine sandy silt, uniform blocky structure, loose and many small pores with
massive calcareous pseudomycelium, weak weathering and pedogenesis

2.6–2.1 Aeolian loess Dull yellowish orange (10YR7/4), fine sandy silt, uniform blocky structure, loose and many small pores

7–2.6 Glacial outwash/flashflood deposits Greyish variegated colour, variegated sand and gravel (1-10 cm), poorly rounded and poorly sorted, glacial
outwash/flashflood deposits from the main peak of the Xiqing Mountains

9.7–7 Overbank flood deposits (OFD2) Pale yellowish orange (10YR8/3), fine sandy silt/fine sand, well-sorted, with parallel beddings. The thickness of the
OFD2 was about 2.7 m consisting of 9 individual overbank flood deposits beds which represented at least
9 palaeoflood events in the Yellow River source area

12–9.7 Glacial outwash/flashflood deposits Greyish variegated colour, variegated sand and gravel (1-10 cm), poorly rounded and poorly sorted, glacial
outwash/flashflood deposits from the main peak of the Xiqing Mountains

18–12 Overbank flood deposits (OFD1) Pale yellowish orange (10YR8/3), fine sandy silt/fine sand, well-sorted, with parallel beddings. The thickness of the
OFD1 was about 6 m consisting of 9 individual overbank flood deposits beds which represented at least
9 palaeoflood events in the Yellow River source area

>18 Glacial outwash/flashflood deposits Greyish variegated colour, variegated sand and gravel (1-10 cm), poorly rounded and poorly sorted, glacial
outwash/flashflood deposits from the main peak of the Xiqing Mountains
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The automated DASH includes blue LEDs (470 nm, ~80 mW/

m2), green LEDs (525 nm, ~40 mW/m2) and infrared LEDs

(850 nm, ~300 mW/m2). Laboratory irradiation was carried

out using 90Sr/90Y sources mounted on the reader. The OSL

signal was detected using an ET PDM 9107Q-AP-TTL-

03 photomultiplier tube in combination with a 7.5 mm thick

Hoya U-340 glass filter and calculated by subtracting the average

of the last 4 s (background signal) from the first 0.8 s of the signal

decay curve (Figure 4). The OSL signals of the samples taken

from the paleosol, transitional loess, aeolian loess, OFD and

paleochannel deposits show rapid decay dominated by the fast

component of the signal (Murray and Wintle, 2003). A preheat

temperature of 220°C and a cut-heat of 180°C were selected for

the regeneration and test doses, respectively, in routine

equivalent dose (De) determination (Jia et al., 2022). All

sensitivity-corrected dose response curves were fitted with

saturating-exponential function to calculate De values using

the software Analyst (Duller, 2015) (Figure 4).

In order to explain the distributions of De values and analyze

the factors affecting the scatter in De, such as partial bleaching,

TABLE 2 Pedo-stratigraphic subdivisions and descriptions of the ZHK profile in the Yellow River source area on the NE Tibetan Plateau.

Depth
(m)

Pedo-stratigraphic
subdivisions

Pedo-sedimentary descriptions

0.7–0 Modern soil Grayish brown (7.5YR6/2), dark brown (7.5YR3/1) when wet, silt, crumb-clumpy structure, loose and porous,
abundant plant roots

1.9–0.7 Paleosol Brownish grey (7.5YR6/1), silt, crumb-clumpy structure, some pores with abundant calcareous pseudomycelium,
vertical cracks, well-developed

2.4–1.9 Transitional loess Dull yellowish orange (10YR7/4), fine sandy silt, uniform blocky structure, loose andmany small pores withmassive
calcareous pseudomycelium, weak weathering and pedogenesis

2.95–2.4 Glacial outwash/flashflood deposits 2.85–2.4 m: greyish variegated colour, variegated sand and gravel (1-15 cm), poorly rounded and poorly sorted;
2.95–2.85 m: dull yellow orange (10YR7/4), sand, poorly sorted and relatively loose, glacial outwash/flashflood
deposits from the main peak of the Xiqing Mountains

3.5–2.95 Aeolian loess Dull yellowish orange (10YR7/4), fine sandy silt, uniform blocky structure, loose and many small pores

7.5–3.5 Glacial outwash/flashflood deposits Greyish variegated colour, variegated sand and gravel (1-15 cm), poorly rounded and poorly sorted, glacial
outwash/flashflood deposits from the main peak of the Xiqing Mountains

9.50–7.5 Overbank flood deposits (OFD2) Pale yellowish orange (10YR8/3), fine sandy silt/fine sand, well-sorted, with parallel beddings. The thickness of the
OFD2 was about 2 m consisting of 5 individual overbank flood deposits beds which represented at least
5 palaeoflood events

15–9.5 Glacial outwash/flashflood deposits Greyish variegated colour, variegated sand and gravel (1–15 cm), poorly rounded and poorly sorted, glacial
outwash/flashflood deposits from the main peak of the Xiqing Mountains

18–15 Overbank flood deposits (OFD1) Pale yellowish orange (10YR8/3), fine sandy silt/fine sand, well-sorted, with parallel beddings. The thickness of the
OFD1 was about 3 m consisting of 6 individual overbank flood deposits beds which represented at least
6 palaeoflood events

24–18 Glacial outwash/flashflood deposits Greyish variegated colour, variegated sand and gravel (1-15 cm), poorly rounded and poorly sorted, glacial
outwash/flashflood deposits from the main peak of the Xiqing Mountains

24.6–24 Paleochannel deposits Consists of gravels and sands. Gravels are gray black, variegated sand and gravel (5-15 cm), moderately rounded
and moderately sorted. The sands are dull yellowish orange (10YR7/4), coarse sand, loose, with lenticular beddings
and rusty yellow spots (SupplementaryFigure
S4A,B)

25.6–24.6 Glacial outwash/flashflood deposits Greyish variegated colour, variegated sand and gravel (1-15 cm), poorly rounded and poorly sorted, glacial
outwash/flashflood deposits from the main peak of the Xiqing Mountains

>25.6 Paleochannel deposits Consists of gravels and sands. Gravels are gray black, variegated sand and gravel (5-15 cm), moderately rounded
and moderately sorted. The sands are dull yellowish orange (10YR7/4), coarse sand, loose, with lenticular beddings
and rusty yellow spots

TABLE 3 Calibrated radiocarbon dates of the CMQ and ZHK profile in the Yellow River source area on the northeast Tibetan Plateau.

Site Sample ID Sediment and
stratigraphy

Dating material Depth
(m)

Radiocarbon date
(a BP)

Calibrated age
(cal a
BP, 2σ)

CMQ Beta-566789 Paleosol Organic sediment 0.80–0.85 3,650 ± 30 3,953 ± 67

CMQ Beta-561691 Paleosol Organic sediment 1.30–1.35 5,810 ± 30 7,630 ± 47

CMQ Beta-566792 OFD1 Organic sediment 17.80–17.90 26,460 ± 100 30,700 ± 312
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post-depositional mixing or a combination of these, we used the

R package ‘Luminescence’ (Kreutzer et al., 2012) that offers

plot_KDE() (KDE: kernel density estimates) (Figure 5) and

radial plots (Supplementary Figure S3) for dose distribution

visualization to assess the luminescence samples. In addition,

another approach is based on the assumption that partially

bleached samples show not only a large scatter of De values

but also a trend of rising paleodose with increasing OSL intensity.

This can be identified by plotting the sensitivity corrected OSL

signal against the corresponding De value (Li, 2001)

(Supplementary Figure S4).

The central age model (CAM) and the minimum age

model (MAM) were used to estimate the burial dose in this

study (Galbraith et al., 1999). We used a formal decision

process for selecting between these models, based on values

of sample statistics such as overdispersion (OD), skewness

(sk), kurtosis (Kg) and relative standard deviation (RSD)

(Arnold et al., 2007). The CAM is used for estimating De

values of well-bleached samples such as CMQ-1, CMQ-2,

CMQ-3 and CMQ-4 with low OD values (<15%). In

addition, the samples CMQ-7, CMQ-8 and ZHK-7 with

high OD values (>15%) and a broad range of De values,

but which display only slight asymmetry. The CAM is also

appropriate for calculating De values for these samples

(Arnold et al., 2007). However, other samples such as

CMQ-5, CMQ-6, ZHK-3, ZHK-4, ZHK-5, ZHK-6 and

ZHK-8 with high OD values (>15%) and asymmetric and/

or positively skewed De values indicate incomplete zeroing

and the MAM is more appropriate for calculating De values

for these samples (Arnold et al., 2007) (Figure 5 and Table 5).

TABLE 4 Summary of the U, Th, K, Rb and dose rates for samples taken from overbank flood deposits (OFD), paleosol, aeolian loess, paleochannel
deposits, glacial outwash/flashflood deposits in the CMQ and ZHK profiles in the Yellow River source area on the NE Tibetan Plateau.

Sample ID Sediment
and stratigraphy

Depth
(m)

Grain
size
(μm)

Water
content
(%)

U
(ppm)

Th
(ppm)

Rb
(ppm)

K
(%)

Dose
rate
(Gy/ka)

CMQ-1 Paleosol 0.80–0.85 90–125 22 ± 3 1.99 ± 0.3 11.27 ± 0.7 103.86 ± 5 1.94 ± 0.04 2.98 ± 0.09

CMQ-2 Paleosol 1.30–1.35 90–125 22 ± 3 1.94 ± 0.3 11.22 ± 0.7 102.50 ± 5 1.94 ± 0.04 2.93 ± 0.09

CMQ-3 Aeolian loess 2.40–2.45 90–125 15 ± 3 2.12 ± 0.3 11.31 ± 0.7 95.46 ± 5 1.81 ± 0.04 2.96 ± 0.09

CMQ-4 Aeolian loess 2.50–2.55 90–125 15 ± 3 2.26 ± 0.3 9.73 ± 0.6 94.43 ± 5 1.87 ± 0.04 2.97 ± 0.09

CMQ-5 OFD2 7.10–7.15 90–125 20 ± 3 1.76 ± 0.3 10.37 ± 0.7 94.22 ± 5 1.92 ± 0.04 2.69 ± 0.08

CMQ-6 OFD2 9.60–9.65 90–125 20 ± 3 1.83 ± 0.3 9.85 ± 0.6 92.62 ± 5 1.82 ± 0.04 2.58 ± 0.08

CMQ-7 OFD1 15.10–15.15 90–125 20 ± 3 1.82 ± 0.3 10.94 ± 0.7 88.80 ± 4 1.75 ± 0.04 2.50 ± 0.08

CMQ-8 OFD1 17.80–17.90 90–125 20 ± 3 1.77 ± 0.3 10.30 ± 0.7 89.61 ± 4 1.73 ± 0.04 2.43 ± 0.08

ZHK-3 OFD2 8.50–8.60 90–125 20 ± 3 2.04 ± 0.3 11.63 ± 0.7 103.40 ± 5 1.98 ± 0.04 2.82 ± 0.08

ZHK-4 OFD1 15.10–15.20 90–125 20 ± 3 1.87 ± 0.3 11.24 ± 0.7 89.67 ± 4 1.96 ± 0.04 2.70 ± 0.08

ZHK-5 OFD1 16.50–16.60 90–125 20 ± 3 1.78 ± 0.3 9.74 ± 0.6 88.82 ± 4 1.72 ± 0.04 2.39 ± 0.08

ZHK-6 OFD1 17.80–17.90 90–125 20 ± 3 1.28 ± 0.3 7.44 ± 0.6 84.37 ± 4 1.67 ± 0.04 2.13 ± 0.07

ZHK-7 Paleochanneldeposits 25.90–26.00 90–125 20 ± 3 1.84 ± 0.3 12.52 ± 0.7 84.32 ± 4 1.67 ± 0.04 2.48 ± 0.08

ZHK-8 Paleochannel deposits 26.00–26.10 90–125 20 ± 3 1.72 ± 0.3 9.45 ± 0.6 76.07 ± 4 1.55 ± 0.04 2.18 ± 0.07

FIGURE 4
Growth and decay curves for the samples (A) CMQ-4 and (B) CMQ-7 from the CMQ and ZHK profiles in the Yellow River source area on the NE
Tibetan Plateau.
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The U, Th and Rb concentrations were measured by a

Thermo Fisher iCAP 7,400 inductively coupled plasma-optical

emission spectrometer (ICP-OES). And the K concentration was

analyzed by a Thermo Fisher iCAP RQ inductively coupled

plasma mass spectrometer (ICP-MS) (Table 4). The cosmic-

ray dose rate was estimated for each sample as a function of

depth, altitude and geomagnetic latitude (Prescott and Hutton,

1994). The total dose rates were calculated using the conversion

factors of Guerin et al. (2011). The water content was estimated

from field measurements of the water content when collected and

the saturation water content.

AMS 14C dating was measured in the Beta Analytic

Radiocarbon Dating Laboratory in America, and the Calib

8.20 procedure and IntCal20 Northern Hemisphere

radiocarbon age calibration curve were used for age correction

(Stuiver and Reimer, 1993; Reimer et al., 2020).

4 Results and interpretations

4.1 Geophysical features

The variation curve of magnetic susceptibility is very similar

to that of hygroscopic water in the CMQ profile in the Yellow

River source area (Figure 6 and Table 6). The higher values of

magnetic susceptibility (37.60×10−8-78.20×10−8 m3/kg,

85.80×10−8-114.10×10−8 m3/kg) and the hygroscopic water

(1.13%-1.83%, 1.52%-2.04%) are shown in the paleosol and

modern soil, suggesting the intensified pedogenic modification

to the accumulated dust (Jia et al., 2022). The lower values of

magnetic susceptibility (29.50×10−8-34.60×10−8 m3/kg,

29.70×10−8-39.30×10−8 m3/kg) and hygroscopic water

(0.85–0.95%, 0.91–1.11%) in the loess levels (aeolian loess,

transitional loess) indicating that they remained as

FIGURE 5
Plot_KDE() (KDE: kernel density estimates) for sample (A) CMQ-1, (B) CMQ-6, (C) CMQ-7, (D) CMQ-8 and (E) ZHK-5, (F) ZHK-6 from the CMQ
and ZHK profiles in the Yellow River source area on the NE Tibetan Plateau.
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accumulated dust and experienced very weak weathering and

pedogenesis processes. The lowest values of magnetic

susceptibility (10.10×10−8–28.60×10−8 m3/kg, 16.00×10−8-

25.00×10−8 m3/kg) and hygroscopic water (0.37%-0.96%,

0.28%-0.54%) occur in the overbank flood deposits (OFD1,

OFD2). This shows that these sediments were deposited in a

TABLE 5 The equivalent dose values and OSL ages for samples taken from overbank flood deposits (OFD), paleosol, aeolian loess, paleochannel
deposits, and glacial outwash/flashflood deposits in the CMQ and ZHK profiles in the Yellow River source area on the NE Tibetan Plateau.

Sample ID Sediment
and stratigraphy

N OD
(%)

RSD
(%)

Sk σsk Kg σk Mean
De (Gy)

De
(Gy)

OSL date
(a)

CMQ–1 Paleosol 29 10 14 -0.29 0.45 -0.39 0.91 14.81 ± 0.39 14.58 ± 0.39CAM 4,890 ± 190

CMQ–2 Paleosol 21 5 12 0.16 0.53 -1.04 1.07 22.69 ± 0.60 22.32 ± 0.58CAM 7,630 ± 300

CMQ–3 Aeolian loess 16 1 12 0.27 0.61 0.19 1.22 39.11 ± 1.14 39.40 ± 1.09CAM 13,300 ± 550

CMQ–4 Aeolian loess 14 5 12 0.49 0.65 0.08 1.31 39.91 ± 1.23 39.74 ± 1.14CAM 13,400 ± 560

CMQ–5 OFD2 35 29 31 0.67 0.41 2.09 0.83 59.46 ± 3.10 37.66 ± 3.26 MAM 14,000 ± 1,280

CMQ–6 OFD2 54 31 31 0.34 0.33 -0.12 0.67 77.95 ± 3.29 42.62 ± 2.98MAM 16,500 ± 1,250

CMQ–7 OFD1 44 45 41 0.24 0.37 0.28 0.74 88.65 ± 5.55 80.66 ± 5.58CAM 32,260 ± 2,450

CMQ–8 OFD1 33 23 28 0.41 0.43 -0.84 0.85 86.49 ± 5.29 84.36 ± 3.69CAM 34,680 ± 1880

ZHK–3 OFD2 25 27 25 0.50 0.46 0.24 0.98 67.01 ± 3.58 43.60 ± 3.23MAM 15,460 ± 1,220

ZHK–4 OFD1 14 21 26 0.82 0.65 0.17 1.31 96.18 ± 6.69 79.40 ± 7.29MAM 29,450 ± 2,840

ZHK–5 OFD1 30 25 28 0.81 0.45 -0.27 0.89 92.09 ± 4.65 72.87 ± 5.17MAM 30,500 ± 2,370

ZHK–6 OFD1 35 21 21 0.43 0.41 0.74 0.83 80.26 ± 3.23 61.35 ± 4.23MAM 29,000 ± 1790

ZHK–7 Paleochannel deposits 22 23 27 1.28 0.52 2.38 1.04 102.81 ± 6.02 81.67 ± 7.18CAM 32,930 ± 2070

ZHK–8 Paleochannel deposits 27 20 22 -0.52 0.48 -0.14 0.94 88.22 ± 3.48 69.35 ± 5.67MAM 31,810 ± 2,780

FIGURE 6
Pedo-stratigraphy, magnetic susceptibility, hygroscopic water concentration, clay/silt ratio in the CMQ profile in the Yellow River source area
on the NE Tibetan Plateau.
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very short period of time and preserved immediately after the

flood recession.

The grain size distribution and the statistical indices of these

sediments in the CMQ profile are shown in Figure 7,

Supplementary Figure S5 and Table 6. The variation curves of

clay/silt ratio, clay (<2 μm) and fine silt (2-16 μm) concentrations

are consistent with that of magnetic susceptibility and

hygroscopic water. They are generally high in the paleosol/

modern soil and low in the aeolian loess/transitional loess.

That is, the paleosol and modern soil have a higher clay

content because of pedogenic alteration of the accumulated

aeolian dust. The sand (>63 μm) content is low in the

paleosol/modern soil and high in the aeolian loess/transitional

loess. It can be inferred that the loess levels with an increased

sand content have recorded extremely intensified aeolian activity

over the river valley, which resulted from the incursion of some

fluvial deposits and slope clastics into the loess (Li et al., 2018).

The sand (>63 μm) content of the OFD units is the highest in the

profile, inferring that the overbank flooding with strong

transporting energy that can carry coarse sediments.

Grain size distribution frequency curves of the CMQ profile are

shown in Figure 8A and Figure 8B. Compared to the grain size

distribution frequency curves of aeolian loess and transitional loess,

the paleosol andmodern soil in the CMQprofile present three peaks

centered at: (i) 30-80 μm (peak 1); (ii) 2-10 μm (peak 2); and (iii)

200-300 μm (peak 3) (Figure 8A). It shows that the content of

TABLE 6 Magnetic susceptibility, hygroscopic water concentration and grain size distribution in the Yellow River source area on the NE Tibetan
Plateau.

Pedo-
stratigraphic
subdivisions

Magnetic
susceptibility
(×10−8 m3/kg)

Hygroscopic
water
(%)

<2 μm
(%)

2-16 μm
(%)

16-
63 μm
(%)

>63 μm
(%)

Md
(μm)

Mz
(μm)

Clay/
Silt
ratio

Modern soil 85.80–114.10 1.52–2.04 11.80–13.60 26.10–33.70 36.10–40.50 15.62–21.49 19.02–29.50 14.33–18.67 0.30–0.33

Paleosol 37.60–78.20 1.13–1.83 8.28–12.80 21.20–33.80 35.70–43.10 17.67–27.46 19.35–38.92 15.19–25.68 0.19–0.36

Transitional loess 29.70–39.30 0.91–1.11 6.89–9.39 18.80–23.00 42.20–45.30 23.16–30.90 34.24–42.66 35.24–43.66 0.16–0.22

Aeolian loess 29.50–34.60 0.85–0.95 6.55–8.16 17.00–21.20 41.40–45.70 25.91–34.60 37.77–46.81 38.77–47.81 0.14–0.18

OFD2 16.00–25.00 0.28–0.54 4.27–9.64 8.65–18.10 25.70–48.00 30.52–60.80 44.64–73.61 26.59–59.83 0.11–0.24

OFD1 10.10–28.60 0.37–0.96 2.28–15.20 3.81–41.20 12.70–60.90 12.50–78.00 11.76–96.61 11.61–94.15 0.12–0.54

FIGURE 7
Pedo-stratigraphy and grain size distribution in the CMQ profile in the Yellow River source area on the NE Tibetan Plateau.
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secondary clay and fine silt are increasing under the influence of

pedogenic alteration (Chen et al., 2021). Therefore, the paleosol and

modern soil are defined as silt. It is also mixed with some fluvial

deposits and slope clastics carried by valley wind from the nearby

area (Li et al., 2018; Jia et al., 2022). The grain size distribution

frequency curves of the upper and lower of the paleochannel

deposits are significantly different, and their major peak centered

at 25-75 μm and 90-200 μm, respectively. The shape of grain size

distribution curves of the OFD units are very different from that of

the aeolian loess/soil as well as paleochannel deposits, and are clearly

shifted to the coarse side (Figure 8B). It shows a high-narrow major

peak centered at 50-120 μm. The OFD1 and OFD2 units are

classified as sandy silt or sand. The grain size indices, such as

mode (Md),mean (Mz), skewness (Sk), and kurtosis (Kg), sorting (S)

values also differentiate the OFD units, aeolian loess/soil and

paleochannel deposits well in the profile (Supplementary Figure S5).

The micro-morphological features of the thin sections

observed by the polarizing microscope can clearly differentiate

the overbank flood deposits (OFD) from the aeolian loess/soil in

the CMQ and ZHK profiles (Figure 9). The paleosol is

characterized by round to sub-round coarse grains, high

porosity and medium abundance of secondary calcite

crystallite (pseudomycelia) in the pores (Figure 9A). The loess

is characterized by angular to sub-angular coarse grains, simple

packing bio-pores (Figure 9B). However, the OFD units consist

of coarser well-rounding grains (Figure 9C and Figure 9D). Their

distribution is very loose and the grain size is relatively

uniformity, manifesting that they were mainly deposited from

suspended sediment load in floodwaters.

4.2 OSL and AMS14C ages

As shown in Figure 10, the pedo-stratigraphy in the CMQ

profile is well synchronous with the ZHK profile in the Yellow

River source area. Overall, the OSL and AMS14C ages at the same

FIGURE 8
A comparison of grain size distribution frequency curves among (A) aeolian loess-paleosol deposits and Paleochannel deposits, (B) prehistoric
overbank flooding deposits (OFD) in the CMQ profile in the Yellow River source area on the NE Tibetan Plateau.
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level in the CMQ and ZHK profiles are consistent (Figure 10).

The OFD1 unit was found at the depth range of 12.00–18.00 m in

the CMQprofile and 15.00–18.00 m in the ZHK profile. OSL ages

from the middle (15.10–15.15 m) and the bottom

(17.80–17.90 m) of the OFD1 in the CMQ profile are

32,260 ± 2,450 a and 34,680 ± 1880 a, respectively. In

addition, the similar AMS14C age (30,700 ± 312 cal a BP) is

also obtained from the bottom of the OFD1 in the CMQ profile.

And the top, middle and bottom of OFD1 in the ZHK profile

were OSL dated to 29,450 ± 2,840 a, 30,500 ± 2,370 a and 29,000 ±

1790 a, respectively. The first episode of overbank flooding was

therefore within a bracket of 34,680 ± 1880-29000 ± 1790 a. The

OFD2 unit was identified at the depth range of 7.00–9.70 m in the

CMQ profile and 7.50–9.00 m in the ZHK profile. The top

(7.10–7.15 m) and the lower (9.60–9.65 m) of the OFD2 unit

in the CMQ profile were OSL dated to 14,000 ± 1,280 a and

16,500 ± 1,250 a, respectively. The middle (8.50–8.60 m) of the

OFD2 unit in the ZHK profile yielded an OSL age of 15,460 ±

1,220 a. It can be concluded that the second episode of overbank

flooding occurred at 16,500 ± 1,250-14000 ± 1,280 a.

5 Discussion

5.1 The first episode of overbank flooding

The first episode overbank flooding occurred at 34,680 ±

1880-29000 ± 1790 a that correlated with the late Marine Isotope

Stage 3a (MIS 3a) (Imbrie et al., 1984; Shi and Yu, 2003; Pu et al.,

2010; Chen et al., 2014). Previous studies have shown that Asian

summer monsoon is highly sensitive to the insolation difference

caused by the earth orbital change (Prell and Kutzbach,

1992). During the period of MIS 3a, the incident radiation

in the region between 50°N and 30°S was 20 W/m2 higher than

that of modern and the increase in the incident radiation

resulted in the rise of air temperature (Shi et al., 1999)

(Supplementary Figure S6), which led continental ice

sheets retreated significantly, mountain glaciers melted and

sea levels rose (Wang and Yao, 2002). Especially in the Yellow

River source area, rising temperatures will inevitably lead to

the melting of surrounding mountain glaciers. In addition,

due to increased heat input, the difference of thermal

FIGURE 9
Micro-morphological features in the ZHK and CMQprofiles in the Yellow River source area on the NE Tibetan Plateau. (A)Micro-morphological
features of the paleosol in the CMQprofile with needle-shaped secondary-calcite (10 × 5, crossed polarized light); (B)Micro-morphological features
of the aeolian loess in the ZHK profile (10 × 5, crossed polarized light); (C)Micro-morphological features of the overbank flooding deposits (OFD1) in
the CMQ profile (10 × 5, crossed polarized light); (D)Micro-morphological features of the overbank flooding deposits (OFD1) in the ZHK profile
(10 × 5, crossed polarized light).
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properties between land and sea increases, the East Asian

summer monsoon (EASM) as well as the evaporation of the

tropic and sub-tropic Indian Ocean surface was strengthened.

At the same time, the cross-equatorial airflow moving

towards the Northern Hemisphere may intensify the

Indian summer monsoon (ISM). The ISM and EASM

carried a large amount of moisture as moving over the

ocean surface and formed the exceptionally strong summer

monsoon on the Tibetan Plateau, which formed a large area of

abundant precipitation (Shi et al., 1999).

Climate proxies in all over the world sensitively recorded the

warm and wet climate characteristics during this period

(Figure 11). Solar radiation in summer at 65°N (Berger and

Loutre, 1991), <4 μm grain fractions of Shijiu Lake core (Wang,

2016), TOC content of cores LV53-23 in the Japan Sea (Zong,

2016), δ18O concentration in Guliya ice core (Yao et al., 1997),

δ18O concentration in GRIP2 (Grootes et al., 1993; Stuiver and

Grootes, 2000), CPIh, ACLh and pollen concentrations in Qarhan

Salt Lake sediments (Pu et al., 2010) and simulated precipitation

in Central Asia (Li X Z et al., 2013) were all higher during theMIS

3a. But the Mz of the Jingyuan loess profile (Wang, 2016), the Md

of the South China Sea SO17940 core (Wang, 2016) and the δ18O
concentration of the Hulu Cave Stalagmite (Wang et al., 2001)

are lower in this period, indicating that the global climate was

mainly warm and wet during the MIS 3a.

In addition, high-resolution climatic proxies in the Tibetan

Plateau and its surrounding areas record the warm and wet

climatic characteristics in the MIS 3a. For example, the profiles

containing trees and neutral herbaceous pollen in Qinghai Lake

Basin, NE Tibetan Plateau, increased significantly at 39,000-

26000 a, reflecting a relatively warm and humid environment

(Shan et al., 1993). The profile in the eastern Bangong Co.

paleolake on the western Tibetan Plateau was the most

abundant in pollen and types at 36,000-28000 a, indicating

that the climate was warmer and wetter than the present

(Huang et al., 1989). The paleontological fossils of

FIGURE 10
Pedo-stratigraphy and chronostratigraphic framework of the CMQ and ZHK profiles in the Yellow River source area on the NE Tibetan Plateau.
[The dating data indicated in purple is taken from Jia et al. (2022)].
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pelobranchids, gastropods and ostracids in the shell deposits on

the east of Qarhan Salt Lake indicate that the lake was fresh-

brackish water at 38,000-28050 a BP, and the lake area was

larger and the lake surface was higher during this period, which

was about 2.56 times as large as the modern one (Chen and

Bowler, 1985). The Baijian Lake in the tengger desert on the

north of the Tibetan plateau appeared a high lake level 30 m

higher than the modern lake level in 39,000–23000 a BP,

suggesting that precipitation generally increased in the

Tibetan Plateau during this period (Pachur et al., 1995; Li,

2000; Li et al., 2008). The δ18O curve of Guliya ice-core in west

Kunlun shows that the temperature is the highest in the MIS3a,

the temperature and precipitation at this period are 2-4 °C and

40%-100% higher than those in modern, respectively (Shi et al.,

2002, 1999). All these evidences indicated that the Tibetan

Plateau had a warm and wet climate between 34,680 ±

1880 and 29,000 ± 1790 a.

Previous studies have shown that during the last glacial

period, the ancient glaciers of the Anyemaqen Mountains may

have reached the Yellow River, with an altitude of 2,650 m at the

end and a snow line of 4,125 m (Kuhle et al., 1987). The total

glacier area of Qiequ valley on the eastern slope and Zhihaidai

valley on the western slope is 156.7 km2 (Deng et al., 2004). In

addition, geological and chronological evidence of glacial

advance has been found at multiple sites on the Tibetan

Plateau and surrounding mountains during the MIS 3b (Zhao

et al., 2007; Wang, 2010). Significant glacial advance also took

place in Anyemaqen and Nianbaoyuze Mountains during the

MIS 3b (Owen et al., 2003, 2006). In both regions, glaciation was

most extensive during theMIS3 (Anyemaqen and Jiukehe Glacial

Stages) (Zheng et al., 1994; Lehmkuhl, 1998), which was

represented by expanded ice caps and long valley glaciers that

advanced ~15 km beyond the present glacier margins (Owen

et al., 2003). However, mountain glaciers are very sensitive to

temperature changes (Ali et al., 2015).With the advent of MIS 3a,

the climate became warm-humid, and the mountain glaciers

around the Yellow River Source area are bound to melt in large

quantities. There are lateral moraines overtopped the surface of

the lake on both sides of Ximen Co Lake on the NE Tibetan

Plateau, and the moraines at both ends are obviously higher than

the front of the lake. The age of aeolian loess on the moraine ridge

is 32,000 ± 3,000 a, which indicates that the glacier had begun to

FIGURE 11
(A) The ages ofOFD units in CMQand ZHK profiles (Green and blue dots represent theOSL ages of CMQand ZHK profile respectively; The green
square represents AMS 14C age of the CMQprofile), (B) Variation curve of solar radiation in summer at 65°N (Berger and Loutre, 1991), (C) precipitation
reconstructed from rock core in Balikun Lake (Zhao, 2017), (D) The Mz of the Jingyuan loess profile (Wang, 2016), (E) <4 μm grain fractions of Shijiu
Lake core (Wang, 2016), (F) The Md of the South China Sea SO17940 core (Wang, 2016), (G) TOC content of cores LV53-23 in the Japan Sea
(Zong, 2016), (H) The δ18O concentration of the stalagmite in Hulu Cave (Wang et al., 2001),(I) The δ18O concentration in Guliya ice core (Yao et al.,
1997), (J) The δ18O concentration of the stalagmite in Dongge Cave (Dykoski et al., 2005), (K) The δ18O concentration in GRIP2 (Grootes et al., 1993;
Stuiver and Grootes, 2000), (L) The δ18O concentrations in Greenland ice cores (Basak et al., 2018), (M) The CPIh in Qarhan Salt Lake sediments (Pu
et al., 2010), (N) The δ18O concentration of the stalagmite in Haozhu Cave (Zhang et al., 2016), (O) The ACLh in Qarhan Salt Lake sediments (Pu et al.,
2010), (P) The simulated precipitation in Central Asia (Li X Z et al., 2013), (Q) The pollen concentrations in Qarhan Salt Lake sediments (Pu et al., 2010)
(The blue and yellow rectangles represent MIS3a and Bøling-Allerød stages respectively).
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retreat before that period (Lehmkuhl, 1998). There are many

moraine ridges in the 6-10 km north of the Ximen Co Lake, and

the age of exposure moraine above them indicates that the

glaciers retreat at 42,000-19000 a BP (Owen et al., 2003).

Therefore, we have reason to believe that during the MIS 3a

period with a very warm and humid climate, the water mainly

derived from the accelerated melting of mountain glaciers from

both sides and/or the large-scale precipitation flowed into the

Yellow River source course, resulting in the overbank flooding.

Moreover, the overbank flooding carried abundant sediment,

which covered the glacial outwash/flashflood deposits, and

intensified the channel accretion.

5.2 The second episode of overbank
flooding

The second episode overbank flooding recorded by

OFD2 unit in the CMQ and ZHK profiles was dated to

16,500 ± 1,250-14000 ± 1,280 a, which is coincided with the

Bølling-Allerød warm and humid period (Dykoski et al., 2005;

Basak et al., 2018) of the last deglaciation (19,000-11000 a BP)

(Pedro et al., 2011; Clark et al., 2012). At that time, the incident

radiation in the northern hemisphere in summer was 20 W/m2

higher than that of present (Shi et al., 1999) (Supplementary

Figure S6). Under this climate background, the increase of

incident radiation would still result in the rise of air

temperature in the Yellow River source area, which would

lead to the massive melting of mountain glaciers. Beyond that,

the increase of incident radiation would expand the difference of

thermal properties between land and sea, which would contribute

to intensifying the EASM and increasing precipitation on the

Tibetan Plateau.

Various climate proxies around the world also have been

recorded the climate characteristics of the period (Figure 11).

Solar radiation in summer at 65°N (Berger and Loutre, 1991),

precipitation reconstructed from rock core in Balikun Lake

(Zhao, 2017), <4 μm grain fractions of Shijiu Lake core

(Wang, 2016),TOC content of cores LV53-23 in the Japan Sea

(Zong, 2016), δ18O concentration in Guliya ice core (Yao et al.,

1997), δ18O concentration in GRIP2 (Grootes et al., 1993; Stuiver

and Grootes, 2000), δ18O concentrations in Greenland ice cores

(Basak et al., 2018) and simulated precipitation in Central Asia

(Li G F et al., 2013) were all higher in 14,700–12500 a BP. TheMz

of the Jingyuan loess profile (Wang, 2016), the Md of the South

China Sea SO17940 core (Wang, 2016) and the δ18O
concentration of the stalagmite in Hulu Cave (Wang et al.,

2001), Dongge Cave (Dykoski et al., 2005) and Haozhu Cave

(Zhang et al., 2016) are lower, indicating that the global climate

was mainly warm and wet during this period.

The grain-size characteristics of Macheng profile on NE

Jianghan Plain show that the temperature rose rapidly and the

precipitation increased significantly at ca. 17,900-12050 a BP.

And the climate is characterized by warm, wet and rainy as a

whole (Zhang et al., 2020). High-resolution pollen records in the

Dalianhai sediment cores on NE Tibetan Plateau show that tree

pollen increased at 14,800–12900 cal a BP, indicating that forests

developed in nearby mountains and the climate was warm and

humid. In addition, the grassland coverage increases around

Gonghe Basin (Cheng et al., 2010). In 14,100-12700 a BP, the

Qinghai Lake vegetation changed from desert-steppe to forest-

steppe, indicating a significant increase in temperature and

humidity over the northeastern Tibetan Plateau during this

period (Shen et al., 2005). Climate reconstruction of n-alkanes

from Zabuye Lake cores in the Tibetan Plateau shows that woody

plants are abundant and has a relatively warm climate in

15,600–12500 a BP (An et al., 2012; Jin, et al., 2015; Ling

et al., 2017).

Previous studies have shown that during the Last Glacial

Maximum (26,500-19000 a BP) (Clark et al., 2012), the global

temperature was low, the glaciers were widely covered on the

NE Tibetan Plateau, and the glacial advances of Anyemaqen

and Nianbaoyuze mountains occurred during the Last Glacial

Maximum. During this period, the glacial areas of Anyemaqen

and Nianbaoyuze mountains were 8 and 206 times that of

modern glaciers respectively. And their snow line height was

1,000 m lower than that of modern glaciers (Edward et al.,

1991; Shi, 2022). However, since the last deglaciation, the

global temperature has increased significantly. The mountain

glaciers (or ice caps) on the NE Tibetan Plateau have

inevitably melted in large quantities (Zhong et al., 2021).

This large-scale meltwater event caused super floods in

Europe, North and South America (Tomasson, 1996; Baker,

2013). The large-scale melting of the ice sheet also caused a

large amount of meltwater to pour into the sea, which led the

coastline retreated and the continental shelf was submerged.

And the global average sea level rose substantially (Huang and

Tian, 2008). Many lakes on the Tibetan Plateau such as

Qinghai Lake, Selinco Lake and Longmuco Lake have

rapidly increased due to the rapid increase of glacial melt

water, and a large amount of ice water has been injected into

the lakes, leading to the expansion of lakes and the rise of

water level (Jia et al., 2001).

Therefore, we believe that second episode of overbank

flooding recorded by OFD2 in the CMQ and ZHK profiles

in the Yellow River Source area was due to the significant

increase in temperature and the EASM significantly

strengthened during the Bølling-Allerød period. In the

meanwhile, the monsoon state is unstable, the mountain

glaciers and ice caps melt rapidly in a large range, and the

snowmelt water increases abnormally in the Yellow River

source area. The water mainly derived from the accelerated

melting of mountain glaciers surrounding the basin and/or

the large-scale precipitation flowed into Yellow River, which

led to the overbank flooding events (Qiu, 2008; Cuo et al., 2015;

Chen et al., 2021).
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6 Conclusion

During our paleohydrological investigations, two units of

overbank flood deposits were found in the sediment sequences at

Chameiqu (CMQ) and Zuhaka (ZHK) sites in the Maqu-Kesheng

reach in the Yellow River source area. These paleoflood OFD units

were studied using a multi-index approach, including magnetic

susceptibility, hygroscopic water, grain size distribution and micro-

morphological features. Based on field observations and laboratory

analysis, it can be inferred that these paleoflood OFD units were

deposited from the sediment load in Yellow River floodwaters. They

have recorded two episodes of overbank flooding, which were dated

to 34,680 ± 1880-29000 ± 1790 a and 16,500 ± 1,250-14000 ± 1,280 a

respectively. The first episode was dated to 34,680 ± 1880-29000 ±

1790 a and correlated with the lateMarine Isotope Stage 3a (MIS 3a)

with a warm and wet climate. The second episode occurred at

16,500 ± 1,250-14000 ± 1,280 a, which is coincided with the Bølling-

Allerød of the last deglaciation, a period of coexisting global

warming and rapidly shrinking ice sheets. At these two periods,

the water mainly derived from the accelerated melting of mountain

glaciers surrounding the basin and/or the large-scale precipitation

flowed into Yellow River, which led to the overbank flooding

events. Obviously, the related overbank flood deposits were

interbedded within glacial outwash/flashflood deposits in the

valley bottom of the Yellow River, which intensified the valley

aggradation.
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River source area on the NE Tibetan Plateau. These plots both present
the De distributions and illustrate the spread in the data and how the
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SUPPLEMENTARY FIGURE S4
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ZHK-5, (F) ZHK-6 from the CMQ and ZHK profiles in the Yellow River
source area on the NE Tibetan Plateau.

SUPPLEMENTARY FIGURE S5
Characteristic value diagram of grain size parameters showing the grain
size distribution in the CMQprofile in the YellowRiver source area on the
NE Tibetan Plateau.(A) 3-D stereogram of skewness (Sk), standard
deviation (δ) and kurtosis (Kg); (B) 3-D stereogram of mean (Mz), median
(Md) and sorting coefficient (S).

SUPPLEMENTARY FIGURE S6
Insolation departures in July relative to the present values at various
latitudes during the past 125 ka BP (W/m2) (The blue rectangle and the
yellow rectangle represent the Bølling-Allerød and MIS3a period) (Shi
et al., 1999).
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