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Watershed models such as the Soil and Water Assessment Tool (SWAT)

consist of high-dimensional physical and empirical parameters. These

parameters often need to be estimated/calibrated through inverse

modeling to produce reliable predictions on hydrological fluxes and

states. Existing parameter estimation methods can be time consuming,

inefficient, and computationally expensive for high-dimensional

problems. In this paper, we present an accurate and robust method to

calibrate the SWAT model (i.e., 20 parameters) using scalable deep

learning (DL). We developed inverse models based on convolutional

neural networks (CNN) to assimilate observed streamflow data and

estimate the SWAT model parameters. Scalable hyperparameter tuning is

performed using high-performance computing resources to identify the top

50 optimal neural network architectures. We used ensemble SWAT

simulations to train, validate, and test the CNN models. We estimated the

parameters of the SWAT model using observed streamflow data and

assessed the impact of measurement errors on SWAT model calibration. We

tested and validated the proposed scalable DLmethodology on the American River

Watershed, located in the Pacific Northwest-based Yakima River basin. Our results

show that the CNN-based calibration is better than two popular parameter

estimation methods (i.e., the generalized likelihood uncertainty estimation

[GLUE] and the dynamically dimensioned search [DDS], which is a global

optimization algorithm). For the set of parameters that are sensitive to the

observations, our proposed method yields narrower ranges than the GLUE

method but broader ranges than values produced using the DDS method

within the sampling range even under high relative observational errors. The

SWAT model calibration performance using the CNNs, GLUE, and DDS

methods are compared using R2 and a set of efficiency metrics, including

Nash-Sutcliffe, logarithmic Nash-Sutcliffe, Kling-Gupta, modified Kling-Gupta,

and non-parametric Kling-Gupta scores, computed on the observed and

simulated watershed responses. The best CNN-based calibrated set has scores

of 0.71, 0.75, 0.85, 0.85, 0.86, and 0.91. The best DDS-based calibrated set has

scores of 0.62, 0.69, 0.8, 0.77, 0.79, and 0.82. The best GLUE-based calibrated set

has scores of 0.56, 0.58, 0.71, 0.7, 0.71, and 0.8. The scores above show that the

CNN-based calibration leads to more accurate low and high streamflow

predictions than the GLUE and DDS sets. Our research demonstrates that the

proposed method has high potential to improve our current practice in calibrating

large-scale integrated hydrologic models.
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1 Highlights

• We developed a scalable deep learning (DL) methodology

to estimate SWAT model parameters.

• Our DL methodology is based on convolutional neural

networks (CNN).

• Our CNN-enabled SWAT model calibration shows higher

streamflow prediction accuracy than traditional parameter

estimation methods such as the Generalized Likelihood

Uncertainty Estimation (GLUE) and the Dynamically

Dimensioned Search (DDS) algorithms.

• Estimated SWAT model parameters from observed

discharges are within the sampling range of ensemble

simulations even when high-observational errors exist.

• An added benefit is that CNN-enabled parameter

estimation after training is at least O(103) times faster

than GLUE- and DDS-based methods.

• However, the hyperparameter tuning to discover

reasonably accurate CNN models is computationally

expensive, which is in O(105) processor hours.

2 Introduction

Watershed models frequently are used to predict streamflow

and other components in the terrestrial water cycle. These

components are affected by a wide range of anthropogenic

activities (e.g., agricultural intensification), climate

perturbations (e.g., rain-on-snow, rising temperatures and

increasing precipitation, earlier occurrence of snow melt in

mountainous regions), and disturbances (e.g., wildfire) (Singh

and Frevert, 2003; Singh and Frevert, 2010; Daniel et al., 2011).

Watershed models also have been used to assess the sustainability

of the water supply for effective water resource management.

Some popular and open-source watershed modeling software

that can accurately simulate various components of water cycling

in intensively managed watersheds include the Soil and Water

Assessment Tool (SWAT) and its variants (e.g., SWAT-MRMT-

R) (Mankin et al., 2010; Neitsch et al., 2011; Fang et al., 2020), the

Advanced Terrestrial Simulator (ATS) (Coon et al., 2020), the

Precipitation Runoff Modeling System (PRMS) (Leavesley et al.,

1983; Markstrom et al., 2015), the Weather Research and

Forecasting Model Hydrological modeling system (WRF-

Hydro) (Sampson and Gochis, 2018; Wu et al., 2021), etc

(Donigian et al., 1995; Tague and Band, 2004; Graham and

Butts, 2005; Cuo et al., 2008; Hamman et al., 2018).

Watershed models adopt physical laws (e.g., mass and energy

balance) or known empirical relationships to simulate the

watersheds’ different hydrological components (e.g.,

infiltration, evapotranspiration, groundwater flow, streamflow).

These models feature two types of parameters (Johnston and

Pilgrim, 1976; Mein and Brown, 1978; Nakshatrala and

Joshaghani, 2019). The first type includes parameters with

physical characteristics (e.g., permeability, porosity). The

second type includes conceptual or empirical parameters,

which are currently impossible or difficult to measure directly.

Most watershed simulators (e.g., SWAT, PRMS) consist of

parameters that fall in the second category (Singh and Frevert,

2010). As a result, observed data, such as streamflow collected at

the watershed outlet, are used to estimate the conceptual

parameters through model calibration. Many semi-distributed

or bucket models can only achieve adequately accurate

predictions after calibrating their parameters with available

observations, making them less ideal for ungauged watersheds.

On the other hand, advanced fully integrated watershed models

(e.g., ATS) can predict watershed responses with reasonable

accuracy without undergoing intensive model calibration;

however, running those models is computationally expensive

(Chen et al., 2021; Cromwell et al., 2021). Certain parameters in

these mechanistic models (e.g., ATS) are measurable and

physically significant while others are empirically similar to

the SWAT.

Various techniques and software tools for calibrating

watershed models have been reported in the literature (Duan

et al., 2004). Popular methods include generalized likelihood

uncertainty estimation (GLUE) (Blasone et al., 2008; Nott et al.,

2012), the dynamically dimensioned search (DDS), maximum

likelihood estimation (Myung, 2003), the shuffled complex

evolution method developed at the University of Arizona

(SCE-UA) (Duan et al., 1994), Bayesian parameter estimation

methods (Thiemann et al., 2001; Gupta et al., 2003; Misirli et al.,

2003), ensemble-based data assimilation methods (e.g., ensemble

Kalman filter, ensemble smoother) (Evensen, 1994; Van Leeuwen

and Evensen, 1996; Evensen, 2003; Chen et al., 2013; Evensen,

2018; Jiang et al., 2021), and adjoint-based methods (Tarantola,

2005; Aster et al., 2018). These techniques underpin popular

software packages such as PEST (Doherty and Hunt, 2010),

DAKOTA (Adams et al., 2009), SWAT-CUP (Abbaspour,

2013), MATK (Model Analysis ToolKit, 2021), MADS

(MADS, 2021), and DART (Anderson et al., 2009), which are

developed to facilitate model calibration. Using these existing

calibration methods and tools can be time consuming (e.g., slow

convergence), require good initial guesses, and can be

computationally intensive (e.g., may require many forward

model runs or runs using high-performance computing

clusters) (Rouholahnejad et al., 2012; Zhang et al., 2016; Bacu

et al., 2017). Moreover, calibration using such tools can

potentially result in reduced accuracy when estimating high-
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dimensional parameters (> 10) (Duan et al., 2004; Eckhardt

et al., 2005). New PEST tools have been developed to handle high

dimensional inverse modeling like PESTPP-ies and PESTPP-DA.

However, many of the methods mentioned above have challenges

(see Supplementary Text S1) in properly capturing the strong

nonlinear relationships between parameters and observed

responses (Franco and Bonumá, 2017). Recent advances in

deep learning (DL) (e.g., deep neural networks [DNNs],

convolutional neural networks [CNNs]) show promise for

developing reliable model calibration methods that overcome

the challenges described above (Gabrielli et al., 2017; Cromwell

et al., 2021).

Deep learning shows promise in aiding inverse modeling

associated with highly nonlinear relationships (Zhang et al., 2009;

Gabrielli et al., 2017; Marçais and de Dreuzy, 2017; Afzaal et al.,

2020; Sit et al., 2020; Nearing et al., 2021). It uses multiple neural

layers to extract features that are representative of inputs, and

DL-enabled inverse models for parameter estimation are known

to be robust even when observed errors or noise exist (Rolnick

et al., 2017; Edwards, 2018; Gupta and Gupta, 2019; Rudi et al.,

2020). In hydrology, neural networks (e.g., deep, convolutional,

recurrent) have been used to model and predict streamflow,

water quality, and precipitation (Shen, 2018; Khandelwal et al.,

2020; Bhasme et al., 2021). Recently Tsai and co-workers (Tsai

et al., 2021) developed a novel differentiable parameter learning

framework that efficiently learns a global mapping between

inputs and process model parameters. They applied this

framework to estimate Variable Infiltration Capacity (VIC)

land surface hydrologic model. The trained DL models

produced parameters which allow VIC to best match surface

soil moisture observations from NASA’s Soil Moisture Active

Passive satellite mission. In this paper, we present a scalable,

DL methodology that uses observed streamflow data to

estimate high-dimensional SWAT model parameters

efficiently and reliably with reasonable accuracy. By

scalable, we mean that the CNNs can be trained and tuned

at any scale (e.g., from laptop computers to high-performance

computers at leadership-class computing facilities) without

any changes in the proposed method or developed code. This

study uses CNNs, which are frequently used in hydrological

applications (Sadeghi et al., 2019; Van et al., 2020; Jagtap

et al., 2021).

CNNs offer many advantages over DNNs (Read et al., 2019;

Dagon et al., 2020; Jia et al., 2021; Rahmani et al., 2021; Willard

et al., 2022). A significant advantage of CNNs is that they

explicitly learn local representations (or patterns). As a result,

CNNs are best suited to produce image or time series data where

the neighboring dependencies are important. This superior

performance of CNNs can be attributed to the multiple

convolutional layers that learn hierarchical patterns from the

inputs. The resulting broader set of abstract patterns are used to

develop nonlinear mappings between streamflow and the SWAT

model parameters. Another benefit of CNN-enabled inverse

models is their low inference time for parameter estimation

compared to traditional methods; however, data requirements

and associated training time (e.g., hyperparameter tuning)

needed to develop such inverse models can be substantial.

Once the CNN-enabled inverse model is trained, it can allow

assimilation of observed data, thereby significantly reducing the

time required to estimate parameters in high-dimensional space

(Cromwell et al., 2021).

2.1 Main contributions

The main contribution of this study is development of an

accurate parameter estimation methodology using CNNs that

calibrates watershed models better than traditional methods (e.g.,

GLUE, DDS). The CNN-enabled inverse mappings are built on

ensemble simulations generated by the SWAT model. Scalable

hyperparameter tuning is performed to identify the top

50 architectures based on mean squared error and other

performance metrics1. Further, we test the influence of errors

in observed streamflow on parameter estimation and streamflow

prediction accuracy. A significant advantage of the proposed DL

method is that it estimates sensitive parameters with reasonably

good accuracy even at high observation error levels (e.g., 100%

relative observational errors). Moreover, these estimated

parameters are within the prior sampling range, showing the

proposed methodology’s robustness to observational errors.

Compared to the GLUE and DDS optimization methods,

parameters estimated by the CNN-enabled inverse model

provide more accurate streamflow predictions within and

beyond the calibration period. The GLUE method identified a

set of behavioral parameters within the ensemble parameter

combinations. By “behavioral” parameters, we mean to signify

parameter sets for which SWAT model simulations are deemed

to be “acceptable” upon satisfying certain user-defined

performance metrics (e.g., KGE greater than 0.5) on observed

data (Blasone et al., 2008). Based on a cutoff threshold that uses

metrics such as the KGE, the entire set of simulations then is split

into behavioral and non-behavioral parameter combinations.

The behavioral parameter set provides better accurate

predictions than the non-behavioral set. Our analysis also

showed that the CNN estimated parameter sets are narrower

than the GLUE-based behavioral sets but wider than estimations

obtained using the DDS method. As the DDS method is a global

optimization, it searches for a best parameter value based on a

performance metric (e.g., KGE). Hence, the obtained parameter

ranges from the DDS method can be narrower than those

1 Popular objective functions such as R2-score, Nash-Sutcliffe efficiency
(NSE), Kling-Gupta efficiency (KGE), and their modifications (e.g.,
logNSE, mKGE, and npKGE) are used to evaluate the fit between
observed and simulated streamflow time series.
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obtained from the CNN and GLUE methods. Another advantage

of the proposed CNN-based inverse models is that it is at least

O(103) times faster than the GLUE and DDS methods. From a

computational cost perspective, traditional parameter estimation

using local and global optimization algorithms (e.g., using PEST,

DAKOTA) requires multiple forward model runs. As a result,

inverse modeling may require source code modifications and also

high-performance computational resources, which can be

prohibitively expensive. We acknowledge that hyperparameter

tuning can be expensive. However, such tuning is needed for

finding optimal CNN architectures. Once CNNs are trained, the

savings in computational cost enable our DL-enabled parameter

estimation to be inclusive [i.e., easy to adapt using transfer

learning (Zhuang et al., 2020; Song and Tartakovsky, 2021)]

and ideal for calibrating multi-fidelity models (e.g., ATS,

PFLOTRAN, WRF-Hydro, PRMS) at spatial scales of

watersheds and basins.

2.2 Outline of the paper

The paper is organized as follows: Section 2 discusses

state-of-the-art methods for parameter estimation and their

limitations. We also demonstrate the need for developing DL

method to better calibrate hydrological models, such as

SWAT. Section 3 describes the study site and SWAT model

developed using a National Hydrography Dataset PLUS

(NHDPLUS v2)-based watershed delineation (Moore and

Dewald, 2016). We discuss data generation to develop

CNN-enabled inverse models. We also compared observed

data with the SWAT model ensemble simulations. Section 4

introduces the proposed scalable DL methodology for

estimating SWAT parameters. We performed sensitivity

analysis to rank the sensitivities of SWAT model

parameters. We performed scalable hyperparameter tuning

to identify the optimal CNN architectures and described the

associated computational costs for training the DL models and

generating inferences (e.g., on test and observational data).

Section 5 presents the training, validation, and testing results

of the CNNs. We compared the performance of CNN-

estimated parameters with those of the GLUE and DDS

methods. Performance of the calibration model within and

beyond calibration period is provided. Sections 6 and 7

present our future work and conclusion.

3 Study site and data generation

This section first describes the study site, the American

River Watershed (ARW) in the Yakima River Basin (YRB),

before discussing the SWAT model, its parameters, and

specifics on ensemble runs needed to develop CNN-enabled

inverse models. We also compare the observed streamflow

data used to calibrate the SWAT model with the ensemble

runs within the calibration period (i.e., from water years

[WYs] 2014 to 2016 [1 October 2013, through

30 September 2016]). Each SWAT model run produces

daily simulated streamflow values.

3.1 Study site

The YRB (see Figure 1), situated in Eastern Washington

State, has a drainage area of about 16,057 km2 (Mastin and

Vaccaro, 2002; Qiu et al., 2019). The daily averaged flow for

the YRB is about 95 m3s−1 over a period of 40 years. This averaged

flow is computed using the data collected from 1/1/1980 to 12/

31/2021 at the Kiona gauge station, which is the closest to the

outlet of the YRB. A major tributary of the Yakima River is

the American River, which is a third-order stream, with a

watershed of about 205 km2. According to 30-year

normalized PRISM data, the mean annual precipitation

and temperature within the ARW range from 978 to

2,164 mm and 2.8–4.9°C, respectively (Daly et al., 2000;

Daly and Bryant, 2013; PRISM, 2021). The climate within

the ARW exhibits strong seasonal patterns, including cold,

wet winters and hot, dry summers. About 60% of

precipitation occurs in the winter as snow, with snowmelt

occurring from April to June the following year. Peak

snow accumulation and flow occur in April and May,

respectively. This prior site-specific knowledge shows

that the snow process parameters in the SWAT model

are essential. Guided by the information mentioned above

and sensitivity analysis, our results demonstrate that we

can better estimate such important process model

parameters using our DL method rather than DDS and

GLUE methods.

The slope of the ARW varies from 0° to 83°, with a mean

slope of 23°. The major surface geology types are andesitev

(72%), granodiorite (20%), and alluvium (8%). The primary

soil texture is gravelly loamy sand with a maximum soil

depth of 1,524 mm based on U.S. Department of Agriculture

State Soil Geographic Data (STATSGO) (Schwarz and

Alexander, 1995). This soil is classified as hydrologic

group B with moderate runoff potential and infiltration

rates. Evergreen trees (83%) and shrub (11%) dominate

the land cover. Other types of land cover include urban,

grass, and wetlands. The ARW has a U.S. Geological Survey

(USGS) gauging station (USGS 12488500) located in the

watershed outlet. This station has been recording the

daily observed streamflow from 16 July 1988, to the

present. A snow telemetry (SNOTEL) station (site name:

Morse lake) is located northwest of the watershed. This

SNOTEL station has measured the snow water, daily

precipitation, and air maximum/mean/minimum temperatures

from 1 October1979, to the present.
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3.2 Brief description of the SWAT model

SWAT is a semi-distributed eco-hydrological model. It

can simulate both subsurface and surface hydrological

processes, soil or plant bio-geochemistry, and in-stream

processes (Arnold et al., 2012). The SWAT model requires

various spatial Geographic Information System data to

represent the different watershed characteristics (e.g.,

topography, land cover, and soil). The USGS 10-m digital

elevation model (DEM) is used to compute the topographic

parameters (e.g., drainage area, slope, slope length) with the

ARW basin and sub-basin boundaries and stream networks

defined by the National Hydrography Dataset Plus

(NHDPlus) catchment/streams. Previous studies (Chiang

and Yuan, 2015; Moore and Dewald, 2016) have

demonstrated that NHDPlus-based catchment/streams

outperformed modeled streamflows that did not account

for such delineation.

Figure 1 shows the location of the ARW, and key inputs of

NHDPlus-based SWATmodel used to simulate streamflow at the

ARW study site. This model is composed of 87 sub-basins with

five slope classes (percent rise of the slope): 1) 0–26, 2) 26–51, 3)

51–80, 4) 80–129, and 5) 129–999. Data from the USGS National

Landcover Database 2016 (30-m resolution) and the Department

of Agriculture STATSGO database are used to estimate the land

cover/use and soil parameters, respectively. Hydrologic response

unit (HRU) maps are developed by fully combining unique slope

class, land cover/use, and soil type, resulting in a total of

2,421 HRUs for the ARW (see Figure 1). Supplementary Text

S1 provides additional details on SWAT model development for

our study site. Daily precipitation, maximum and minimum air

temperatures, radiation, and relative humidity from a daily

Daymet (Daymet, 2021) with 1-km spatial resolution are used

to prepare the climate input data for the SWAT model

simulations. Wind speed data are generated using weather

generators in the SWAT.

3.3 Data for the SWAT model calibration

Table 1 summarizes the 20 parameters and their associated

sample ranges (e.g., minimum and maximum values) we

calibrated in the SWAT model to generate simulation data.

The table clearly shows seven groups/types of SWAT model

parameters: 1) landscape, 2) soil, 3) groundwater, 4) channel, 5)

snow, 6) plant, and 7) climate. Each parameter in a specified

group is calibrated at different spatial scales. For example, snow

group parameters such as SFTMP and SMTMP represent basin-

scale snow processes. Channel group parameters are at the sub-

basin level, and soil/groundwater/plant/climate group

parameters represent HRU level spatial variation. Even though

some parameters differ at the HRU level, we calibrate basin-scale

scaling coefficients that vary within [−0.3, 0.3] and are the same

for all HRUs.

FIGURE 1
NHDPlus-based SWATmodel for ARW: This figure shows thewatershed delineation and data products used to develop the SWATmodel for our
study site. The top left figures show the delineation of the YRB into different watersheds, including our ARW study site. It also shows the DEM used for
modeling the ARW and the associated stream gauge at thewatershed outlet. The top right figures show the spatially varying slope and soil data within
the study site. The bottom left figure shows the delineation of third-order streams in the ARW. The bottom right figures show the spatially
varying land cover (primarily evergreen) and the number of HRU employed in the SWAT model.
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Using a Sobol quasi-random2 sequence sampling method

(Herman and Usher, 2017), we generated 1,000 sets of these

20 parameters to develop CNN-enabled inverse models. Sobol

sequence is quasi-random low-discrepancy sequences (Sobol’,

1967; Herman and Usher, 2017). Compared with random

sampling from a uniform distribution, Sobol sequence

guarantee better uniform coverage of the samples. We

adopted Sobol sequences to generate the ensemble realizations

of standardized parameters within [0,1], which were then scaled

back to the parameter ranges shown in Table 1 The daily

streamflow data and flow duration curves simulated using the

SWAT model for these 1,000 realizations are shown in Figure 2.

The simulation time for the SWAT model calibration is between

the beginning of WY 2014 to the end of WY 2016 (i.e., 1 October

2013—30 September 2016), which is referred to as the calibration

TABLE 1 This table provides a list of 20 different SWAT model parameters that are calibrated using the proposed scalable DL methodology. The
associated lower and upper limits of parameter values also are specified. Boldfaced descriptors are mutual information (MI)-identified sensitive
parameters (Jiang et al., 2022b).

Parameter
group/type

Parameter2 Lower
limit

Upper
limit

Brief description
(units)

Parameter
modification3

Spatial
variability

Landscape CN2 −0.3 0.3 % change in SCS runoff curve number R Varying across
HRUs

Groundwater RCHRG_DP 0 1 Deep aquifer percolation fraction V Constant across
HRUs

Groundwater GWQMN 0 5,000 Threshold depth of water in the shallow aquifer
required for return flow to occur (mm)

V Constant across
HRUs

Groundwater GW_REVAP 0 0.2 Groundwater “revap” coefficient V Constant across
HRUs

Groundwater REVAPMN 1 500 Threshold depth of water in the shallow aquifer for
“revap” to occur (mm)

V Constant across
HRUs

Groundwater GW_DELAY 1 100 Groundwater delay (days) V Constant across
HRUs

Groundwater ALPHA_BF 0.01 0.99 Baseflow alpha factor V Constant across
HRUs

Soil SOL_K −0.3 0.3 % change in saturated hydraulic conductivity
(mm h−1)

R Varying across
HRUs

Soil SOL_AWC −0.3 0.3 % change in available water change in capacity of the
soil layer (mm H2O mm soil−1)

R Varying across
HRUs

Soil ESCO 0.01 1 Soil evaporation compensation factor V Constant across
HRUs

Soil OV_N −0.3 0.3 % change in Manning’s “n” value for overland flow R Varying across
HRUs

Channel CH_K2 0 200 Effective hydraulic conductivity in main channel
alluvium (mm h−1)

V Constant across
sub-basins

Channel CH_N2 0.02 0.15 Manning’s “n” value for the main channel V Constant across
sub-basins

Snow SFTMP −5 5 Snowfall temperature (oC) V Constant in the
basin

Snow SMTMP −5 5 Snow melt base temperature (oC) V Constant in the
basin

Snow SMFMX 1.4 6.9 Maximum melt rate for snow during the year (mm
H2O

oC day−1)
V Constant in the

basin

Snow TIMP 0.01 1 Snowpack temperature lag factor V Constant in the
basin

Plant EPCO 0.01 1 Plant uptake compensation factor V Constant in the
basin

Climate PLAPS 343.3 964 Precipitation lapse rate (mm km−1) V Constant in the
basin

Climate TLAPS -4.86 3.353 Temperature lapse rate (oC km−1) V Constant in the
basin

2 Table 1: Note that the sensitive parameters are identified using the MI
method. These sensitive parameters are presented in boldface in this
parameter column.
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period. The validation period is from3 WY 2000 through WY

2013 (i.e., 1 October 1999—30 September 2013). The calibrated

SWAT model is run during the validation period, and its

performance is then compared with the observed data.

Figure 2 compares the ensemble mean of simulated discharge

(i.e., 1,000 realizations) with the observational data. The grey

color represents each of the 1,000 simulated discharge

realizations. This streamflow time-series and flow duration

curve qualitatively shows the similarities of the trends in the

simulated discharge and observed data. However, the

comparison against observations also show the over/under

predictions of peak/low flows that can be due to structural

deficiencies of the model. The SWAT model fidelity may need

to be enhanced to overcome these structural deficiencies. The

generated data are used to estimate SWAT parameters by the

CNN-based calibration, GLUE, and DDS methods. The GLUE-

and DDS-based SWAT model calibrations also are compared

with the observed data for both periods. The behavioral model

parameter sets (i.e., from the GLUE method) are selected based

on KGE metrics. We also use the other accuracy measures (e.g.,

NSE, logNSE, R2-score) to evaluate the calibrated SWAT model

performance, which are described in Section 4.4.

4 Proposed methodology

This section presents the overall methodology consisting

of data pre-processing, scalable hyperparameter tuning

(Mudunuru et al., 2022), and computational cost of

constructing the CNN-enabled inverse models. We also

briefly describe the GLUE and DDS optimization methods

that are used to compare the performance of CNNs. The

comparison of the DL method performance against the

most commonly applied algorithms for calibration of

FIGURE 2
SWATmodel simulations vs. observational data (within calibration period): This figure compares themodeled streamflow data generated based
on NHDPlus-based SWAT model with observed flow for the ARW study site. The top figure (A) shows the streamflow time-series and the bottom
figure (B) shows the flow duration curves. The dark brown color dashed line represents the ensemble mean of 1000 SWAT model simulations. The
grey color lines represents the modeled streamflow ensembles. The black-colored line corresponds to the observed streamflow data.

3 In Table 1, the parameter modification column indicates how SWAT
model parameters aremodified during calibration and the training data
generation for CNN-enabled inverse modeling. The term “V” indicates
that existing SWATmodel parameter values are replaced with values in
the provided range. The term “R” indicates relative changes in
parameters by multiplying existing values with 1+ calibrated
parameter values in the range (Qiu et al., 2019). The CN2, SOL_K,
and SOL_AWC parameter modifications are “R,”whose absolute values
as (Eckhardt et al., 2005; Rouholahnejad et al., 2012), [0.001, 1,000],
and [0.01, 0.35], respectively.
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FIGURE 3
Proposed scalable deep learning workflow for the SWATmodel calibration: A pictorial description of the proposed DLmethodology to estimate
parameters and calibrate the SWAT model using observational discharge. Ensemble simulations generated by the SWAT model are used to train,
validate, and test the CNN-enabled inverse models, as shown in the top figure (A). The observed streamflow is then provided as an input to the
developed DL models to estimate site-specific parameters. These parameters are then used by the SWAT model to simulate discharge for
comparison with observational data. The bottom figure (B) shows a scalable hyperparameter tuning approach to identify optimal CNN architectures
using high-performance computing resources at NERSC. Each explored CNN architecture is trained on one/two CPU physical cores and its
performance is estimated using validation loss and streamflow prediction metrics (e.g., R2-score, NSE, logNSE, KGE and its variants). From the
explored space, top 50 CNNs are chosen for inverse modeling and analysis.
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watershed simulation models (i.e., DDS and GLUE) gives

better insight into CNN’s capability in providing accurate

parameter estimations and uncertainty on streamflow

predictions.

4.1 Proposed scalable deep learning
methodology

Figure 3 summarizes our proposed DL method for training

the inverse models and then inferring the SWAT parameters. We

train, validate, and test CNN-enabled inverse models

(Schmidhuber, 2015; Goodfellow et al., 2016; Chollet, 2017)

using SWAT model ensemble runs. The proposed DL

methodology can be divided into multiple steps, which is

described below in a step-by-step approach.

1) The inputs to the CNNs are the modeled daily streamflow

time-series data and outputs are the SWAT parameters.

Both the inputs and outputs are normalized for

training CNNs.

2) The CNN-enabled inverse models are developed to estimate

all 20 of the SWAT process model parameters. We used the

Keras API in Tensorflow package (Keras API, 2021) to build

our CNN-enabled inverse models.

3) The simulated streamflow and parameter sets are assembled

into a data matrix and then partitioned into training (80%),

validation (10%), and testing (10%) sets, of which each SWAT

run contains 1,096 daily data points. The training and

validation sets are jointly used in hyperparameter tuning to

find the optimal CNN architecture.

4) The dataset is normalized, which is necessary for CNNmodel

development as CNNs are filter/kernel-based methods that

benefit from normalization of their inputs to make accurate

predictions (Anysz et al., 2016; Gu et al., 2018). The

normalization is done by first removing the mean and

scaling the training dataset to unit variance and then

applying the same pre-processing normalizer to transform

the validation and testing sets.

5) Hyperparameter tuning is performed to identify the

optimal CNN architectures whose performances were

evaluated against validation dataset during model

training. By CNN architecture, we mean convolutional

and pooling layers that needs to be tuned for optimal

performance.

6) The testing step includes performance evaluation (e.g., mean-

squared error) of the tuned CNNs on test data.

7) The observed data are standardized using the pre-processing

normalizer (Pedregosa et al., 2011) that we trained on

simulation data. This normalized data is input to the tuned

FIGURE 4
A top-50 CNN-enabled inverse model architecture: This figure shows a pictorial description of a deep CNN for estimating SWAT model
parameters. This CNN model inversely maps simulated discharge to 20 different conceptual parameters. Hyperparameter tuning is then performed
to arrive at this CNN architecture. This CNN-enabled inversemodel is amulti-task learningmodel that accounts for the correlation between different
SWAT parameters during training.
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CNN-enabled inverse model to estimate the study site SWAT

model parameters. We also add errors to observed streamflow

data and assess the performance of CNNs for SWAT model

calibration.

8) Finally, these calibrated parameter sets are given to the SWAT

model to obtain daily streamflow values in the calibration and

validation periods. The predicted discharge is then compared

with the observed data to evaluate the performance of the

CNN-calibrated SWAT model in both calibration (WY

2014–2016) and validation time periods (WY 2000–2013).

Hyperparameter tuning is a crucial step in obtaining reliable

and accurate CNN-enabled inverse models. The search for

hyperparameters is performed in parallel at the National

Energy Research Scientific Center (NERSC) (NERSC, 2021), a

high performance computing user facility operated by Lawrence

Berkeley National Laboratory for the U.S. Department of Energy

Office of Science. Scalable hyperparameter tuning is achieved by

combining mpi4py (MPI for Python) package with Tensorflow

package and parallel HDF5 modules to train each CNN

architecture on at least one physical central processing unit

(CPU) (see Figure 3B). As tuning is embarrassingly parallel,

the CNN architectural search space is distributed across the

processes employed and run simultaneously on one to two cores

each. All trained CNNmodels and their inferences are written to

their individual HDF5 files. This tuning is necessary as the

training process and predictions of the CNN-enabled inverse

model are controlled by the parameters and topology of the CNN

architecture. We tested two types of hyperparameters: 1) model

hyperparameters and 2) algorithm hyperparameters. Model

hyperparameters define the neural network architecture. For

instance, the selection of CNN topology is influenced by

model hyperparameters such as the number and width of

hidden layers. Algorithm hyperparameters influence the

training process after the architecture is established. The

values of the trainable weights of a CNN architecture are

controlled by algorithm hyperparameters such as learning rate

and the number of epochs. Table 2 shows the search space that we

explored. Supplementary Table S1 shows the model and

algorithm hyperparameters for the top 50 CNN architectures

identified through this scalable approach. During the tuning

process, we used ReLU as the activation function, and max

pooling is taken to be equal to 2. The optimal hyperparameter

set is chosen based on the validation mean squared error along

with streamflow prediction metrics using the grid search tuning

method4. In addition to identifying the optimal hyperparameter

set, we also identified the next 50 best candidates. In Section 5, we

show the predictions of these 50 best models and the associated

uncertainty in their streamflow predictions5.

Figure 4 shows a pictorial description of a tuned CNN

architecture from the grid search. The CNN filters are

initialized with the Glorot uniform initializer (Gu et al., 2018;

Keras API, 2021). This Glorot uniform allows us to initialize the

weights so the variance of the activations are the same across

every neural layer. Moreover, this constant variance initialization

helps prevent the gradient from exploding or vanishing. After

each convolution, a max-pooling operation is applied, and the

final convolutional layer is flattened. After the dropout layer, the

remaining features are mapped to the SWAT parameters. The

entire CNN is compiled using an Adam optimizer, with the loss

being the mean squared error. The resulting tuned CNN

architectures (each of the top 50 models) have approximately

1 M trainable weights.

4.2 Dynamically dimensioned search
method

The DDS method is a global optimization algorithm

developed to automatically calibrate highly parameterized

TABLE 2 This table provides the hyperparameter space used to explore CNN architectures for developing reliable DL-enabled inverse mappings for
the SWAT model calibration.

Hyperparameter type Description Explored options

Layers Number of 1D convolutional layers [1, 2, 3, 4, 5]

Filters The number of output filters in the 1D convolution [16, 32, 64, 128, 256]

Kernel size An integer to specify the length of the 1D convolution window [2, 4, 8, 16, 32]

Dropout rate Applies dropout to the input5 [0.0, 0.1, 0.2, 0.3, 0.4]

Learning rate The value of the optimizer in the Adam algorithm [10–6, 10–5, 10–4, 10–3, 10–2]

Batch size The number of training samples seen by CNN per gradient update [4, 8, 16, 32, 64]

Epochs The number of times the algorithm sees the training data [50, 100, 200, 300, 400, 500]

4 Grid search is an exhaustive search technique performed on a specific
hyperparameter values of the CNN architecture.

5 Table 2: To reduce model over-fitting, we randomly set the last
convolutional layer units that connect to the output to 0 at each
step during training time. The rate value controls the frequency of
dropping the units.
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hydrologic models. Typically, the total number of evaluations

available for SWAT model calibration is always limited and is

also case-study dependent because of the curse of

dimensionality. The DDS method is designed from this

calibration perspective to find practical or high-quality

parameter sets. It is well known that the DDS method

outperforms methods such as SCE-UA (available in PEST

package) when the number of calibrated parameters is high

(i.e., 10 or more) (Tolson and Shoemaker, 2007). Below, we

summarize the steps involved in executing the DDS method to

calibrate the SWAT model.

First, we define DDS algorithm inputs such as neighborhood

perturbation size parameter (0.2 as the default value), maximum

number of function evaluations (a total of 500 for each random

seed), number of random seeds (a total of 10), bounds on all the

SWAT model parameters (as mentioned in Table 1), and initial

guesses/solutions for these parameters. Second, for the initial

guess, we construct and evaluate an objective function (e.g., KGE)

that minimizes differences between the simulated and observed

data. Third, we perturb the initial guess by using a vector sampled

from a standard normal random distribution with zero mean and

unit standard deviation. We ensure that the perturbed values are

within the physical bounds, which is the SWAT parameter range.

Fourth, we evaluate the objective function and update the best

solution until all user-defined evaluations are exhausted or a

stopping criterion is met. We executed these steps for 10 different

random seeds, which resulted in a total of 5,000 DDS calibration

sets (i.e., 10 × 500). Then, we selected the top-50 from this total of

5,000 DDS calibration sets.

4.3 Generalized likelihood uncertainty
estimation method

The GLUE method (Beven and Binley, 2014) used in

hydrology provides a framework for evaluating model

performance and quantifying the impact of various

uncertainty sources on predictive uncertainty. For its

simplicity and flexibility, the GLUE method (Beven and

Binley, 2014) has been applied to various watershed models.

The method uses a Monte Carlo approach to evaluate different

model structure/parameter sets by comparing observed data with

modeled values. In many cases, the different models or parameter

sets show similar model performance (e.g., NSE), which is called

as an equifinality. Thus, instead of searching for an optimum

model, searching for a behavioral parameter and model structure

is a general practice. In this study, we use the GLUE method to

select the behavioral parameter sets for the SWAT model by

comparing the observed streamflow and modeled value. Because

of the lack of prior knowledge of the distribution of each

parameter, the 20 parameters used in the SWAT model are

assumed to follow uniform distributions, and we use a Sobol

sequence method to efficiently sample the parameters values. The

behavioral parameter sets are the top-50 sets selected from a total

of 1,000 simulations based on the accuracy of the KGE metric.

The selected KGE values of the behavioral parameter sets range

from 0.5 to 0.7. They are shown in Section 5 and also in

Supplementary Table S2. Also, to evaluate the impact of total

number of model simulations on model performance, we also

increased the number of model simulations from 1,000 to 5,000,

and the results obtained from 5,000 simulations remain very

similar to the results from 1,000 simulations.

4.4 Performance metrics

The evaluation criteria for SWATmodel calibration using the

CNN, DDS, and GLUE estimated sets include R2-score, NSE,

logNSE, KGE, and its variants (i.e., mKGE and npKGE)

(Hydroeval, 2021). For instance, NSE, logNSE, and KGE are

evaluated as follows:

NSE q, q̂( ) � 1 −
∑n
i�1

qi − q̂i( )2∑n
i�1

qi − μq( )2 where μq �
1
n
∑n
i�1

qi (1)

logNSE q, q̂( ) � 1 −
∑n
i�1

log qi[ ] − log q̂i[ ]( )2∑n
i�1

log qi[ ] − log �q[ ]( )2 (2)

KGE q, q̂( ) � 1 −

���������������������������
r − 1( )2 + σ q̂

σq
− 1( )2

+ μq̂
μq

− 1( )2

√√
(3)

Where q̂i ∈ q̂ is the SWAT model prediction and qi ∈ q is the

observational streamflow. n is the dimension of q̂ and q, which is

the total number of time-steps. r is the Pearson product-moment

correlation coefficient. σ q̂ and σq are the standard deviations in

the SWAT model predictions and observations, respectively. μq̂
and μq are the mean values in the SWAT model predictions and

observations, respectively. The objective functions for computing

mKGE and npKGE metrics are described in References (Kling

et al., 2012; Pool et al., 2018).

Eachmetric takes into account different aspects of calibration

performance (Liu, 2020). The R2-score indicates the goodness of

fit, which measures how close the streamflow predictions from

the CNN-enabled calibration are to observed data. NSE evaluates

how well the calibrated SWAT model predictions capture high

flows. Complementary to NSE, logNSE determines the accuracy

of model predictions for low flows. KGE combines these three

different components of NSE (i.e., 1) correlation, 2) bias, and 3) a

ratio of variances or coefficients of variation) in a more balanced

way (e.g., more weight on low flows and less weight on extreme

flows) to assess the SWAT model calibration. mKGE makes sure

the bias and variability ratios are not cross-correlated, which

otherwise may occur when (for instance the precipitation) inputs

are biased. npKGE provides the variability and the correlation

term in KGE in a non-parametric form. This reformulation of
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KGE as npKGE allows us to estimate non-parametric

components (i.e., the Spearman rank correlation and the

normalized flow–duration curve), which are necessary for

watershed model calibrations aiming at multiple hydrograph

aspects. Hence, including multiple accuracy metrics when

evaluating a calibrated model has obvious advantages. In

addition to the above metrics, we quantify the uncertainty of

the modeled streamflow for each method. Uncertainty is

measured by the averaged width of maximum and minimum

modeled streamflow results over the simulation periods and how

well the modeled uncertainty boundary contains the observed

streamflow. We evaluate this predictive uncertainty and

associated probability that streamflow is contained within this

boundary for the top-50 sets estimated by the CNN, DDS, and

GLUE methods.

4.5 Computational cost

The wall clock time to run the WY 2014 to 2016 SWAT

model simulation (each realization) is approximately an hour on

a four-core processor (Intel(R) i7-8650U CPU at 1.90 GHz),

which is a standard desktop computer. The ensemble run

simulations for training the CNN-enabled inverse models

were developed using a cluster of 56 cores (Intel(R) Xeon(R)

Gold 5120 CPU at 2.20 GHz) and 256 GB DDR4 RAM. We

trained a total of 26,250 CNN architectures by using 400 Cori’s

KNL CPU nodes at NERSC. Each KNL node comprises of

68 physical 1.40 GHz Intel Xeon Phi Processor 7,250 (Knights

Landing) with four threads per core, 96 GB DDR4, and 16 GB

MCDRAM memory. The scalable hyperparameter tuning to

identify top-50 CNN architectures led to the use of

approximately 520,000 processor hours. This is the total

computational cost to calibrate the SWAT process model

using CNNs. The time to calibrate SWAT process model

using DDS and GLUE is equal to 20,000 processor hours

(5,000 realizations × 4 cores). Even though model calibration

using CNN is expensive (≈ 18 hours/architecture), it is

embarrassingly parallel, allowing us to efficiently use

supercomputing resources. The DDS method is generally

sequential, as the parameter update depends on the previous

estimation. Also, the DDS-based estimations depend on initial

random guesses similar to CNN training. Hence, the algorithm

needs to be run multiple times to remove the effect of

randomness. Like the GLUE method, DDS allowed us to

calibrate parameters in approximately 10 h.

From this training time, it is evident that a thorough

hyperparameter tuning can be computationally expensive and

requires high-performance computing resources. This high

training time is mainly due to the slow training of CNN

models on CPUs, which can be accelerated by using graphic

processing units (GPUs). Despite the expensive computational

cost to develop the proposed CNN-enabled inverse models, the

inference cost to estimate the SWAT model parameters takes

only 0.16 s. Moreover, hyperparameter tuning allows us to find

CNNs that are highly accurate. The tuned CNNs allow us to

make ensemble estimations quickly without the need to retrain

the model. The GLUE and DDS algorithms need to be re-run on

each discharge input to estimate SWAT parameters, which

makes the trained CNNs attractive for inference. This low

inference time is attractive for estimating the SWAT model

parameters using streamflow data (with and without

observational errors/noise). The wall clock time for making a

prediction/inference shows that our CNN-enabled parameter

estimation is at least O(103) times faster than the GLUE and

DDS-based methods (e.g., may require thousands of forward

model runs for each observational time series), in addition to its

predictive capability.

5 Results

This section presents results on the overall accuracy and

efficiency of the proposed DL methodology. First, we provide

results from sensitivity analysis performed using a mutual

information theory on the SWAT ensembles (Jiang et al.,

2022b). Second, we describe the CNN-enabled inverse

modeling results from the ensemble runs. Third, we show the

SWAT model parameters estimated from observed discharges

and compare the performance of CNN-enabled parameter

estimation with the results from application of the GLUE and

DDSmethods.We also compare the streamflow predictions from

the calibrated SWAT model with observed discharges for both

the calibration and validation periods for all three methods.

Finally, we give the performance metrics and calibration

uncertainties for CNN-enabled, DDS, and GLUE estimated

parameters.

5.1 Sensitivity analysis results

Table 1 identifies sensitive parameters that influence

simulated discharge at the ARW study site. Figure 5 shows

that the simulated discharge is sensitive to 11 out of the

20 parameters: 1) SFTMP, 2) CH_K2, 3) ALPHA_BF, 4)

RCHRG_DP, 5) CH_N2, 6) SMTMP, 7) TIMP, 8) CN, 9)

SMFMX, 10) GW_DELAY, and 11) EPCO. These

11 parameters correspond to landscape, groundwater, channel,

plant, and snow groups. The important parameters mentioned

above are identified using the MI methodology as described in

(Cover and Thomas, 2006; Jiang et al., 2022b). Mutual

information is a non-negative value that measures the

dependency between the SWAT model parameters and its

outputs. Zero MI means that streamflow is not affected by

that parameter, and higher values of MI mean higher

dependency. We note that discharge is primarily influenced
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by the snowfall temperature (SFTMP; the most sensitive), whose

sensitivity shows the seasonality pattern consistent with the site

description in Section 3.1. The importance of SFTMP in

determining streamflow verifies the critical role of the snow

process in this watershed.

5.2 Training, validation, and testing results

Figure 6A shows the training and validation loss of the best

CNN-enabled inverse model in estimating the SWAT parameters.

Validation loss plateaus even as the training loss decreases due to the

lack of valuable information in the streamflow data to constrain the

lesser and insensitive parameters (e.g., soil, climate, and other

groundwater variables such as GW_REVAP). Figures 6B–D

shows the prediction of the tuned CNN-enabled inverse model

for estimating SFTMP. Supplementary Figures S1–S3 provide one-

to-one plots for the remaining 10 sensitive parameters. Some one-to-

one plots between the estimated and true parameters are closely

distributed along the one-to-one line, which shows that the most

sensitive parameters (e.g., SFTMP, CH_K2, ALPHA_BF) are

predicted with reasonably good accuracy. The accuracy of the

training predictions is lower for other less sensitive parameters

(e.g., RCHRG_DP, EPCO). This reduced accuracy is evident

from the more scattered drift away from the one-to-one straight

line, seen in Supplementary Figure S3. The reduced accuracy is

comparable to the training results where we see an increased

deviation of data scatters from the one-to-one straight line.

Similar results are obtained for other tuned CNN architectures.

This scattered deviation indicates that these less-sensitive parameters

are hard to predict using the discharge time series.

5.3 Sensitivity of estimated SWAT
parameters to observation noise

We selected all test realizations to evaluate the parameter

estimation sensitivity of the CNN-enabled inverse models to

observed errors. We added random observation errors to the

synthetic observed discharge time series for each test realization.

We then generated 100 different observation realizations for

parameter estimation, qn, which is given by (Cromwell et al., 2021)

qn � q + ϵ × q × r (4)

where ϵ is the standard deviation of the noise, usually taken as 13 of
the observation error, and r is a random vector of the same size as

q. The elements of the random vector contain samples drawn

from a standard normal distribution with a mean of 0 and a

standard deviation of 1. We tested different levels of observation

errors (i.e., 5%, 10%, 25%, 50%, and 100%) relative to the

observed values. These noisy discharge data (both synthetic

and observations) are provided as input to the best CNN-

enabled inverse models to estimate the SWATmodel parameters.

Figure 7 shows the variability in estimated SFTMP results

from the CNNs results as box plots. It also shows CNN model

predictions for all noisy test realizations (Figure 7A) as well as

FIGURE 5
MI analysis on the SWAT model simulations: This figure shows the ranking of the SWAT model parameters based on MI. The analysis is
performed for 1,000 realizations generated using a Sobol sequence. Among the sensitive parameters, it is evident that SFTMP is the dominant
parameter and OV_N is the least important parameter for this ARW study site. In addition to snow parameters, we also see channel and groundwater
parameter types are sensitive to streamflow.
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observed data (Figure 7B). Supplementary Figures S4–S8 provide

estimates for the other sensitive parameters. We note that the

parameter estimates are within the prior sampling range even

after adding high relative noise levels (i.e., 100%), which

instills confidence in the predictive capabilities of CNN

models. From Figure 7A, it is evident that CNN-enabled

inverse models are reasonably robust to noise in

estimating the most sensitive parameter. This shows that

the SFTMP predictions are not that sensitive to noise, as

the performance of CNNs is stable even after adding high

errors to data. This predictive capability when noise is applied

to discharge time series also provides the insight that CNNs

can effectively learn underlying representations in the

streamflow data rather than noise in the observed data.

Similar assessments can be made for the other sensitive

parameters (e.g., CH_K2, ALPHA_BF). However, as model

parameter sensitivity decreases, the CNN predictions are

more prone to be influenced by noise. The performance of

CNN estimation for EPCO, which is the least sensitive

parameter among the top 11 parameters, is lower than that

of sensitive parameters such as SFTMP. As discussed in

Section 5.2 and from MI analysis, it is evident that

streamflow provides little information to estimate this

parameter. This reduced performance is the result of less

valuable information being available in the streamflow data to

accurately estimate less sensitive parameters, such as EPCO.

5.4 Calibrated SWAT model based on
observed discharge

Trained CNN-enabled inverse models are used to estimate

the SWAT parameters at the ARW study site based on observed

discharge data. We provide streamflow predictions of the

calibrated SWAT model based on the best CNN architecture

and the following 49 best candidates. We also compare the

FIGURE 6
Loss metrics of the best CNN-enabled inverse model and its predictions for the SFTMP: The top left figure (A) figure shows the overall training
and validation loss of the best CNN architecture. The top right (B), lower left (C), and lower right (D) figures show one-to-one plots for the most
sensitive parameter, SFTMP (units in oC). It compares the CNN estimation with the ground truth for the training, validation, and test datasets. We did
not use test data for finding the tuned CNN architectures. Only the validation set is used for hyperparameter tuning. Each blue dot represents a
realization from the corresponding train/validation/test set of ensembles. The red line is the one-to-one line.

Frontiers in Earth Science frontiersin.org14

Mudunuru et al. 10.3389/feart.2022.1026479

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1026479


performance of CNN predictions against predictions provided by

the DDS and GLUE methods. Figure 8 shows the estimated

SFTMP parameter range for CNN, DDS, and GLUE for the

observed data.We see that the DDSmethod has a narrower range

than the CNN and GLUE methods. The reason for this narrower

range is DDS uses a global optimization algorithm that iteratively

searches for a parameter set that produces a unique value. On the

other hand, the loss function in the CNN method is non-convex,

meaning that in all likelihood, gradient descent converges to sub-

optimal valleys or local minima. Hence, the CNN method has a

slightly broader range compared to the DDS method but a

narrower range than the GLUE method. Similar inferences

can be made on other parameters as shown in Supplementary

Figure S9 provided in the supplementary information (e.g.,

ALPHA_BF, CH_K2, RCHRG_DP).

Figure 9 shows the calibration performance of top-50 CNN,

DDS, and GLUE calibration set predictions using six different

metrics. It is clear that CNN-enabled parameter estimation is

better than behavioral parameter sets estimated by the GLUE and

DDS methods for all six studied metrics. Additionally, in

FIGURE 7
Top-50 CNNmodel estimation under influence of noise (SFTMP): The top figure (A) shows the sensitivities of the CNN-enabled inverse models
to 100% noise added to the test realizations. The bottom figure (B) shows the CNN estimations on the observational discharge represented by the
colors filling the box plots. Both of these figures show the variation in SFTMP (units in oC) with different noise levels. Moreover, the CNN estimations
are closer to ground truth for all synthetic predictions as shown in the top figure. From the bottom figure, we observe that even under high
relative observational errors, the estimations of the most sensitive parameter SFTMP are narrower compared to GLUE as seen in Figure 8.

FIGURE 8
Comparison of top-50 CNN, DDS, and GLUE estimated sets
(SFTMP): This figure compares the estimations of CNN, DDS, and
GLUE on observational discharge for SFTMP (units in oC). From this
figure, it is evident that DDS has the narrower range than CNN
and GLUE.
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Supplementary Figure S15, we show one-to-one scatter plots for

the best CNN, DDS, and GLUE streamflow predictions with

observed data both in calibration and validation periods. In

Supplementary Figure S15, each dot corresponds to daily

streamflow. The predictions are based on the best sets

calibrated by the CNN, GLUE, or DDS methods. The best

CNN-based calibrated set has R2, NSE, logNSE, KGE, mKGE,

and npKGE scores of 0.71, 0.75, 0.85, 0.85, 0.86, and 0.91,

respectively. The best DDS-based calibrated set has scores of

0.62, 0.69, 0.8, 0.77, 0.79, and 0.82. The best GLUE-based

calibrated set has scores of 0.56, 0.58, 0.71, 0.7, 0.71, and 0.8.

Supplementary Table S2 also provides the metric values for the

CNN, GLUE, and DDS sets. From these values, it is clear that the

CNN-enabled inverse model estimations are more accurate for

SWAT model calibration than the GLUE and DDS estimations.

Therefore, CNNs show promise for parameter estimation,

especially in nonlinearly relating streamflow data to

conceptual parameters.

Figure 10 shows smaller uncertainty ranges for CNN sets in

both calibration and validation periods than the GLUE and DDS

estimations. The probability that the prediction intervals

estimated by the CNN sets contain the observed streamflow

also is lower than the GLUE and DDS sets. This shows that top-

50 CNN sets are not sufficient to capture the predictive boundary

of streamflow variations. If we include all the CNN sets (as shown

in Supplementary Figures S12–S15G,H), the probability that

FIGURE 9
Performancemetrics of top-50 estimated sets using CNN, DDS, and GLUEmethods: This figure compares different performancemetrics of the
CNN, DDS, and GLUE calibrated sets. The left (A) and right (B) figures show the performances in calibration and validation periods, respectively. The
green, blue, and red whiskers represent the CNN estimation, DDS, and GLUE. Top-50 best performance sets are identified and evaluated for each
method within and beyond calibration period. The performance metrics (e.g., NSE, logNSE, npKGE) focus on the predictive capability of CNN-,
DDS-, and GLUE-based calibrated SWAT models in both low and high flow scenarios. Across all performance metrics, it is evident that estimation
using the CNN-enabled inverse models outperforms DDS and GLUE.

FIGURE 10
Comparison of top-50 CNN, DDS, and GLUE’s streamflow variations: The left figure (A) shows the size of the mean modeled streamflow
variation (i.e., a representation of predictive uncertainty). The right figure (B) provides the probability that the observed flow is contained within the
predicted bounds of the streamflow (e.g., the light blue colored region in Figure 11) estimated by the calibrated SWAT model. The uncertainty in the
GLUE-based calibration sets prediction, and associated probability is higher than DDS and CNN.
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observational data is contained within the prediction bounds is

greater than 0.95. However, the mean variation size of the

streamflow increases fourfold to accommodate this increase in

probability. One of our next steps is to improve this top-50 CNN

estimation probability while keeping predictive uncertainty low.

This can be achieved through ensemble DL, knowledge-guided

DL, and probabilistic BNNs (Lu et al., 2021; Jiang et al., 2022a).

These types of networks can account for uncertainty so that

CNN-enabled inverse models can assign lower confidence levels

to incorrect predictions. Figure 11 compares the streamflow

predictions from the calibrated SWAT with the observed data

using the top-50 CNN model sets. Supplementary Figures S10,

S11 shows the predictions from both the top-50 GLUE and DDS

methods. The CNN estimations capture the various high and low

streamflows better than the GLUE and DDS methods during

both the calibration and validation periods. However, the

calibrated SWAT model over predicts in certain parts of WY

2014 (e.g., 9 January 2014) and WY 2015. This lower predictive

performance may imply potential deficiencies (i.e., structural

errors) in the underlying SWAT model representation of

FIGURE 11
Comparison of the calibrated SWAT model (top-50 CNN) with observation data: This figure (A) and (B) compares the predictions of the
calibrated SWATmodel with observational data within and beyond the calibration period. The solid black line represents the observational data. The
dashed colored (blue) line represents the predictions based on the best calibrated set using CNN. The light colored region in the streamflow plots
represents the prediction uncertainty. This region is calculated by running the SWAT model using the calibration sets obtained using CNN. The
bottom figures (C) and (D) show the flow duration curves in both calibration and validation period. It is clear that CNN estimation sets produce curves
that are reasonably closer to observational data.
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watershed processes. Additional investigations are necessary to

identify other processes and parameters that reduce structural

errors and discrepancies in streamflow predictions.

6 Possible extensions of current work

Our results demonstrate the applicability of using scalable

deep learning to calibrate the SWAT model. We note that the

proposed methodology is general and can be used to calibrate

other watershed models such as ATS and PRMS. This

extensibility for calibrating other models and study sites can

be achieved using transfer learning methods (Zhuang et al.,

2020), which will allow us to reuse the CNNs developed in

this study and leverage them for new, similar problems. Minimal

re-training is necessary to fine tune the trained CNNs (Song and

Tartakovsky, 2021) and apply them to calibrate watershed

models for other study sites. Such a transfer of knowledge

across study sites usually is performed when generating the

large amount of training data needed to develop a full-scale

CNN and tuning its trainable weights from the start is too

computationally expensive (e.g., when using ATS).

Additionally, we can improve our DL methodology to

calibrate the SWAT model by incorporating other multi-

source data streams (e.g., evapotranspiration (ET), and snow

water equivalent (SWE)) along with streamflow. Our next step is

to use such data streams to further investigate the deficiency of

the model structure or processes in the SWATmodel by ingesting

streamflow, ET, and SWE into CNNs.

Figure 10B shows the DL method’s probability that

observational data contained within the prediction bounds are

lower than probabilities provided by the DDS and GLUE

methods. There are multiple ways in which we can improve

our CNN-based parameter estimation and predictive

uncertainty. A possible approach involves accelerating the

training process using GPUs available at leadership class

supercomputing resources (e.g., NERSC, Oak Ridge

Leadership Computing Facility, and Argonne Leadership

Computing Facility user facilities) (ALCF, 2021; NERSC, 2021;

OLCF, 2021). This accelerated CNN training allows us to

developed ensemble learning models through bootstrapping,

which are known to provide better generalization performance

than a final CNN.

As discussed in Section 5.4, improved uncertainty

intervals can be achieved through ensemble learning (e.g.,

combining predictions of different types of neural networks

such as DNNs and BNNs). Additionally, developing CNNs

tailored to estimate the SWAT model parameters under

different hydrological seasons (McMillan, 2020) (e.g.,

winter vs. summer) may enhance the calibration process.

For example, comparing CNN-estimated sets from wet and

dry periods of the year can provide better insights into the

SWAT model parameters that control streamflow predictions

across different seasons. When making such comparisons

between real data and model predictions, hydrological

signatures and their associated metrics (Westerberg and

McMillan, 2015; McMillan et al., 2017; Fatehifar et al.,

2021; Gnann et al., 2021; McMillan, 2021) can be used to

elucidate the structural deficiencies of the SWAT model.

Hydrological signatures on which we can evaluate

performance metrics include the slope of the flow duration

curve, rising limb density, recession shape, and baseflow index

of streamflow time-series data (McMillan, 2021).

In addition to the data-driven methodology presented in

this paper6, the efficacy of the proposed DL methodology also

can be improved by embedding domain knowledge into DNNs

(Read et al., 2019; Khandelwal et al., 2020; Bhasme et al., 2021;

Jia et al., 2021). Recent advances in knowledge-guided

machine learning (Jiang et al., 2022a) provide a way to

incorporate model states/fluxes and water balances as part

of recurrent neural network architectures (Khandelwal et al.,

2020). The papers mentioned above used such neural

architectures to develop forward emulators for watershed

models. One can extend the methods presented in those

works to incorporate process model knowledge into our

proposed CNNs to improve SWAT model calibration. Also,

Explainable AI (XAI) methods such as deep Taylor

decomposition (Kindermans et al., 2016), SHAPley values

(Messalas et al., 2019), and integrated gradients

(Sundararajan et al., 2017) can be used to explain the CNN

predictions. These XAI methods not only allow us to explain

why CNNs provide results that are understandable for the

domain experts (Leduc et al., 2020) but also extract

informative signals (e.g., precursors) from the streamflow

time-series data (McMillan et al., 2017; McMillan, 2020;

McMillan, 2021).

7 Conclusion

In this paper, we describe an accurate and reliable DL

methodology that we developed to calibrate the SWAT model.

We used CNN-enabled inverse models to estimate the SWAT

parameters for the ARW study site in the YRB. Our approach

leverages recent advances in CNNs to extract representations

from streamflow data and then map them to the SWAT model

parameters. Scalable hyperparameter tuning was performed to

identify optimal CNN architectures. Ensemble runs from the

SWAT model were used to train, validate, and test the CNN-

enabled inverse models. We performed sensitivity analyses to

identify the dominant parameters that influence streamflow. Our

results show that CNN models are able to estimate the sensitive

6 Or by combining Markov chain Monte Carlo methods with forward
emulators (Dagon et al., 2020) for model calibration.
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parameters reasonably well. The parameters estimated from the

trained CNNs were robust to high observed errors. We then

compared the SWAT parameters estimated by our DL method

with parameters generated by the GLUE and DDS optimization

algorithms. We found that all the methods estimated SWAT

parameters within the sampling range of the ensemble runs. As

DDS is a global optimization method, its estimated range of

parameters are narrower compared to parameters estimated by

the GLUE and DL methods. Furthermore, this comparison also

showed that predictions of the calibrated SWAT model based on

CNNs performs better than the GLUE and DDS methods. Key

performance metrics (e.g., R2-score, NSE, logNSE, KGE, and its

variants) showed that the best CNN-based calibration sets

capture low and high flows better than the GLUE and DDS

methods. This improvement in predictive performance is

probably because CNNs can more effectively use the

information (e.g., learning representative features from

streamflow) provided in ensemble runs than the GLUE and

DDS methods. By capturing the nonlinear relationships

between SWAT model inputs and outputs through multiple

convolutional neural layers, CNNs yielded more realistic

predictions for the ARW and a better calibrated SWAT

model. This improvement resulted in a closer match between

model-predicted and observed stream discharges. Our results

showed that the probability that the observed data are contained

within the prediction bounds estimated by top-50 CNN sets is

lower than that of DDS and GLUE sets. This lower probability

shows that the top-50 CNN sets alone are insufficient to capture

the variations in streamflow. If all the CNN estimations are

included, we are able to capture the observed data within the

prediction bounds. However, including all the CNN estimations

resulted in higher mean variation of streamflow (i.e., fourfold

increase when compared to the top-50 CNN sets). Our future

work involves further improving the accuracy the CNN method

while keeping the predictive uncertainty (i.e., size of streamflow

variation) lower.

From a computational cost perspective, the time needed to infer

parameters based on the DL method is at least O(103) faster than
that of the GLUE and DDS methods, which makes extending this

method to complex watershed models (e.g., ATS) attractive.

However, the computational cost of identifying optimal CNN

architectures is high compared to the GLUE and DDS methods.

The training time needed to develop CNNmodels can be improved

further by using GPUs and TPUs (Bisong, 2019). Reducing the

computational cost of developing CNN-enabled inverse models is

one of our next steps, with a focus on using the distributed deep

learning training framework (e.g., using Horovod (Sergeev and Del

Balso, 2018) or DeepHyper (Balaprakash et al., 2018)) that already

shows promise in the training speedup. This improves the efficiency

during training process by using asynchronous distributed Bayesian

optimization algorithms, which are known to be much more

efficient than the grid search that has to exhaust all the

hyperparameter space.

Our methodology is general and can be used to calibrate

complex watershed models (i.e., through transfer learning

methods (Zhuang et al., 2020)) with minimal re-training. For

example, using transfer learning. Transfer learning consists

of using pre-trained deep learning models such as CNNs on

one watershed and leveraging them on a new and similar

watershed. Specifically, transfer learning (Oruche et al.,

2021) allows us to transfer knowledge from gauged (e.g.,

ARW) to ungauged basins (e.g., YRB) or watersheds

(Westerberg et al., 2016; Guo et al., 2021). This knowledge

transfer is usually done when training a full-scale CNN from

scratch is challenging due to the availability of limited

simulation data or when regions are data sparse,

observationally. In such scenarios, a watershed

classification scheme is first used to identify a new

watershed with characteristics similar to ARW. Then, the

neural features from the pre-trained CNN that has learned to

extract patterns from ARW’s streamflow data can be adapted

to that new paired watershed. Finally, fine-tuning is

performed to achieve meaningful improvements by

incrementally adapting the pre-trained CNN’s features to

the new simulation data. For fine-tuning to be successful,

minimal simulation data on the newly selected watershed is

needed. Additional future work involves modifying the

proposed method to incorporate multi-source datasets

(e.g., by combining streamflow, ET, and SWE) to further

enhance SWAT model calibration (Moriasi et al., 2007;

Samimi et al., 2020), and transfer the knowledge gained

on ARW to the entire Yakima river basin (i.e., by transfer

learning).

Data availability statement

The data generated for the proposed DL model development

uses open-science principles. Specifically, we make the data

Findable Accessible Interoperable and Reusable (FAIR). FAIR

principles expedite community-based data generation, modeling,

and interdisciplinary collaboration and provides a means to test

new hypotheses. The datasets generated and analyzed as well as

scripts for this study, will be made available on this GitHub

repository: \̃url {https://github.com/maruti-iitm/DL4SWAT.git}

upon publication. \texttt{SWAT} open-source code can be

downloaded at \url {https://swat.tamu.edu/}.

Author contributions

MM: Conceptualization, methodology, software, data

curation, visualization, investigation, writing—original draft,

writing—review and editing. KS: Methodology, data

generation, writing—review and editing. PJ: Sensitivity

analysis, writing—review and editing. GH: Methodology,

Frontiers in Earth Science frontiersin.org19

Mudunuru et al. 10.3389/feart.2022.1026479

https://github.com/maruti-iitm/DL4SWAT.git
https://swat.tamu.edu/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1026479


writing—review and editing. XC: writing—review and editing

and funding.

Funding

This research was supported by the U.S. Department of

Energy (DOE), Office of Science (SC) Biological and

Environmental Research (BER) program, as part of BER’s

Environmental System Science program.

Acknowledgments

This contribution originates from the River Corridor

Scientific Focus Area at Pacific Northwest National Laboratory

(PNNL). This research used resources from the National Energy

Research Scientific Computing Center, a DOE-SC User Facility.

The views and opinions of authors expressed herein do not

necessarily state or reflect those of the United States Government

or any agency thereof. The authors thank the reviewers whose

feedback helped in substantially improving the manuscript.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/feart.2022.

1026479/full#supplementary-material

References

Abbaspour, K. C. (2013). Swat-cup 2012. SWAT calibration and uncertainty
program–A user manual.

Adams, B. M., Bohnhoff, W. J., Dalbey, K. R., Eddy, J. P., Eldred, M. S., Gay, D. M.,
et al. (2009). Dakota, a multilevel parallel object-oriented framework for design
optimization, parameter estimation, uncertainty quantification, and sensitivity
analysis: Version 5.0 user’s manual. Tech. Rep. SAND2010-2183.Sandia Natl. Lab.

Afzaal, H., Farooque, A. A., Abbas, F., Acharya, B., and Esau, T. (2020).
Groundwater estimation from major physical hydrology components using
artificial neural networks and deep learning. Water 12, 5. doi:10.3390/w12010005

ALCF (2021). Argonne leadership computing facility. Available at: https://www.
alcf.anl.gov/ (Accessed on 07, 202121).

Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., et al. (2009). The
data assimilation research testbed: A community facility. Bull. Am. Meteorol. Soc.
90, 1283–1296. doi:10.1175/2009bams2618.1

Anysz, H., Zbiciak, A., and Ibadov, N. (2016). The influence of input data
standardization method on prediction accuracy of artificial neural networks.
Procedia Eng. 153, 66–70. doi:10.1016/j.proeng.2016.08.081

Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J.,
Srinivasan, R., et al. (2012). Swat: Model use, calibration, and validation. Trans.
ASABE 55, 1491–1508. doi:10.13031/2013.42256

Aster, R. C., Borchers, B., and Thurber, C. H. (2018). Parameter estimation and
inverse problems. Elsevier.

Bacu, V., Nandra, C., Stefanut, T., and Gorgan, D. (2017). SWAT model
calibration over Cloud infrastructures using the BigEarth platform. 13th IEEE
Int. Conf. Intelligent Comput. Commun. Process. (ICCP), 453–460.

Balaprakash, P., Salim, M., Uram, T., Vishwanath, V., and Wild, S. (2018).
Deephyper: Asynchronous hyperparameter search for deep neural networks. IEEE
25th Int. Conf. high Perform. Comput. (HiPC), 42–51.

Beven, K., and Binley, A. (2014). Glue: 20 years on. Hydrol. Process. 28,
5897–5918. doi:10.1002/hyp.10082

Bhasme, P., Vagadiya, J., and Bhatia, U. (2021). Enhancing predictive skills in
physically-consistent way: Physics informed machine learning for hydrological
processes. arXiv preprint arXiv:2104.11009.

Bisong, E. (2019). “Google colaboratory,” in Building machine learning and deep
learning models on google cloud platform (Berlin: Springer), 59–64.

Blasone, R.-S., Vrugt, J. A., Madsen, H., Rosbjerg, D., Robinson, B. A., and
Zyvoloski, G. A. (2008). Generalized likelihood uncertainty estimation (GLUE)
using adaptive Markov chain Monte Carlo sampling. Adv. Water Resour. 31,
630–648. doi:10.1016/j.advwatres.2007.12.003

Chen, X., Hammond, G. E., Murray, C. J., Rockhold, M. L., Vermeul, V. R., and
Zachara, J. M. (2013). Application of ensemble-based data assimilation techniques
for aquifer characterization using tracer data at Hanford 300 area. Water Resour.
Res. 49, 7064–7076. doi:10.1002/2012wr013285

Chen, X., Shuai, P., Son, K., Jiang, P., Mudunuru, M., Coon, E., et al. (2021). AGU
fall meeting abstracts. In What can we learn from multiple watershed models and
observations? 2021. H23H–01.

Chiang, L.-C., and Yuan, Y. (2015). The NHDPlus dataset, watershed subdivision
and SWAT model performance. Hydrological Sci. J. 60, 1690–1708. doi:10.1080/
02626667.2014.916408

Chollet, F. (2017). Deep learning with Python. Shelter Island, NY: Manning
Publications Company.

Coon, E. T., Berndt, M., Jan, A., Svyatsky, D., Atchley, A. L., Kikinzon, E., et al.
(2020). Advanced terrestrial simulator. USA: U.S. Department of Energy. Version
1.0. doi:10.11578/dc.20190911.1

Cover, T. M., and Thomas, J. A. (2006). Wiley Series in Telecommunications and
Signal Processing. Elements of information theory.

Cromwell, E. L.D., Shuai, P., Jiang, P., Coon, E., Painter, S. L.,Moulton,D., et al. (2021).
Estimating watershed subsurface permeability from stream discharge data using deep
neural networks. Front. Earth Sci. (Lausanne). 9. doi:10.3389/feart.2021.613011

Cuo, L., Lettenmaier, D. P., Mattheussen, B. V., Storck, P., and Wiley, M. (2008).
Hydrologic prediction for urban watersheds with the distributed
hydrology–soil–vegetation model.Hydrol. Process. 22, 4205–4213. doi:10.1002/hyp.7023

Dagon, K., Sanderson, B. M., Fisher, R. A., and Lawrence, D. M. (2020). A
machine learning approach to emulation and biophysical parameter estimation
with the Community Land Model, version 5. Adv. Stat. Climatol. Meteorol.
Oceanogr. 6, 223–244. doi:10.5194/ascmo-6-223-2020

Daly, C., and Bryant, K. (2013). The PRISM climate and weather system–An
introduction. Corvallis, OR: PRISM climate group.

Daly, C., Taylor, G. H., Gibson, W. P., Parzybok, T. W., Johnson, G. L., and
Pasteris, P. A. (2000). High-quality spatial climate data sets for the United States and
beyond. Trans. ASAE 43, 1957–1962. doi:10.13031/2013.3101

Frontiers in Earth Science frontiersin.org20

Mudunuru et al. 10.3389/feart.2022.1026479

https://www.frontiersin.org/articles/10.3389/feart.2022.1026479/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/feart.2022.1026479/full#supplementary-material
https://doi.org/10.3390/w12010005
https://www.alcf.anl.gov/
https://www.alcf.anl.gov/
https://doi.org/10.1175/2009bams2618.1
https://doi.org/10.1016/j.proeng.2016.08.081
https://doi.org/10.13031/2013.42256
https://doi.org/10.1002/hyp.10082
https://doi.org/10.1016/j.advwatres.2007.12.003
https://doi.org/10.1002/2012wr013285
https://doi.org/10.1080/02626667.2014.916408
https://doi.org/10.1080/02626667.2014.916408
https://doi.org/10.11578/dc.20190911.1
https://doi.org/10.3389/feart.2021.613011
https://doi.org/10.1002/hyp.7023
https://doi.org/10.5194/ascmo-6-223-2020
https://doi.org/10.13031/2013.3101
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1026479


Daniel, E. B., Camp, J. V., LeBoeuf, E. J., Penrod, J. R., Dobbins, J. P., and
Abkowitz, M. D. (2011). Watershed modeling and its applications: A state-of-the-
art review. Open Hydrology J. 5, 26–50. doi:10.2174/1874378101105010026

Daymet (2021). Daily surface weather and climatological summaries. Available at:
https://daymet.ornl.gov/ (Accessed on 07, 202121).

Doherty, J. E., and Hunt, R. J. (2010). Approaches to highly parameterized
inversion: A guide to using PEST for groundwater-model calibration, 2010.
Middleton, WI: U.S. Geological Survey.

Donigian, A. S., Jr, Bicknell, B. R., and Imhoff, J. C. (1995). Hydrological
simulation program-fortran (HSPF). Comput. models watershed hydrology,
395–442.

Duan, Q., Gupta, H. V., Sorooshian, S., Rousseau, A. N., and Turcotte, R. (2004).
Calibration of watershed models. American Geophysical Union.

Duan, Q., Sorooshian, S., and Gupta, V. K. (1994). Optimal use of the SCE-UA
global optimization method for calibrating watershed models. J. Hydrology 158,
265–284. doi:10.1016/0022-1694(94)90057-4

Eckhardt, K., Fohrer, N., and Frede, H.-G. (2005). Automatic model calibration.
Hydrol. Process. 19, 651–658. doi:10.1002/hyp.5613

Edwards, C. (2018). Deep learning hunts for signals among the noise. Commun.
ACM 61, 13–14. doi:10.1145/3204445

Evensen, G. (2018). Analysis of iterative ensemble smoothers for solving inverse
problems. Comput. Geosci. 22, 885–908. doi:10.1007/s10596-018-9731-y

Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi-
geostrophic model using Monte Carlo methods to forecast error statistics.
J. Geophys. Res. 99, 10143–10162. doi:10.1029/94jc00572

Evensen, G. (2003). The ensemble Kalman filter: Theoretical formulation and
practical implementation. Ocean. Dyn. 53, 343–367. doi:10.1007/s10236-003-
0036-9

Fang, Y., Chen, X., Velez, J. G., Zhang, X., Duan, Z., Hammond, G. E., et al. (2020). A
multirate mass transfer model to represent the interaction of multicomponent
biogeochemical processes between surface water and hyporheic zones (SWAT-
MRMT-R 1.0). Geosci. Model. Dev. 13, 3553–3569. doi:10.5194/gmd-13-3553-2020

Fatehifar, A., Goodarzi, M. R., Montazeri, H., S. S., and Dastjerdi, S. (2021).
Assessing watershed hydrological response to climate change based on signature
indices. J. Water Clim. Change 12, 2579–2593. doi:10.2166/wcc.2021.293

Franco, A. C. L., and Bonumá, N. B. (2017). Multi-variable SWAT model
calibration with remotely sensed evapotranspiration and observed flow. RBRH
22. doi:10.1590/2318-0331.011716090

Gabrielli, L., Tomassetti, S., Squartini, S., and Zinato, C. (2017). “Introducing deep
machine learning for parameter estimation in physical modelling,” in Proceedings of
the 20th international conference on digital audio effects.

Gnann, S. J., Coxon, G., Woods, R. A., Howden, N. J. K., and McMillan, H. K.
(2021). Tossh: A toolbox for streamflow signatures in hydrology. Environ. Model.
Softw. 138, 104983. doi:10.1016/j.envsoft.2021.104983

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT Press.

Graham, D. N., and Butts, M. B. (2005). Flexible, integrated watershed modelling
with MIKE SHE. Watershed models. 849336090, 245–272.

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., et al. (2018). Recent
advances in convolutional neural networks. Pattern Recognit. 77, 354–377. doi:10.
1016/j.patcog.2017.10.013

Guo, Y., Zhang, Y., Zhang, L., and Wang, Z. (2021). Regionalization of
hydrological modeling for predicting streamflow in ungauged catchments: A
comprehensive review. WIREs Water 8, e1487. doi:10.1002/wat2.1487

Gupta, H. V., Sorooshian, S., Hogue, T. S., and Boyle, D. P. (2003). Advances
in automatic calibration of watershed models. Calibration Watershed Models
6, 9–28.

Gupta, S., and Gupta, A. (2019). Dealing with noise problem in machine learning
data-sets: A systematic review. Procedia Comput. Sci. 161, 466–474. doi:10.1016/j.
procs.2019.11.146

Hamman, J. J., Nijssen, B., Bohn, T. J., Gergel, D. R., and Mao, Y. (2018). The
Variable Infiltration Capacity model version 5 (VIC-5): Infrastructure
improvements for new applications and reproducibility. Geosci. Model. Dev. 11,
3481–3496. doi:10.5194/gmd-11-3481-2018

Herman, J., and Usher, W. (2017). SALib: An open-source Python library for
sensitivity analysis. J. Open Source Softw. 2, 97. doi:10.21105/joss.00097

Hydroeval (2021). An evaluator for streamflow time series in Python. Available at:
https://github.com/ThibHlln/hydroeval.git (Accessed on 0803, 2022).

Jagtap, N. V., Mudunuru, M. K., and Nakshatrala, K. B. (2021). A deep learning
modeling framework to capture mixing patterns in reactive-transport systems.
Commun. Comput. Phys. 0.4208/cicp.OA-2021-0088.

Jia, X., Willard, J. D., Karpatne, A., Read, J. S., Zwart, J. A., Steinbach, M., et al. (2021).
Physics-guided machine learning for scientific discovery: An application in simulating
lake temperature profiles. ACM. IMS. Trans. Data Sci. 2, 1–26. doi:10.1145/3447814

Jiang, P., Chen, X., Chen, K., Anderson, J., Collins, N., and Gharamti, M. E.
(2021). DART-PFLOTRAN: An ensemble-based data assimilation system for
estimating subsurface flow and transport model parameters. Environ. Model.
Softw. 142, 105074. doi:10.1016/j.envsoft.2021.105074

Jiang, P., Shuai, P., Sun, A., Mudunuru, M. K., and Chen, X. (2022a). Knowledge-
informed deep learning for hydrological model calibration: An application to coal
creek watershed in Colorado. Hydrology Earth Syst. Sci. Discuss., 1–31. doi:10.5194/
hess-2022-282

Jiang, P., Son, K., Mudunuru, M. K., and Chen, X. (2022b). Using mutual
information for global sensitivity analysis on watershed modeling. Malden, MA:
John Wiley & Sons Inc.

Johnston, P. R., and Pilgrim, D. H. (1976). Parameter optimization for watershed
models. Water Resour. Res. 12, 477–486. doi:10.1029/wr012i003p00477

Keras API (2021). The high-level API of Tensorflow. Available at: https://www.
tensorflow.org/api_docs/python/tf/keras (Accessed on 07, 202121).

Khandelwal, A., Xu, S., Li, X., Jia, X., Stienbach, M., Duffy, C., et al. (2020).
Physics guided machine learning methods for hydrology. arXiv preprint arXiv:
2012.02854.

Kindermans, P.-J., Schütt, K., Müller, K.-R., and Dähne, S. (2016). Investigating
the influence of noise and distractors on the interpretation of neural networks. arXiv
preprint arXiv:1611.07270.

Kling, H., Fuchs, M., and Paulin, M. (2012). Runoff conditions in the upper
Danube basin under an ensemble of climate change scenarios. J. hydrology 424,
264–277. doi:10.1016/j.jhydrol.2012.01.011

Leavesley, G. H., Lichty, R. W., Troutman, B. M., and Saindon, L. G. (1983).
Precipitation-runoff modeling system: User’s manual. Water-resources Investig.
Rep. 83, 207.

Leduc, R., Hulbert, C., McBrearty, I. W., and Johnson, P. A. (2020). Probing slow
earthquakes with deep learning. Geophys. Res. Lett. 47, e2019GL085870. doi:10.
1029/2019gl085870

Liu, D. (2020). A rational performance criterion for hydrological model.
J. Hydrology 590, 125488. doi:10.1016/j.jhydrol.2020.125488

Lu, D., Konapala, G., Painter, S. L., Kao, S.-C., and Gangrade, S. (2021).
Streamflow simulation in data-Scarce basins sing Bayesian and physics-informed
machine learning models. J. Hydrometeorol. 22, 1421–1438.

MADS (2021).Model analysis & decision Support. Available at: https://mads.lanl.
gov/ (Accessed on 07, 202121).

Mankin, D., Srinivasan, R., and Arnold, J. G. (2010). Soil and water assessment
tool (SWAT) model: Current developments and applications. Trans. ASABE 53,
1423–1431. doi:10.13031/2013.34915

Marçais, J., and de Dreuzy, J.-R. (2017). Prospective interest of deep learning for
hydrological inference. Groundwater 55, 688–692. doi:10.1111/gwat.12557

Markstrom, S. L., Regan, R. S., Hay, L. E., Viger, R. J., Webb, R. M. T., Payn, R. A.,
et al. (2015). PRMS-IV, the precipitation-runoff modeling system, version 4. U. S.
Geol. Surv. Tech. Methods 6, B7.

Mastin, M. C., and Vaccaro, J. J. (2002). Tech. Rep., open-file report 02-404.
Washington DC, USA: U.S. Department of Interior.Watershed models for decision
support in the Yakima river basin, Washington

McMillan, H. K. (2021). A review of hydrologic signatures and their applications.
WIREs Water 8, e1499. doi:10.1002/wat2.1499

McMillan, H. (2020). Linking hydrologic signatures to hydrologic processes: A
review. Hydrol. Process. 34, 1393–1409. doi:10.1002/hyp.13632

McMillan, H., Westerberg, I., and Branger, F. (2017). Five guidelines for selecting
hydrological signatures. Hydrol. Process. 31, 4757–4761. doi:10.1002/hyp.11300

Mein, R. G., and Brown, B. M. (1978). Sensitivity of optimized parameters in
watershed models. Water Resour. Res. 14, 299–303. doi:10.1029/wr014i002p00299

Messalas, A., Kanellopoulos, Y., and Makris, C. (2019). “Model-agnostic
interpretability with SHAPley values,” in 2019 10th international conference on
information, intelligence, systems and applications (IISA), 1–7.

Misirli, F., Gupta, H. V., Sorooshian, S., and Thiemann, M. (2003). Bayesian
recursive estimation of parameter and output uncertainty for watershed models.
Calibration Watershed Models, Water Sci. Appl. Ser 6, 113–124.

Model Analysis ToolKit (2021). Python toolkit for model analysis. Available at:
http://dharp.github.io/matk/ (Accessed on 07, 202121).

Moore, R. B., and Dewald, T. G. (2016). The road to NHDPlus-advancements in
digital stream networks and associated catchments. J. Am. Water Resour. Assoc. 52,
890–900. doi:10.1111/1752-1688.12389

Frontiers in Earth Science frontiersin.org21

Mudunuru et al. 10.3389/feart.2022.1026479

https://doi.org/10.2174/1874378101105010026
https://daymet.ornl.gov/
https://doi.org/10.1016/0022-1694(94)90057-4
https://doi.org/10.1002/hyp.5613
https://doi.org/10.1145/3204445
https://doi.org/10.1007/s10596-018-9731-y
https://doi.org/10.1029/94jc00572
https://doi.org/10.1007/s10236-003-0036-9
https://doi.org/10.1007/s10236-003-0036-9
https://doi.org/10.5194/gmd-13-3553-2020
https://doi.org/10.2166/wcc.2021.293
https://doi.org/10.1590/2318-0331.011716090
https://doi.org/10.1016/j.envsoft.2021.104983
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1002/wat2.1487
https://doi.org/10.1016/j.procs.2019.11.146
https://doi.org/10.1016/j.procs.2019.11.146
https://doi.org/10.5194/gmd-11-3481-2018
https://doi.org/10.21105/joss.00097
https://github.com/ThibHlln/hydroeval.git
https://doi.org/10.1145/3447814
https://doi.org/10.1016/j.envsoft.2021.105074
https://doi.org/10.5194/hess-2022-282
https://doi.org/10.5194/hess-2022-282
https://doi.org/10.1029/wr012i003p00477
https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/keras
https://doi.org/10.1016/j.jhydrol.2012.01.011
https://doi.org/10.1029/2019gl085870
https://doi.org/10.1029/2019gl085870
https://doi.org/10.1016/j.jhydrol.2020.125488
https://mads.lanl.gov/
https://mads.lanl.gov/
https://doi.org/10.13031/2013.34915
https://doi.org/10.1111/gwat.12557
https://doi.org/10.1002/wat2.1499
https://doi.org/10.1002/hyp.13632
https://doi.org/10.1002/hyp.11300
https://doi.org/10.1029/wr014i002p00299
http://dharp.github.io/matk/
https://doi.org/10.1111/1752-1688.12389
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1026479


Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., and
Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of
accuracy in watershed simulations. Trans. ASABE 50, 885–900. doi:10.13031/2013.
23153

Mudunuru, M. K., Cromwell, E. L. D., Wang, H., and Chen, X. (2022). Deep
learning to estimate permeability using geophysical data. Adv. Water Resour. 167,
104272. doi:10.1016/j.advwatres.2022.104272

Myung, I. J. (2003). Tutorial on maximum likelihood estimation. J. Math. Psychol.
47, 90–100. doi:10.1016/s0022-2496(02)00028-7

Nakshatrala, K. B., and Joshaghani, M. S. (2019). On interface conditions for flows
in coupled free-porous media. Transp. Porous Media 130, 577–609. doi:10.1007/
s11242-019-01326-7

Nearing, G. S., Kratzert, F., Sampson, A. K., Pelissier, C. S., Klotz, D., Frame, J. M.,
et al. (2021). What role does hydrological science play in the age of machine
learning? Water Resour. Res. 57, e2020WR028091. doi:10.1029/2020wr028091

Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams, J. R. (2011). Soil & water
assessment tool theoretical documentation, version 2009, Grassland, soil and water
research laboratory-agricultural research service. Temple, TX: Blackland Research
Center-Texas AgriLife Research.

NERSC (2021). National energy research scientific computing center. Available at:
https://www.nersc.gov/ (Accessed on 07, 202121).

Nott, D. J., Marshall, L., and Brown, J. (2012). Generalized likelihood uncertainty
estimation (GLUE) and approximate Bayesian computation: What’s the
connection? Water Resour. Res. 48. doi:10.1029/2011wr011128

OLCF (2021). Oak Ridge leadership computing facility. Available at: https://www.
olcf.ornl.gov/ (Accessed on 07, 202121).

Oruche, R., Egede, L., Baker, T., and O’Donncha, F. (2021). Transfer learning to
improve streamflow forecasts in data sparse regions. arXiv preprint arXiv:2112.03088.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
et al. (2011). Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12,
2825–2830.

Pool, S., Vis, M., and Seibert, J. (2018). Evaluating model performance: Towards a
non-parametric variant of the Kling-Gupta efficiency. Hydrological Sci. J. 63,
1941–1953. doi:10.1080/02626667.2018.1552002

PRISM (2021). A high-resolution spatial climate data for the United States.
Available at: https://prism.oregonstate.edu/ (Accessed on 07, 202121).

Qiu, J., Yang, Q., Zhang, X., Huang, M., Adam, J. C., and Malek, K. (2019).
Implications of water management representations for watershed hydrologic
modeling in the Yakima River basin. Hydrol. Earth Syst. Sci. 23, 35–49. doi:10.
5194/hess-23-35-2019

Rahmani, F., Lawson, K., Ouyang,W., Appling, A., Oliver, S., and Shen, C. (2021).
Exploring the exceptional performance of a deep learning stream temperature
model and the value of streamflow data. Environ. Res. Lett. 16, 024025. doi:10.1088/
1748-9326/abd501

Read, J. S., Jia, X., Willard, J., Appling, A. P., Zwart, J. A., Oliver, S. K., et al. (2019).
Process-guided deep learning predictions of lake water temperature.Water Resour.
Res. 55, 9173–9190. doi:10.1029/2019wr024922

Rolnick, D., Veit, A., Belongie, S., and Shavit, N. (2017). Deep learning is robust to
massive label noise. arXiv preprint arXiv:1705.10694.

Rouholahnejad, E., Abbaspour, K. C., Vejdani, M., Srinivasan, R., Schulin, R., and
Lehmann, A. (2012). A parallelization framework for calibration of hydrological
models. Environ. Model. Softw. 31, 28–36. doi:10.1016/j.envsoft.2011.12.001

Rudi, J., Bessac, J., and Lenzi, A. (2020). Parameter estimation with dense and
convolutional neural networks applied to the FitzHugh-Nagumo ODE. arXiv
preprint arXiv:2012.06691.

Sadeghi, M., Asanjan, A. A., Faridzad, M., Nguyen, P., Hsu, K., Sorooshian, S.,
et al. (2019). PERSIANN-CNN: Precipitation estimation from remotely sensed
information using artificial neural networks–convolutional neural networks.
J. Hydrometeorol. 20, 2273–2289. doi:10.1175/jhm-d-19-0110.1

Samimi, M., Mirchi, A., Moriasi, D., Ahn, S., Alian, S., Taghvaeian, S., et al.
(2020). Modeling arid/semi-arid irrigated agricultural watersheds with SWAT:
Applications, challenges, and solution strategies. J. Hydrology 590, 125418.
doi:10.1016/j.jhydrol.2020.125418

Sampson, K., and Gochis, D. (2018). RF Hydro GIS pre-processing tools, version
5.0, documentation. Boulder, CO: National Center for Atmospheric Research,
Research Applications Laboratory.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural
Netw. 61, 85–117. doi:10.1016/j.neunet.2014.09.003

Schwarz, G. E., and Alexander, R. B. (1995). State soil geographic (STATSGO)
data base for the conterminous United States. Tech. Rep.

Sergeev, A., and Del Balso, M. (2018). Horovod: Fast and easy distributed deep
learning in Tensorflow. arXiv preprint: 1802.05799.

Shen, C. (2018). A transdisciplinary review of deep learning research and its
relevance for water resources scientists. Water Resour. Res. 54, 8558–8593. doi:10.
1029/2018wr022643

Singh, V. P., and Frevert, D. K. (2003). “Watershed modeling,” inWorld water &
environmental resources congress 2003, 1–37.

Singh, V. P., and Frevert, D. K. (2010). Watershed models. Boca Raton, FL: CRC
Press.

Sit, M., Demiray, B. Z., Xiang, Z., Ewing, G. J., Sermet, Y., and Demir, I. (2020). A
comprehensive review of deep learning applications in hydrology and water
resources. Water Sci. Technol. 82, 2635–2670. doi:10.2166/wst.2020.369

Sobol’, I. M. (1967). On the distribution of points in a cube and the approximate
evaluation of integrals. USSR Comput. Math. Math. Phys. 7, 86–112. doi:10.1016/
0041-5553(67)90144-9

Song, D. H., and Tartakovsky, D. M. (2021). Transfer learning on multi-fidelity
data. arXiv preprint arXiv:2105.00856.

Sundararajan, M., Taly, A., and Yan, Q. (2017). “Axiomatic attribution for deep
networks,” in International conference on machine learning, 3319–3328.

Tague, C. L., and Band, L. E. (2004). RHESSys: Regional Hydro-Ecologic
Simulation System-An object-oriented approach to spatially distributed
modeling of carbon, water, and nutrient cycling. Earth Interact. 8, 1–42. doi:10.
1175/1087-3562(2004)8<1:rrhsso>2.0.co;2
Tarantola, A. (2005). Inverse problem theory and methods for model parameter

estimation. Philadelphia, PA: SIAM.

Thiemann, M., Trosset, M., Gupta, H. V., and Sorooshian, S. (2001). Bayesian
recursive parameter estimation for hydrologic models. Water Resour. Res. 37,
2521–2535. doi:10.1029/2000wr900405

Tolson, B. A., and Shoemaker, C. A. (2007). Dynamically dimensioned search
algorithm for computationally efficient watershed model calibration.Water Resour.
Res. 43. doi:10.1029/2005wr004723

Tsai, W.-P., Feng, D., Pan, M., Beck, H., Lawson, K., Yang, Y., et al. (2021). From
calibration to parameter learning: Harnessing the scaling effects of big data in
geoscientific modeling. Nat. Commun. 12, 5988–6013. doi:10.1038/s41467-021-
26107-z

Van Leeuwen, P. J., and Evensen, G. (1996). Data assimilation and inverse
methods in terms of a probabilistic formulation. Mon. Weather Rev. 124,
2898–2913. doi:10.1175/1520-0493(1996)124<2898:daaimi>2.0.co;2
Van, S. P., Le, H. M., Thanh, D. V., Dang, T. D., Loc, H. H., and Anh, D. T. (2020).

Deep learning convolutional neural network in rainfall–runoff modelling.
J. Hydroinformatics 22, 541–561. doi:10.2166/hydro.2020.095

Westerberg, I. K., and McMillan, H. K. (2015). Uncertainty in hydrological
signatures. Hydrol. Earth Syst. Sci. 19, 3951–3968. doi:10.5194/hess-19-3951-2015

Westerberg, I. K.,Wagener, T., Coxon, G.,McMillan, H. K., Castellarin, A., Montanari,
A., et al. (2016). Uncertainty in hydrological signatures for gauged and ungauged
catchments. Water Resour. Res. 52, 1847–1865. doi:10.1002/2015wr017635

Willard, J. D., Read, J. S., Appling, A. P., Oliver, S. K., Jia, X., and Kumar, V.
(2022). Predicting water temperature dynamics of unmonitored lakes with meta
transfer learning. Malden, MA: John Wiley & Sons Inc. e2021WR029579.

Wu, R., Chen, X., Hammond, G. E., Bisht, G., Song, X., Huang, M., et al. (2021).
Coupling surface flow with high-performance subsurface reactive flow and transport
code PFLOTRAN, 137. Environmental Modelling & Software.

Zhang, D., Chen, X., Yao, H., and James, A. (2016). Moving SWAT model
calibration and uncertainty analysis to an enterprise Hadoop-based cloud. Environ.
Model. Softw. 84, 140–148. doi:10.1016/j.envsoft.2016.06.024

Zhang, X., Srinivasan, R., and Van Liew, M. (2009). Approximating SWATmodel
using artificial neural network and support vector machine. JAWRA J. Am. Water
Resour. Assoc. 45, 460–474. doi:10.1111/j.1752-1688.2009.00302.x

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., et al. (2020). A
comprehensive survey on transfer learning. Proc. IEEE 109, 43–76. doi:10.1109/
jproc.2020.3004555

Frontiers in Earth Science frontiersin.org22

Mudunuru et al. 10.3389/feart.2022.1026479

https://doi.org/10.13031/2013.23153
https://doi.org/10.13031/2013.23153
https://doi.org/10.1016/j.advwatres.2022.104272
https://doi.org/10.1016/s0022-2496(02)00028-7
https://doi.org/10.1007/s11242-019-01326-7
https://doi.org/10.1007/s11242-019-01326-7
https://doi.org/10.1029/2020wr028091
https://www.nersc.gov/
https://doi.org/10.1029/2011wr011128
https://www.olcf.ornl.gov/
https://www.olcf.ornl.gov/
https://doi.org/10.1080/02626667.2018.1552002
https://prism.oregonstate.edu/
https://doi.org/10.5194/hess-23-35-2019
https://doi.org/10.5194/hess-23-35-2019
https://doi.org/10.1088/1748-9326/abd501
https://doi.org/10.1088/1748-9326/abd501
https://doi.org/10.1029/2019wr024922
https://doi.org/10.1016/j.envsoft.2011.12.001
https://doi.org/10.1175/jhm-d-19-0110.1
https://doi.org/10.1016/j.jhydrol.2020.125418
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1029/2018wr022643
https://doi.org/10.1029/2018wr022643
https://doi.org/10.2166/wst.2020.369
https://doi.org/10.1016/0041-5553(67)90144-9
https://doi.org/10.1016/0041-5553(67)90144-9
https://doi.org/10.1175/1087-3562(2004)8<1:rrhsso>2.0.co;2
https://doi.org/10.1175/1087-3562(2004)8<1:rrhsso>2.0.co;2
https://doi.org/10.1029/2000wr900405
https://doi.org/10.1029/2005wr004723
https://doi.org/10.1038/s41467-021-26107-z
https://doi.org/10.1038/s41467-021-26107-z
https://doi.org/10.1175/1520-0493(1996)124<2898:daaimi>2.0.co;2
https://doi.org/10.2166/hydro.2020.095
https://doi.org/10.5194/hess-19-3951-2015
https://doi.org/10.1002/2015wr017635
https://doi.org/10.1016/j.envsoft.2016.06.024
https://doi.org/10.1111/j.1752-1688.2009.00302.x
https://doi.org/10.1109/jproc.2020.3004555
https://doi.org/10.1109/jproc.2020.3004555
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1026479


Nomenclature

ARW American River Watershed

ATS Advanced Terrestrial Simulator

BNN Bayesian Neural Networks

CN Curve Number

CNN Convolutional Neural Network

DART The Data Assimilation Research Testbed

DHSVM The Distributed Hydrology Soil Vegetation Model

DDS Dynamically Dimensioned Search

DEM Digital Elevation Model

DNN Deep Neural Network

DL Deep Learning

ET Evapotranspiration

FAIR Findable Accessible Interoperable and Reusable

GIS Geographic Information System

GLUE Generalized Likelihood Uncertainty Estimation

GSA Global Sensitivity Analysis

GPU Graphical Processing Unit

HRU Hydrologic Response Unit

HSPF Hydrological Simulation Program-Fortran

MADS Model Analysis & Decision Support

KGE Kling-Gupta Efficiency

MATK Model Analysis ToolKit

mKGE Modified Kling-Gupta Efficiency

MI Mutual Information

ModEx Model-Experimentation

MTL Multi-Task Learning

NLCD National Land cover Database

NHDPlus National Hydrography Dataset Plus

npKGE Non-Parametric Kling-Gupta Efficiency

NSE Nash-Sutcliffe efficiency

logNSE Logarithmic Nash-Sutcliffe Efficiency

NWM The National Water Model

PET Potential Evapotranspiration

PEST Parameter Estimation Software

PRISM Parameter Elevation Regression on Independent Slopes

Model

PRMS Precipitation Runoff Modeling System

RHESSys Regional Hydro-Ecologic Simulation System

SCE-UA Shuffled Complex Evolution Method developed at The

University of Arizona

SWAT Soil and Water Assessment Tool

SWAT-CUP SWAT Calibration and Uncertainty Programs

SNOTEL Snow Telemetry

STATSGO Soil Maps for the State Soil Geographic

STL Single-Task Learning

TPU Tensor Processing Unit

USGS United States Geological Survey

WRF-Hydro The Weather Research and Forecasting Model

Hydrological Modeling System

VIC The Variable Infiltration Capacity model

XAI Explainable AI

YRB Yakima River Basin
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