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An MW 5.5 earthquake occurred in Pohang, Korea, on 15 November 2017 and

caused large damage. In and around the epicentral area the earthquake also

remained numerous sand boils, which is a surface representation of soil

liquefaction at shallow depth during the earthquake. Soil liquefaction is one

of the most dangerous consequences of an earthquake. Here we show that the

spatial distribution of the ground vulnerability index (Kg), which we estimate via

ambient noise analysis, correlates very well with the distribution of sand boils.

Our Kg model based on the dense microtremor surveys at differing geological

conditions and urbanizations indicates that only 28.4% of the study area is

vulnerable to ground shaking (Kg > 20), with 91.1% of the observed sand boils

occurring in these vulnerable areas. We also observed that Kg values estimated

in the study correlate well with both VS30 values and geologic units in the study

area. This case report confirmed that the Kg can be an affordable supplement to

traditional, but expensive and time-consuming, geotechnical/geophysical

techniques for the initial screening and regional evaluations. Such a Kg map

can assist stakeholders in earthquake-prone regions in identifying areas more

susceptible to liquefaction and bring a recommendation to consider seismic

hazard mitigation.
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1 Introduction

Earthquake-induced soil liquefaction has been considered one of the most destructive

consequences of earthquakes since the 1964moment magnitude (MW) 9.2 Alaska andMW

7.6 Niigata earthquakes (e.g., Youd 1978; Ishihara and Koga 1981), which resulted in

massive liquefaction-induced damage including slope failure, bridge and building

foundation failure, and the flotation of buried structures. Geotechnical engineers and

seismologists have since made great efforts to identify and evaluate the liquefaction

potential of a given region and mitigate the damage in areas that are prone to liquefaction.

Soil liquefaction occurs when saturated or partially saturated soil loses its strength and
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behaves more like a viscous liquid than a solid in response to

applied stress due to earthquake shaking (e.g., National

Academies of Sciences and Engineering, 2016). This

phenomenon is most often observed in saturated,

uncompacted sandy soils. The occurrence of liquefaction-

induced deformation during earthquakes is dependent on the

shaking intensity and duration, and the presence of liquefiable

sediments (Kramer 1996; Obermeier 2009). Although

liquefaction frequently occurs within the epicentral areas of

moderate or large earthquakes, it can also happen within the

epicentral areas of smaller earthquakes and even at distal sites.

This indicates that local conditions play an important role in

liquefaction and may significantly lower the necessary

earthquake magnitude of the trigger threshold.

Empirical stress-based liquefaction triggering assessment was

first proposed by Whitman (1971) and Seed and Idriss Izzat,

1971. This method remains the most commonly used, although it

has undergone a series of modifications. Several variants have

been proposed on the basis of historical case studies. For

example, Youd and Idriss (2001) and Boulanger and Idriss

(2007) used standard penetration test N values, Robertson and

Wride (1998) and Moss et al. (2006) used cone penetration test

measurements, and Andrus and Stokoe (2000) used shear-wave

velocities as variants. Each variant has its own assumptions,

including associated adjustment factors, empirical correlations,

and parametric relationships. Consequently, subjective

judgments are required to choose and implement an optimal

method among multiple variants, as well as to interpret the

results, which may possess considerable uncertainties (National

Academies of Sciences and Engineering, 2016). Some of these

approaches were already validated using the geotechnical and

geophysical data and sand boil inventory in Pohang city. Kim

et al. (2021) utilized borehole data in Pohang city to estimate

liquefaction potential indices (LPIs) and liquefaction severity

numbers (LSNs). Ji et al. (2022) measured shear-wave velocities

using the multi-channel analyses of surface waves (MASW) to

estimate LPIs in Pohang city due to the Pohang earthquake.

Furthermore, this method is expensive and time-consuming

because it requires intensive fieldwork, including drilling. This

method is appropriate for the detailed evaluation of site-specific

projects, particularly for designing structures and infrastructures.

However, it may not be the best option for regional liquefaction

evaluations because such borehole data are usually not prevalently

available in specific regions. Therefore, some researchers proposed

liquefaction geospatial probability models that are not based on

geotechnical borehole data. Zhu et al. (2015) developed regional

models for Japan andNew Zealand, using predictive variables such

as peak ground acceleration (PGA), slope-derived average shear

wave velocity of the upper 30 m (VS30), compound topographic

index (CTI), normalized distance, and distance to a river (dr).

Bozzoni et al. (2021) developed a model for Europe, using three

variables (i.e., VS30, CTI, and PGA). Note that these studies did not

use borehole data such as soil type and unit weight, and used the

variables that can be obtained from surficial data and are readily

available for most of regions. We also propose the use of ambient

noises on the ground surface that can be recorded anytime. While

borehole data are still required for the site-specific detailed

liquefaction evaluation, the method proposed in this study can

be of use for the initial screening for the liquefaction susceptibility

analysis and regional liquefaction assessment.

It is well known that the horizontal-to-vertical spectral ratio

(HVSR) of ambient noises is strongly correlated with the stiffness

of the ground. Numerous researchers have validated

relationships between HVSR and shear-wave velocity (e.g.,

Stephenson 2007; Gallipoli and Mucciarelli 2009; Stanko and

Markušić, 2020). The ground vulnerability index (Kg), estimated

by the amplification factor and fundamental frequency of the

HVSR curve, was further proposed by Nakamura (1996, 1997,

2019 and references therein) to evaluate the risk of soil

liquefaction. Recent studies have used Kg to identify sites that

are susceptible to strong ground shaking by assessing the

correlations between Kg and the distributions of structural

damage, liquefaction, and ground amplification effects (or site

effects) in regions that have experienced strong ground shaking

(e.g., Huang and Tseng 2002; Hardesty et al., 2010; Singh et al.,

2017; Farid and Mase 2020; Kang et al., 2021). We also validate

the use of HVSR in assessing liquefaction potential based on the

case study of the 2017 Pohang earthquake. Furthermore, the

method only requires ambient noise, which exists everywhere,

thereby making this method a promising and extremely useful

approach in field applications.

Amoderate earthquake (MW 5.5) occurred in Pohang, Korea,

on 15 November 2017, and caused severe damage in the

epicentral area. The Bank of Korea (Pohang branch office)

estimated economic losses of as much as USD 297 million,

including direct (USD 229 million) and indirect (USD

68 million) losses (Kim and Do 2018). This earthquake, which

is the second largest Korean earthquake recorded, was the most

damaging earthquake in modern Korean history (Ministry of the

Ministry of the Interior and Safety, 2018). Various factors

contributed to the extensive damage, including the large

magnitude of this event, its shallow focal depth (4.3 km), its

proximity to highly populated and urbanized areas, site

conditions with soft sediments that promote ground

amplification, and vulnerable structures. Detailed studies of

the cause of this earthquake have suggested that it was

induced by fluid injections down to 4–5 km depth by an

enhanced geothermal system (e.g., Grigoli et al., 2018; Kim

et al., 2018; Geological Society of Korea 2019; Lee et al., 2019;

Lee et al., 2022a; Lim et al., 2020).

Sand boils with diverse shapes were observed up to 15 km

from the epicenter immediately after the earthquake (Gihm et al.,

2018). The earthquakes that cause liquefaction are largely limited

toMW > 5.8 events (Brandenberg et al., 2020). Most case studies

of earthquake-induced liquefaction are located in plate boundary

regions, where large earthquakes frequently occur. These
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observations indicate that the Pohang earthquake is one of the

smallest earthquakes documented to cause liquefaction, and that

it is a rare example of earthquake-induced liquefaction in a stable

continental environment.

This study analyzes ambient noise via the horizontal-to-

vertical spectral ratio (HVSR) technique to estimate Kg. The

spatial Kg distributions are compared with the sand boils that

were induced by this moderate earthquake. The strong

correlation between Kg and the sand boil distribution indicates

that this technique is an effective approach for evaluating the

liquefaction potential in a given area. The use of ambient noise in

this non-invasive technique supplements the methodology to

estimate the liquefaction potential at local and regional scales.

2 Seismicity and geological
background

TheKorean Peninsula has experienced relatively few earthquakes

during the instrumental earthquake observation period compared

with the neighboring countries of Japan, China, andTaiwan. This low

contemporary seismicity and long recurrence interval of damaging

earthquakes for the peninsula is typical of an intraplate earthquake

setting (Scholz 2002; Gangopadhyay and Talwani 2003). Geodetic

observations at continuous global positioning system sites have also

revealed a very modest horizontal deformation rate of less than

3 mm/yr in the peninsula (Jin et al., 2006).

Southeastern Korea has experienced more earthquakes than

any other part of the peninsula, including two damaging events;

i.e., the 2016 Gyeongju and 2017 Pohang earthquakes. This

region hosts ~70% of the South Korean seismicity in the

instrumental record (Figure 1A, Korea Meteorological

Administration 2022). Historical earthquake studies have also

indicated that the Korean Peninsula experienced numerous felt

earthquakes during its approximately 1900-year historical record

(Chiu and Kim 2004; Lee and Yang 2006; Kyung et al., 2010).

Historical and instrumental seismic records indicate that the

Pohang area had not previously experienced significant

earthquakes despite the relatively high seismicity of the

southeastern Korean Peninsula.

The Pohang earthquake was the most damaging and first

induced earthquake in Korea (Grigoli et al., 2018; Kim et al.,

FIGURE 1
Topographic map of the southern Korean Peninsula and distribution of the noise observation sites. (A) Earthquake epicenters between January
1978 and October 2017.ML > 2.0 andML > 5.0 events are indicated by open circles and red stars, respectively. Open circles for earthquake epicenters
are scaled by magnitude. The cyan rectangle in the Pohang area shows the location of the detailed figure in (B). (B) Distribution of the noise
observation sites for HVSR analysis in the Pohang area are shown by red triangles. Some stations do not produce reliable result and shown by
black triangles. The background image is an elevation map of the area. YF, Yangsan Fault; WBF, western border fault of the Pohang Basin; HF,
Heunghae Fault; GF, Gokgang Fault; F1, F2, and F3, unnamed and inferred faults (Song et al., 2015). Green squares indicate the stations whose HVSR
curves are presented in Figure 3.
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2018; Geological Society of Korea 2019; Lee et al., 2019; Woo

et al., 2019; Lim et al., 2020). It was induced by five phases of

hydraulic stimulation at ~4.3 km depth between January

2016 and September 2017. The mainshock ruptured a N36E-

striking blind fault that dips to the NW at 64°. The spatial and

temporal distributions of the aftershocks revealed a complex

subsurface fault geometry that consisted of a main fault and four

subsidiary segments with diverse orientations, northwestward

and southeastward propagations of the rupturing faults, and

rupture arrests (Kim et al., 2020; Ree et al., 2021). Although

the earthquake was not associated with surface ruptures,

numerous sand boils and significant surface deformation have

been reported from field surveys (Gihm et al., 2018; Choi et al.,

2019; Gahng 2019). Detailed studies of Interferometric Synthetic

FIGURE 2
Examples of liquefaction following the 2017MW 5.5 Pohang earthquake. (A) Aerial map showing the selected locations (S1–S4; yellow circles) of
the sand boil photographs. The Pohang earthquake epicenter is shown by a red star. White dotted circles represent 3-km distances from the
epicenter. (B) Photograph of lateral spreading and sand boils at a rice paddy (site S1) (C,D) Photographs of sand boils, ejected soils, and a cross-
sectional view at site S2. Image (C) is approximately 2 m across. (E) Photograph of a sand boil at site S3 (F,G) Photographs of sand boils in a pine
forest at site S4.
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Aperture Radar observations have estimated a 5 km × 6 km

rupture (width × length) with a mean slip of 15 cm and a

maximum slip of 25 cm in the northeastern part of the

mainshock hypocenter (Song and Lee 2018).

The ground motion’s peak acceleration and the duration

recorded at the closest station (PHA2 located ~10 km from the

epicenter) were approximately 0.37 g and 12 s, respectively

(Korea Meteorological Administration, 2022). Aftershocks

continue in the region and consist predominantly of

earthquakes with ML < 3. Residents reported feeling tremors

associated with earthquakes as small as magnitude 2.6 on

26 September 2019. Given that feeling earthquakes with such

small magnitudes is unusual in Korea, it seems likely that the

local site effects (including the thick and soft sedimentary layers

at the shallow subsurface) amplified earthquake vibrations and

contributed to the felt reports. The spatial distribution of damage

to structures and sand boils (Korea Meteorological

Administration 2022; Kang et al., 2018; Gihm et al., 2018) in

the region also does not follow the assumption that seismic

intensity monotonically decreases with distance as seismic energy

attenuates along the ray path, which rephrases the significance of

site-specific effects.

The study area is located in the Miocene Pohang Basin,

southeastern Korea, and bounded to west by the western border

faults (WBFs), which are located 2–5 km to the east of the

Yangsan Fault, and to east by the East Sea (or Japan Sea;

Figure 1B). The Pohang Basin consists of >1-km-thick, non-

marine to deep-marine sedimentary strata that were deposited

during the early Miocene (Hwang et al., 2021). The Pohang Basin

formed as a result of normal faulting of the WBFs and

concomitant block subsidence during the opening of the East

Sea. The basin fills were mainly fed with sediment from the

footwall blocks through six fan-delta systems (Chough et al.,

2000). TheseMiocene basin fills are now unconformably overlain

by Quaternary unconsolidated colluvium and alluvium, as well as

coastal sediments along the shoreline areas.

3 Methods and data processing

The HVSR technique characterizes the local site effect by

analyzing ambient vibrations. HVSR exploits the empirical and

ubiquitous observations that the background noise levels of the

horizontal seismogram components are consistently higher than

the vertical seismogram components at soft ground sites, whereas

they are equivalent at hard ground sites. This technique measures

the ambient noise using a three-component seismometer and

estimates the resonance frequency and corresponding

amplification factor from the ratio of the horizontal to vertical

components of the Fourier amplitude spectra. HVSR has been

successfully employed in a wide range of geological and

environmental settings (e.g. Liu et al., 2014; Picotti et al.,

2017; Singh et al., 2017; Mase et al., 2020; Singh et al., 2020;

Kang et al., 2021; Mase and Sugianto Refrizon, 2021). The

advantages of this technique in real-world applications include

its low-cost implementation, non-invasive data collection

approach, flexible and straightforward instrumentation

requirements, relatively short data collection and processing

times, and the generation of results that are easily interpreted.

Furthermore, HVSR is well-suited for use in a range of

environments, including low-seismicity areas, since this

technique only requires relatively short noise observations and

does not require a seismic source.

The ground motions in response to an earthquake at a given

seismic site are proportional to the dynamic strain, such that the

fragility of the site under consideration can be expressed as Kg =

A2/Fr, where A and Fr are the amplification factor and

fundamental frequency estimated by the HVSR technique,

respectively (for details, see Nakamura 1997, 2019, 2000; Farid

and Mase 2020 and references therein). Kg is therefore an

intrinsic index that represents the vulnerability of the ground

to earthquake shaking. Here we confirm thatKg correlate with the

triggering of liquefaction following an earthquake, whereby a

larger Kg value in a given region indicates a higher degree of

ground vulnerability and a higher chance of triggering

liquefaction.

The most damaging earthquake (MW 5.5) in southeastern

Korea over the past century occurred in the city of Pohang on 15

November 2017 (e.g., Kim et al., 2018; Kim et al., 2020). We

acquired noise observations from 446 sites where three-

component geophones were deployed between January

2018 and December 2020 to construct our Kg model

(Figure 1B). Ambient noise measurement was performed by a

field equipment of Smart Solo IGU-16HR 3C, which is a compact

all-in-one 3-channel sensor and datalogger with onboard GPS

timing, and a self-contained power supply. It has a corner

frequency of 5 Hz and a 24-bit ADC resolution (DTCC 2022).

The duration of noise measurement varies from a couple of hours

to 6 months. The all-in-one equipment is buried ~0.3 m below

the surface to ensure a good coupling and to avoid undesirable

noises due to meteorological variations including wind and

precipitation (Foti et al., 2018; Kang et al., 2020b). The

observation times at an individual site varied from a couple of

hours to 6 months. We note that the HVSR technique only

requires data collected over several tens of minutes to obtain

reliable estimates of the fundamental frequency and

amplification factors. Some sites did not produce reliable

fundamental frequency (F) and/or peak amplification (A)

information, but they did provide valuable insights into the Kg

assessment since most of these sites were situated on hard-rock

sites, where the liquefaction potential is negligible. We selected

354 sites (Figure 1B) for the Kg model based on the selection

criteria developed by the SESAME group (SESAME 2004;

Chatelain et al., 2008).

Sand blows are surface representations of subsurface

liquefaction. The first sand boils since the instrumental
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observation of earthquakes in Korea were observed in and

around the epicentral area of the Pohang MW 5.5 earthquake

(Figure 2). The Korea Institute of Geoscience and Mineral

Resources undertook a comprehensive field survey, including

satellite and drone imagery analyses, to characterize the nature

and extent of these sand boils. They identified 597 sand boils,

most of which were observed in rice paddies within 3 km of the

mainshock epicenter (Gihm et al., 2018). The farthest sand boil

was located ~15 km to the southwest of the epicenter, which is

two to ten times further than previous estimates of the maximum

distance from the source (Kuribayashi and Tatsuoka 1975;

Papadopoulos and Lefkopoulos 1993; Galli 2000). This distal

sand boil highlights the importance of local effects in estimating

liquefaction hazards. Furthermore, the liquefaction field survey

noted several sand boils in residential areas in the southeastern

corner of the study area, which is ~9 km from the epicenter. We

therefore compared our Kg distribution with the sand boil

inventory compiled by Gihm et al. (2018) to validate the

effectiveness of Kg as a proxy for identifying areas that are

highly vulnerable to liquefaction.

4 Results

Ninety-two of the 446 HVSR curves were eliminated because

they either did not comply with the SESAME standard (SESAME

2004) or did not yield clear F and/or A information. We

examined the details of their raw data, HVSR curves,

instrumentation, and weather conditions during data

acquisition, and excluded their HVSR curves from further

analysis and interpretation based on the weather conditions

(e.g., heavy rain or high wind speed during data collections)

and/or instrument malfunctions due to improper installation

(e.g., tilted sensor orientations). Many sites did not produce

reliable F or A information because they were located on hard

rock exposed to the surface. Although these hard rock sites are

ideal for earthquake monitoring, they are not preferred for HVSR

analysis. However, such typical HVSR results (i.e., lack of

dominant frequency or amplification) provide additional

constraints for identifying hard rock sites or thin soil layers.

Thus, they provide valuable information for generating the Kg

map in this study. Some sites yielded complex HVSR curves. We

visited many of those sites more than twice to collect ambient

noise data; they consistently produced complex HVSR curves

(oscillating peaks, broad peaks, or plateau-like shapes), which

may be attributed to either substantial lateral variations in the

sedimentary thickness or heterogeneities in the subsurface

materials (Guillier et al., 2006).

Three hundred fifty-four sites produced reliable HVSR

curves. They, except those from hard rock sites, exhibited one

clear peak or multiple peaks (Figure 1B and Figure 3). We picked

the resonance frequency at the highest HVSR amplitude of each

HVSR curve with a single clear peak. We selected the resonance

frequencies and amplitudes of each HVSR curve with multiple

peaks based on a priori information, including the local geology,

topography, and resonance frequencies at adjacent sites. In many

cases, we preferentially chose the spectral peaks at lower

frequencies for multiple HVSR peaks. The estimated

resonance frequencies were as low as 0.33 Hz, with H/V

amplitudes as large as 10.8 (Figure 4).

The HVSR curves from selected sites are shown in Figure 3.

The provided examples have been selected to illustrate HVSR

curves that possess a clear single peak, multiple peaks, and no

peaks from different geological environments that experienced

varying degrees of liquefaction. HVSR curves with a single peak

or multiple peaks are related to one or more impedance contrasts

beneath the observation sites, respectively, with the resonance

frequencies possessing lower H/V amplitudes representing

minor impedance contrasts. A given site with no discernable

HVSR peak is indicative of very weak impedance contrasts

beneath the site (e.g., Kang et al., 2020a; Singh et al., 2020).

We note that the HVSR curves at liquefaction sites (Figures

3B,D–F) have relatively low (0.48–0.62 Hz) resonance

frequencies and high (4.6–8.7) corresponding H/V amplitudes

in the provided examples, which may be due these measurements

being taken from Quaternary alluvial sites.

The Kg model (Figure 5) that is proposed in this study is

based on the resonance frequency and amplification estimates of

the noise observations from 354 sites using the HVSR technique.

Kg varies as large as 301, and the model provides insight into the

ground vulnerability at a high resolution. The model reveals that

55.1% of the study area possesses Kg values that are <10. The
western third of the study area possesses low Kg values, as do the

coastal areas in the northeast. The areas with low Kg values are

characterized by either hard rocks or very thin soil layers. Kg

values of >20 span 28.4% of the study area. Kg values as high as

100 are observed in the Heunghae area, near the epicenter of the

Pohang earthquake, which is largely underlain by >200 m of

unconsolidated Quaternary sediments (Kang et al., 2020a). The

southeastern corner of the study area, which is far from the

epicenter, also exhibits very high Kg values (>50).

5 Discussions

A comparison of the sand boil sites and our vulnerability

model highlights that 91.1% of the sand boils occurred in areas

with high Kg values (>20), and that they were not limited to the

epicentral area. Many sand boils also occurred in a heavily

urbanized area in the southeastern corner of the study area

and possessed Kg values of >50, which is defined as an

isolated and highly vulnerable area on our Kg map. Our study

suggests that Kg is a valuable parameter for assessing the ground

vulnerability in a given area since our Kg values successfully

identified the liquefaction sites in both rural and urban settings.

Our study also shows that the HVSR technique only requires
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FIGURE 3
Examples of the representative HVSR curves for different geological formations and Kg values. The station name is shown in the upper right
corner of each figure. Solid and dotted lines are the average spectral curves and their 1-σ standard deviations, respectively. The fundamental
frequency (Fr), which is associated with the amplification factor (H/V) and Kg value, is also shown for each station. The station locations are indicated
by the green squares in Figure 1B.
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background noise and is applicable in areas where large

earthquakes are infrequent.

The liquefaction following the Pohang earthquake provides a

unique opportunity to study and characterize the liquefaction

that results from an induced earthquake. Liquefaction case

studies associated with MW < 5.5 earthquakes are rare. The

smallest earthquake known to cause surface manifestations of

liquefaction (i.e., sand boils) was a March 1991 local magnitude

(ML) 4.6 aftershock following the 1989 MW 6.9 Loma Prieta

earthquake, with the sand boils that occurred during the March

1991 earthquake erupting through pre-existing vents (Sims and

Garvin 1995). It is highly likely that no surface manifestations

would have occurred without these pre-existing pathways. The

smallest documented mainshock to have triggered liquefaction is

a M ~ 5.0 event (National Academies of Sciences and

Engineering, 2016; Green and Bommer 2019). Most of the

earthquakes in the liquefaction case study database are M >
5.8 events (Brandenberg et al., 2020), which makes the Pohang

earthquake one of the smallest documented earthquakes to cause

liquefaction.

The liquefaction database mainly includes case studies from

plate boundary settings (National Academies of Sciences and

Engineering, 2016), with very few case studies from earthquakes

in stable continental regions. The earthquake motions in stable

continental settings are expected to be higher in amplitude,

shorter in duration, and characterized by higher frequencies

than those occurring near plate boundaries since the bedrock

in stable continental settings is denser, cooler, and less fractured

than that in plate boundary settings (National Academies of

Sciences and Engineering, 2016). The ability to trigger

liquefaction in regions with stable continental crust may

require different behaviors to those in plate boundaries

settings. The extremely low frequency of earthquakes causing

liquefaction in stable continental regions compared to that in

plate boundary settings indicates that the number of case studies

in stable continental regions will remain limited. This issue

therefore adds to the importance of our case study and its

applicability to liquefaction potential assessments in intraplate

regions.

Lee et al. (2022b) generated a time-averaged shear-wave

velocity map for the upper 30-m soil deposits (VS30) across

Pohang based on VS30 values that were estimated via the

compressional-wave seismogram method and multi-channel

analysis of surface waves (MASW). We compared these VS30

FIGURE 4
(A) Resonance frequency and (B) peak amplitude distributions across the study area. Solid lines indicate major faults. YF, Yangsan Fault; WBF,
western border fault of the Pohang Basin; HF, Heunghae Fault; GF, Gokgang Fault; F1, F2, and F3, unnamed and inferred faults.
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estimates and measurements with our Kg values, as shown in

Figure 6, and observed that Kg generally decreased with

increasing VS30. This demonstrates that the Kg values

estimated by the ambient noises can represent the subsurface

site conditions. Note that the scatters in this comparison are

attributed to the indirect estimation of VS30 values, as opposed to

measurements through direct tests such as downhole test, cross-

hole test, and ps logging test. Furthermore, these scatters could be

induced by the complex basin structure as can be guessed by the

Kg map shown in Figure 5. Figure 7 shows the geologic unit

distributions (KIGAM 2020) of the Kg sites for 4 Kg intervals. The

locations with Kg values less than 20 are distributed across

various geologic units, including Cretaceous granites and

Quaternary deposits, with a concentration of Kg sites in

Tertiary volcanic and sedimentary rocks. The locations with

Kg values between 20 and 50 are found primarily in Tertiary

and Quaternary deposits, and those with Kg values greater than

100 are found only in Tertiary sedimentary or Quaternary

unconsolidated deposits, which are considered highly

vulnerable to liquefaction. Note that the shear-wave velocity

FIGURE 5
Soil vulnerability index (Kg) model for the Pohang area. (A) The locations of 597 sand boils are shown on the Kg model as circles. (B) Pie chart of
the areal Kg composition. (C) Pie chart of the Kg composition of the sand boils. Approximately 91.1% of the sand boils occurred in areas with Kg > 20.

FIGURE 6
Estimated Kg values versus the VS30 values that were
estimated and measured by Lee et al. (2022b).
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and geology affect the liquefaction occurrence. These two

comparisons (i.e., Kg vs VS30 and geology) validate the Kg

estimates that were obtained in this study.

A few sites with high Kg values in our model have also been

investigated using common geotechnical approaches, namely the

liquefaction potential index and liquefaction severity number, to

assess the liquefaction potential (Kim et al., 2021). Although the

results of these studies are comparable to our model results, they

have restricted spatial coverage that is limited to the immediate

vicinity of each borehole. Furthermore, such data acquisition is

expensive and difficult to perform in densely urbanized areas.

This highlights the benefit of using Kg to estimate the ground

vulnerability, as ambient noise exists everywhere, data

acquisition is simple and inexpensive, and the data processing

and interpretation are intuitive.

We note that discretion is required when employing the

HVSR technique. Our review of the literature has revealed that

the Kg threshold for triggering liquefaction varies over a wide

range and may be as low as 5 (Choobbasti et al., 2015). However,

all of the case studies we reviewed exhibited positive correlations

between Kg and liquefaction, with an increase in the number of

sand boils at sites possessing higher Kg values (e.g., Huang and

Tseng 2002; Herrera et al., 2018; Kusumawardani et al., 2019;

Yulianur et al., 2020; Arango-Serna et al., 2021). This correlation

even holds for the case study of the historic 1811–1812 New

Madrid earthquake sequence (Hardesty et al., 2010). Some HVSR

curves exhibit multiple peaks, whereby the minor peaks can be

correlated with the stratigraphic boundaries of lower impedance

contrasts in the subsurface. However, information on these

stratigraphic boundaries and their contributions to the HVSR

peaks is lacking. Furthermore, our HVSR analysis and

interpretation, and its application for ground vulnerability are

limited to the fundamental peaks and their corresponding

amplitudes of the HVSR curves, such that any contributions

from other peaks require further investigation. Additional studies

that capture the positive correlations between Kg and liquefaction

under various geologic and tectonic settings are also needed to

better elucidate the liquefaction potential in a given region.

6 Conclusion

We applied the HVSR method to obtain a ground

vulnerability (Kg) map using observed resonance frequencies

and peak amplification factors from 354 sites in Pohang,

Korea, with large lateral variations observed across the study

area. A comparison of this ground vulnerability map with the

sand boil distributions during the 2017 MW 5.5 Pohang

earthquake indicated that the observed liquefaction occurred

mainly in areas where Kg > 20, with 5.6% of the confirmed

sand boils occurring in areas with Kg values between 10 and 20.

An additional encouraging observation was the occurrence of

FIGURE 7
Geologic unit distributions (KIGAM 2020) of the Kg sites for 4 Kg intervals.
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sand boils in distal areas where Kg > 20. A further comparison of

the Kg distribution with the local geology and VS30 highlighted

that the observed liquefaction occurred mainly in unconsolidated

sediments, and that there appeared to be an inverse correlation

between Kg and VS30. Therefore, this study demonstrates a

potential solution using this rare case study of liquefaction

following a relatively low-magnitude induced intraplate

earthquake. National and local authorities could adopt this

information for improved mitigation of earthquake risk, as

this approach does not require constraints on the seismic

source. This study highlights the merit of implementing an

affordable approach to identify and map areas that are

vulnerable to ground shaking-induced liquefaction, and of

focusing on developed or developing urban areas that possess

the greatest liquefaction potential.
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