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Accurate long-term forecasts of PM2.5 pollution are essential to mitigating

health risks and formulating pollutant control strategies for decision-makers in

China. In this study, an objective identification and forecast method for PM2.5

pollution (OIF-PM2.5) is developed based onmedium- and long-term ensemble

forecasts of PM2.5 in Beijing-Tianjin-Hebei region and its surrounding areas. The

results show that the observed PM2.5 pollution ratio increases with the

aggravating PM2.5 pollution. For example, the ratio of meteorological

stations with heavy pollution is 4.4 times that of light pollution and 3.9 times

that of moderate pollution. In addition, the correlation coefficients between

observations and forecasts are above 0.60 for all forecast leading times.

Statistical results show that the average accuracy for forecasts with the

leading times of 1–3 days, 4–7 days, and 8–15 days are 74.1%, 81.3%, and

72.9% respectively, indicating that the OIF-PM2.5 method has a high

reliability in forecasts with the leading times of 1–15 days. The OIF-PM2.5

method is further applied in a severe PM2.5 pollution episode in the

December of 2021, and the average forecast precision in forecasts with the

leading times of 6–8 days reaches as high as 100%, showing a certain reference

value for PM2.5 forecasts.
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1 Introduction

In terms of economy, urbanization and population growth,

the Beijing-Tianjin-Hebei region (BTH) and its surrounding

areas are among the most developed regions in China.

Meanwhile, severe and frequent PM2.5 (fine particulate matter

with an aerodynamic diameter ≤2.5 μm) pollution in this region

has attracted more and more attention in recent years due to its

complex impacts on visibility, human health and ecological

environment (Liu et al., 2019; Li et al., 2021a; Cheng et al.,

2021; Sawlani et al., 2021; Zhang et al., 2021). The Chinese

government launched the “Air Pollution Prevention and Control

Action plan” in 2013 and “2017 Air Pollution Prevention and

Management Plan for the Beijing-Tianjin-Hebei Region and its

Surrounding Areas” to solve the severe PM2.5 pollution. A series

of control measures have been implemented to reduce pollutant

emissions, e.g., eliminating industries with high pollution and

emission, optimizing industrial and energy structures and

restricting vehicle use (Zhang et al., 2014; Chen et al., 2021;

Liu et al., 2021). Nonetheless, heavy PM2.5 pollution episodes are

still frequent in BTH and its surrounding areas, especially during

autumn and winter due to unfavorable meteorological conditions

(Zhang et al., 2018; Li et al., 2019; Bei et al., 2020). Accurate PM2.5

pollution forecasts can reduce the air pollutant exposure to

sensitive groups and provide necessary reference for making

pollution policies and starting control measures in advance,

especially before some importance events such as the Asia-

Pacific Economic Cooperation Summit 2014 and 70th

anniversary of the founding of the People’s Republic of China.

Therefore, medium- and long-term PM2.5 forecast is critically

important.

Various methods have been used for air pollution

forecasting. In general, the forecasting methods can be

categorized into three groups: empirical method, statistical

approaches and numerical simulations (Zhai and Chen, 2018;

Liu and Chen, 2019). The empirical method, also known as a

knowledge-based procedure, is based on previous

observations, which requires a comprehensive

understanding of the pollution dispersion/transport

mechanisms and physical-chemical processes (Garner and

Thompson, 2012; Yuval et al., 2012). Furthermore, the

empirical method is highly dependent on pollution sources

and meteorological factors, and previous studies (Zhou et al.,

2019; Wu et al., 2020; Samal et al., 2021) have demonstrated

that it performs poorly when compared with statistical

approaches. Statistical approaches consist of multiple linear

regression (Dimitriou and Kassomenos, 2014; Jeong et al.,

2021; Liu et al., 2022), Kalman filtering, artificial neural

network (Zhou et al., 2020; Bera et al., 2021), long short-

term memory (Gao and Li, 2021), support vector machine

(Wang et al., 2017) and other hybrid methods (Liu et al., 2020;

Huang et al., 2021). It is found that they can successfully

forecast the PM2.5 for their capacity of nonlinear mapping. In

addition, the deep learning technology has sparked a lot of

interest (Pak et al., 2020; Menares et al., 2021; Yang et al.,

2021) and proven its superiority in several fields. Deep

learning technology is proposed for analyzing the

characteristics of historical data. However, all of these

statistical approaches only focus on the historical data,

which ignore the atmospheric dispersion and transport

mechanisms. Furthermore, most of them could only

provide short-term forecasts that usually range from 24 to

FIGURE 1
Locations of the meteorological stations in Beijing-Tianjin-Hebei (BTH) and its surrounding areas.
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72 h (Jiang et al., 2021), while most planning and monitoring

actions have a greater demand for long-term forecasts.

Numerical simulations, such as the Community Multiscale

Air Quality Modeling System and the Comprehensive Air

quality Model with extensions, can simulate the chemical and

physical processes of PM2.5 pollution (Cai et al., 2017; Liu

et al., 2018) and thus provide a better understanding of the

transformations and distributions of PM2.5. Although

numerical models can provide reliable medium-term

forecasts, there may be some systematic errors in short-

term forecasts. Such models tend to be sensitive to initial

and boundary fields (Feng et al., 2020).

Over the past decades, ensemble forecast products have

been a major contributor to improving weather forecasts

(Yang et al., 2015; Zhao et al., 2022). These products take

into account the uncertainty of initial states and process

description in numerical weather forecasting models.

Ensemble forecasts include several members, representing a

set of possible atmospheric conditions in the future. In

contrast to deterministic weather forecasts, ensemble

forecasts increase the lead time of high-quality forecasts to

more than several days. The Observing-system Research and

Predictability Experiment (THORPEX) Interactive Grand

Global Ensemble (TIGGE) is a database of ensemble

forecasts in medium and long ranges conducted by

different forecasting centers established for scientific

research (Tao et al., 2014). Among all TIGGE data, the

European Centre for Medium-Range Weather Forecasts

(ECMWF) have presented advantages in the number of

ensemble members and spatial resolutions than other

forecasting systems (Sagar et al., 2017), consisting of

51 members with a resolution of approximate 0.5° for the

whole globe (Zhao et al., 2016). Regarding these advantages,

the ECMWF ensemble forecasts are widely applied in

forecasting precipitation (Cong et al., 2021), temperature

(Verkade et al., 2013), tropical cyclone track (Nishimura

and Yamaguchi, 2015) and water deficit depth (Zhao et al.,

2016). Based on the ECMWF ensemble forecasts, Schumacher

et al. (2011) studied a low-vortex induced rainstorm event in

southern United States, and investigated the impact of

disturbances in upstream weather systems on precipitation

forecasts. Besides, Schauwecker et al. (2021) also conducted a

research on the forecast performance of ECMWF Integrated

Forecasting System ensemble median run in a heavy

precipitation event over Switzerland. The uncertainty in

atmospheric forecasts mainly arises from the parameters,

initial states and model structure. In the past few years,

researchers have proposed various techniques to tackle the

uncertainties in ensemble forecasts from different aspects

(Demeritt et al., 2007; Yu and Meng, 2016; Ali et al., 2018).

For these uncertainties, the forecasting skill can be enhanced

by post-processing through multiple-modeling, statistical

methods and data assimilation (Li et al., 2021b; Whan

et al., 2021; Zhao et al., 2022). However, there are few

studies on ensemble forecasting post-processing techniques

in the field of PM2.5 forecasting.

FIGURE 2
The technical flowchart for the objective identification and forecast of PM2.5 pollution.

TABLE 1 Accuracy index categories.

Polluted day Forecasted PM2.5 pollution ratio

≥25th percentile < 25th percentile

Yes NA NC

NO NB ND
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In this study, objective identification and forecast method of

PM2.5 pollution (OIF-PM2.5) is established based on the

medium- and long-term ensemble forecasts with the leading

times of 1–15 days. Besides, this method is evaluated by the

forecast precision and its applicability is assessed in a PM2.5

pollution episode in BTH and its surrounding areas. The

remainder of this paper is organized as follows. Section 2

describes the study area, data and method. Section 3 presents

the results and discussions, including the characteristics of PM2.5

pollution, the performance of PM2.5 ensemble forecast and the

evaluation of OIF-PM2.5 method. Finally, Section 4 gives the

conclusions.

FIGURE 3
Observations of PM2.5 concentrations in BTH and its surrounding areas in (A) 2018, (B) 2019 and (C) 2020.

FIGURE 4
Observations of PM2.5 concentrations in Beijing, Tianjin and Shijiazhuang.
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2 Data and methods

2.1 Study areas

The BTH and its surrounding areas include two

municipalities (Beijing and Tianjin) as well as the provinces of

Hebei, Henan and Shandong. This region is home to the majority

of energy-intensive and polluting industries (Tong et al., 2019).

In addition, the unfavorable geographical conditions with the

Yanshan Mountains to its north and the Taihang Mountains to

its west are conducive to the accumulation of pollutants (Bei

et al., 2020).

2.2 PM2.5 observations

The medium- and long-term ensemble forecasts of PM2.5 are

established based on ground observations from meteorological

stations in China. The daily PM2.5 observations are obtained

through the neighboring-point interpolation algorithm

conducted on data from 417 meteorological stations set up by

the China National Environmental Monitoring Centre. All

observed samples are divided into two groups of training

dataset and testing dataset. The OIF-PM2.5 is established by

using the training dataset of the autumns and winters

(January, February, March, October, November and

December) from 2018 to 2020, and the testing dataset

contains the data of the autumn and winter of 2021. The

locations of meteorological stations in the study area is

presented in Figure 1.

FIGURE 5
Distributions of observed PM2.5 pollution ratios under (A) light
pollution, (B) moderate pollution and (C) heavy pollution in BTH
and its surrounding areas.

TABLE 2 Average PM2.5 pollution ratios at different polluted levels in
BTH and its surrounding areas.

Polluted level PM2.5 pollution ratio (unit: %)

Light Moderate Heavy

Light 35.8 ± 12.8 16.6 ± 8.4 10.4 ± 8.8

Moderate 20.9 ± 7.2 23.8 ± 8.2 35.3 ± 9.6

Heavy 13.1 ± 4.3 15.4 ± 6.4 59.5 ± 7.2

FIGURE 6
Forecasted PM2.5 pollution ratios with different forecast
leading times.
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2.3 PM2.5 ensemble forecast

Based on regional pollution characteristics, topography and

climate differences, the PM2.5 ensemble forecast products are

made by using the ECMWF ensemble products. These products

contain meteorological factors such as horizontal and vertical

diffusion capacities and dry and wet deposition conditions.

Furthermore, the forecast equations of daily PM2.5 at each

station is set up based on meteorological factors and pollution

characteristics in different regions. Finally, the ensemble average

forecast, control forecast and 51-members ensemble forecast

products are obtained, forming 1–15-day forecast products. In

this study, the ensemble average forecast is used to establish the

OIF-PM2.5.

FIGURE 7
(A) Biases (forecast minus observation) of PM2.5 pollution ratios and (B) correlation coefficients between observations and forecasts with
different forecast leading times.

TABLE 3 The first, second and third quartiles of forecasted PM2.5 pollution ratios with different forecast leading times.

Forecast leading time
(unit: day)

First
quartile (unit: %)

Second
quartile (unit: %)

Third
quartile (unit: %)

1 47.6 69.4 79.9

2 42.2 66.2 78.6

3 37.5 64.7 77.1

4 35.7 63.8 75.9

5 32.8 60.4 76.2

6 31.5 58.2 75.4

7 28.3 58.3 74.9

8 26.8 57.1 73.6

9 24.1 55.8 75.0

10 21.8 55.1 73.7

11 22.3 53.3 72.0

12 19.2 54.6 72.6

13 19.4 51.2 71.4

14 18.6 49.3 70.1

15 17.8 48.8 69.8
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2.4 Methods

The OIF-PM2.5 technical flowchart is presented in Figure 2. In

this study, the performance of PM2.5 ensemble forecast in varying

forecasting time ranges is considered. The 25th, 50th and 75th

percentiles of forecasted PM2.5 pollution ratios are chosen as the

identification thresholds for each forecasting time range

corresponding to each polluted day (PM2.5 ≥ 75 μg m−3) in the

training dataset. Here, the forecasted PM2.5 pollution ratio is defined

as the ratio of the number of stations with PM2.5 ≥ 75 μg m−3 in the

ensemble forecast to the total number of stations in this region in

each day.

To evaluate the performance and precision of the OIF-PM2.5

method, the 25th percentile is selected as the criterion, and the

accuracy as the statistical index. The principle of the accuracy (AC,

unit:%) index is listed in Table 1, where NA, NB, NC, and ND

variables represent different categories. NA variable represents the

forecasted PM2.5 pollution ratio exceeds the 25th percentile on the

polluted day, and NC variable means the forecasted PM2.5 pollution

ratio exceeds the 25th percentile on the polluted day is lower than

the 25th percentile on the polluted day. Consequently, NB and ND

variables represent the forecasted PM2.5 pollution ratio are higher or

lower than the 25th percentile on non-polluted day, respectively.

AC � NA +ND

NA +NB +NC +ND
× 100%. (1)

3 Results

3.1 Characteristics of PM2.5 pollution

The spatial distributions of average PM2.5 concentrations in

BTH and its surrounding areas from 2018 to 2020 are shown in

FIGURE 8
Values of accuracy under different forecast leading times.

FIGURE 9
Distributions of daily PM2.5 concentrations from December 8 to 12 of 2021 in BTH and its surrounding areas.
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Figure 3. It is worth noting that the PM2.5 concentrations in

northern Hebei are below the threshold for the daily average of

the China Ambient Air Quality Standard (GB 3095–2012) for

PM2.5 (Grade Ⅰ:35 μg m−3). However, the PM2.5 pollution in

2018 and 2019 is heavy in the south and light in the north of

the BTH and its surrounding areas, with the main pollution belts

concentrated in southern Hebei, central-eastern Henan and

western Shandong. In 2020, the PM2.5 level is low in Beijing,

Tianjin, Northern Hebei and Shandong, while slightly polluted in

Southern Hebei and Northern Henan. In addition, Beijing,

Tianjin and Shijiazhuang are selected for comparison

(Figure 4). It can be seen that the PM2.5 concentrations of

Beijing decrease from 53.4 μg m−3 in 2018 to 43.7 μg m−3 in

2020, while those in Tianjin fluctuate between 59.7 μg m−3 and

64.3 μg m−3 within the same period. In other words, the PM2.5

concentrations of 2020 are 1.2 times and 1.7 times the PM2.5

Grade Ⅰ in Beijing and Tianjin, respectively. What’s more, the

PM2.5 concentrations in Shijiazhuang decrease from 91.2 μg m−3

in 2018 to 77.2 μg m−3 in 2020 by 15.3%, which is the largest

decrease among the three cities. However, the magnitude of

PM2.5 concentrations in 2020 in Shijiazhuang is 2.2 times the

PM2.5 Grade Ⅰ.
The probability distributions and averages of observed PM2.5

pollution ratios under different polluted levels in BTH and its

surrounding areas are given in Figure 5, Table 2, respectively. As

can be seen, when the average PM2.5 concentration reaches the

light level, the ratio of the number of stations with light pollution

is the highest within the range of 34%–40%, and the distribution

curve follows the law of normal distribution. However, the

average PM2.5 pollution ratios for moderate pollution and

heavy pollution are 16.6% and 10.4%, respectively. What’s

more, the highest ratio of the number of stations with heavy

pollution rapidly increases to 35.3% under the level of moderate

pollution, which is 1.7 times that of light pollution and 1.5 times

that of moderate pollution. In addition, the number of stations

with heavy pollution are more than half of the total in this region.

Nevertheless, the heavy PM2.5 pollution ratio is 4.4 times that of

light pollution and 3.9 times that of moderate pollution. In

general, the ratio of polluted meteorological stations is

increasing as the PM2.5 pollution aggravates in this region.

3.2 Performance of PM2.5 ensemble
forecasts

Some studies (Wang and Huang, 2006; Zhao et al., 2021)

have revealed that the performance of forecasting products vary

with the forecast leading times. The forecasted PM2.5 pollution

FIGURE 10
Daily PM2.5 concentrations and PM2.5 pollution ratios from December 8 to 12 of 2021 in BTH and its surrounding areas.
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ratios with different forecast leading times are analyzed based on

the training dataset (Figure 6). For PM2.5 ensemble forecasts, the

ratio of stations being polluted decreases with the increasing

forecast leading times, which is consistent with other forecasting

products. The averages of forecasted PM2.5 pollution ratios with

the forecast leading times of 1–3 days, 4–7 days and 8–15 days

are 59.5%, 52.9% and 47.4%, respectively. That is, the PM2.5

pollution processes at more than 50% meteorological stations in

this region can be forecasted by 8 days in advance.

As illustrated in Figure 7A, the bias (forecast minus

observation) of PM2.5 pollution ratio increases with the

increasing forecast leading time, and the biases are all

negative, that is, the forecasted ratios are lower than the

observed ones. The biases of PM2.5 pollution ratio with the

forecast leading times of 1–6 days are less than −13%;

however, the bias remains between −14.1% and −15.4% when

the forecast leading time is more than 7 days. Besides, the

correlation coefficients of the ratios between the observations

and forecasts are more than 0.68 with the forecast leading times

being 1–3 days, while above 0.60 for other leading times

(Figure 7B). In general, although the forecasted ratios are

lower than the observed ones, the correlation between them

remains high values, indicating a good performance of the PM2.5

ensemble forecasts.

The forecasted PM2.5 pollution ratios of the autumns and

winters from 2018 to 2020 are calculated, and the

corresponding 25th, 50th and 75th percentiles are given in

Table 3. The 25th percentiles of the forecasted PM2.5

pollution ratios are below 50% for all forecast leading

times, which are below 20% for the leading times of

12–15 days. Besides, the 25th percentiles exceed 30% with

the forecast leading times of 1–6 days, with the ratios being

47.6% and 42.2% for the leading times of 1 day and 2 days,

respectively. The 50th percentiles are below 70% for all

forecast leading times, which are over 60% with the

forecast leading times of 1–5 days. Besides, the differences

of the 50th percentiles among different forecast leading times

are smaller than those of the 25th percentiles. The 75th

percentiles of the forecasted PM2.5 pollution ratios are

above 70% for most of the forecast leading times, which

exceed 75% with the leading times of 1–6 days. In

addition, the differences of the 75th percentiles among

different forecast leading times are further reduced when

compared with those of the 50 percentiles, being only 10.1%

between the 1-day and 15-day forecast leading times. In

summary, the forecasts of PM2.5 pollution ratio with

different leading times are indicative of the occurrence of

regional PM2.5 pollution events to some extent.

FIGURE 11
PM2.5 pollution ratios for forecasts under different forecast initial times and observations from December 8 to 12 of 2021 in BTH and its
surrounding areas.
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3.3 Evaluation of the OIF-PM2.5 method
and its application

3.3.1 Performance of the OIF-PM2.5 method
In this study, the accuracy for forecasts in the autumn and

winter of 2021 is examined. As illustrated in Figure 8, the

accuracy of the OIF-PM2.5 method show a trend of first

increase and then decrease, being over 60% for different

forecast leading times. The highest accuracy of 90.8% is

achieved for the forecasts with the leading time of 7 days. In

addition, the average accuracy for forecast leading times of

1–3 days, 4–7 days and 8–15 days are 74.1%, 81.3% and

72.9%, respectively. It is well documented that the ECMWF

has better predictability for ensemble forecasts with the

leading times of 4–7 days (Huang and Niu, 2017). The

evolution of accuracy with different forecast leading times is

consistent with that reported in Tao et al. (2017). It indicates that

the OIF-PM2.5 method has a high reliability in forecasts with the

forecast leading times of 1–15 days.

3.3.2 Application in a PM2.5 pollution process
A regional PM2.5 pollution event occurred in BTH and its

surrounding areas from December 8 to 12, 2021 (Figures 9, 10).

Most of the region was dominated by PM2.5 pollution of light

level on December 9, with the daily average PM2.5 concentration

being 88.7 μg m−3 and the pollution ratio being 69.5%. In

addition, the atmospheric dispersion conditions worsened in

this region during December 10–11. The areas with high

PM2.5 concentrations were mainly located in southern Hebei,

central and eastern Henan, and central and Western Shandong,

with the regional averaged PM2.5 concentrations reaching

118.3 μg m−3 on December 10 and 113.4 μg m−3 on December

11. In addition, the PM2.5 pollution ratio increased to 86.3% on

December 10 and 78.2% on December 11, indicating the

significant expansion and enhancement of the PM2.5

pollution. Eventually, the PM2.5 concentrations decreased

gradually from North to South due to the cold air on

December 12, and the air quality reached the excellent and

good level in most of the region.

Using different forecast initial times, the OIF-PM2.5 method

is applied to this pollution episode, and the forecast results are

shown in Figure 11. It can be seen that the forecasted PM2.5

pollution ratios for different initial times are consistent with the

observations, which is of indicative significance for the evolution

of pollution process. For the most polluted period of the pollution

process, the pollution ratio of stations on December 10 is 57.7%

with the forecast initial time being December 1, which even

exceeds the 50th percentile (55.8%). In addition, the values of

accuracy under different forecast leading times are also

calculated. The results show that the average accuracy reaches

90% (100%) under the leading times of 4–11 days (6–8 days),

indicating that the forecast stability of the OIF-PM2.5 method is

more stable and is of reference value for forecasts.

4 Conclusion and discussion

Based on the medium- and long-term ensemble forecasts of

PM2.5 concentrations, the OIF-PM2.5 method is developed in this

study. Specifically, different percentiles of forecasted PM2.5

pollution ratios for each forecast leading time from 2018 to

2020 are determined and analyzed. The OIF-PM2.5 method is

further evaluated and applied in a PM2.5 pollution episode in

2021. The main conclusions are as follows.

The observed PM2.5 pollution ratio increases with the

aggravation of PM2.5 pollution in this region. For example,

the heavy pollution ratio is 4.4 times the light pollution ratio

and 3.9 times the moderate pollution ratio. Besides, the

correlation coefficients between the observed ratios and

forecasted ratios are above 0.60 for all forecast leading

times in ensemble forecast products. Furthermore, the

statistical results show that the average accuracy for

forecasts with the leading times of 1–3 days, 4–7 days and

8–15 days in are 74.1%, 81.3% and 72.9%, respectively,

indicating that the OIF-PM2.5 method has a high reliability

in forecasts with the leading times of 1–15 days. The OIF-

PM2.5 method is further applied in a severe PM2.5 pollution

episode in the December of 2021. It is revealed that the average

accuracy for the forecasts with the leading times of 6–8 days

reaches as high as 100%, showing a certain reference value.

The findings of this paper help to understand the PM2.5

concentration forecasts with the forecast leading times of

1–15 days, which can help to minimize the adverse effects of

high PM2.5 pollution for society and public health. Moreover, it

will help decision makers to formulate pollutant control

strategies and take precautions.
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