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The aboveground biomass (AGB) of withered grass is an important early-

warning indicator for grassland fire risk. Most grassland fires occur during

the dry-grass season. In order to improve the fire-warning efficiency of

withered AGB, it is essential to rapidly acquire the amount of withered-grass

biomass. Remote-sensing data has been widely used in monitoring and

estimating grassland yields during the growing season. However, applying

remote sensing to the estimation of withered grass is still in need of

exploration. The aim of this work was to try to establish a remote-sensing

estimation model for withered AGB in the dry-grass season. The estimation of

aboveground biomass can effectively prevent the occurrence of fire, protect

the environment, facilitate localmanagement and reduce economic losses. Our

approach was to, first, calculate a dry-grass index based on Sentinel-2 image

data and using ENVI, SNAP, and ArcGIS software. Second, a model to estimate

the fuel quantity during the dry-grass season was established by regression

analysis combined with field-measured data. Finally, the estimation model was

used to predict the amount of fuel in different months of the dry-grass season,

followed by the fire-defense elements, which were quantified and mapped in

the Longzhao Marsh wetlands. It was found that: 1) the two indices were

significantly correlated (0.678) with the amount of fuel; 2) the established

model could accurately estimate the amount of fuel in the study area during

the dry season, and accurate test results demonstrated that the correlation

between the estimated results of the best model and the measured values was

0.863, indicating high accuracy; 3) the spatiotemporal variation of withered

grass in the study area was obviously different, and the quantities of fuel

predicted for the other months were more accurate, which may reflect

monthly dynamic changes in actual fuel quantities; and 4) the establishment

of a remote-sensing estimation model for fuel quantity in the Longzhao Marsh

during the dry-grass season could provide important parameters for fire-risk

warning in the western grassland of Jilin Province and Northeast China.
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1 Introduction

Grassland resources play an important role in

environmental protection, animal husbandry development,

ecosystem balance, and carbon sequestration (Jiaxing

Huang et al., 2021; Shuqing Feng et al., 2004; Hailiang Li

et al., 2009). Aboveground biomass (AGB) is a key indicator of

grassland growth and can be used to evaluate the regeneration

ability of grassland ecosystems (Shuqing Feng et al., 2004;

Hailiang Li et al., 2009). It is also the material basis for

maintaining grassland ecosystem and fire research, and one

of the most basic elements of grassland fires. Trees promote

grass biomass in dry season (Ivan Raniero Hernández

Salmerón et al., 2022). Rapid, accurate, and large-scale

monitoring of grassland AGB is of great significance in

determining the rational carrying capacity of grasslands

and ensuring the safety of grassland ecosystems (Tarun K

et al., 2021). Grassland fires are caused by the burning of AGB

during the dry-grass season (Qingqing Li et al., 2013).

Grassland vegetation is the main carrier of grassland fires.

As an important part of grassland vegetation, the spatial

distribution and quantity of combustible matter has a

major impact on grassland fires (Wenyi Yang et al., 2001).

Yellow grass in the grassland is the most important fuel, being

the main component of, and basis for, combustion. The

amount (weight, height, and continuity) of dry grass in a

grassland not only changes with space, but also changes with

time (Xinghua Li et al., 2007). At the same time, the species

composition of grasslands is in constant flux. Changes in all

prairie fuels determine or influence prairie fires (Batu Seyin

2007). Therefore, timely and accurate acquisition of grassland

AGB data during the dry-grass season is of great significance

to grassland fire-warning and fire-risk assessments (Yulong

Bao et al., 2012). Moreover, estimating the biomass of

withered grass can facilitate the management of local

relevant departments. The sustainable utilization of

withered grass resources can reduce economic losses and

provide a basis for ecological restoration (Yujuan Zhai

et al., 2021; Ziqi Chen et al., 2021; Ziqi Chen et al., 2022;

Yanhong Zhang et al., 2021).

The most-combustible components in the dry-grass

season are the leaves and branches of grassland vegetation,

which do not easily decompose (Shan Yu et al., 2014). The

main component of grassland fuel––the grass

stock––constantly changes, posing a fire risk (Yi Zhuo

et al., 2010). Remote-sensing data has been widely used in

monitoring and estimating grassland yields during the

growing season. After years of study, scholars have made

different linear combinations of the band information

extracted from remote-sensing images in order to obtain

various vegetation indices. Among these, the normalized

difference vegetation index can best reflect changes in the

fuel coverage, biomass, and leaf-area index. It is mainly used

for monitoring grass yields in the peak-grass season (Jianqing

Zhou et al., 2019). Compared with the remote-sensing

monitoring of vegetation growth and fuel yield in the peak-

grass season, due to the influence of cold winters, the remote-

sensing monitoring of fuel quantity in the dry-grass season

can become more or less difficult. The dry-grass season usually

starts in early October of 1 year and ends in early May of the

next, which is also the fire-free season. Fires mainly occur in

the grassland region of North China during the dry-grass

season, so it is very necessary to be able to estimate the amount

of fuel available during the dry-grass season. So far, there has

been little domestic or foreign research on the use of remote

sensing in the dry-grass season to estimate the amount of fuel,

and related research on herbaceous vegetation has mainly

focused on the cold season. The dry-grass index (DGI) is

determined as DGI = 1/Ch1, where Ch1 is the relationship

between Moderate Resolution Imaging Spectroradiometer

(MODIS) data and the reflectivity of Channel 1 in National

Oceanic and Atmospheric Administration (NOAA)/

Advanced Very High Resolution Radiometer (AVHRR)

data. Using the DGI to monitor fuel quantity during the

dry-grass season is based on the principle that the lower

the vegetation coverage, the higher the reflectivity of the

ground (E. Chuvieco et al., 2002; Yeneayehu Fenetahun

et al., 2022; Hao Pei et al., 1995). However, some case

studies have indicated that its accuracy in hay estimation is

not ideal. For example, Hao Pei et al. (1995) established a

relationship between NOAA/AVHRR data and pasture-

quantity data obtained quasisynchronously on the ground,

producing a map of dry-grass quantity for the area around

Xilinhot city. Using the Xilin Gol grassland as the research

area, Qingdong Cui established estimation models for herbage

stock in the cold season for four grassland types––meadow

grassland, typical grassland, desert grassland, and sandy

vegetation––using Earth Observing System (EOS)/MODIS

and ground-survey data (Qingdong Cui 2009). Based on

the EOS/MODIS data of Shan Yu et al. (2014) and using

regression analysis, an estimation model for fuel quantity in

the dry-grass season has been established, and the fuel

quantity for Inner Mongolian grassland in the dry-grass

season has been calculated. In recent years, some scholars

have put forward a hay fuel estimation method based on

spectral reflection characteristics. One of

these––Zhengxiang Zhang––used field-measured spectra to

create a new hay DGI and establish a model for predicting the
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FIGURE 1
Schematic diagrams (A,B) and satellite images (C–F) showing the location of the study area and sampling points.
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amount of fuel in the northeastern China grassland AGB, with

the model also being applied to western Songliao; the

accuracy of the calculation is relatively high (Zhengxiang

Zhang 2010; Zhang et al., 2015). According to above

researches, the estimation of withered grass biomass is

usually based on low spatial resolution remote sensing

images such as modis images, moreover the high spatial

resolution remote sensing images are often used for the

grassland in the growing season (Chao Liu et al., 2022;

Lingxin Bu et al., 2022). The difference between grassland

biomass in growing season and withered grass biomass using

remote sensing methods is mainly due to the spectral

reflection difference in modeling principles. Most studies

use remote sensing data to model the grassland biomass in

growing season, because the measured spectrum of grassland

in growing season has a greater response to the bands of

remote sensing images and commonly used indexes, and there

is a higher correlation between grassland biomass and

indexes. But it is difficult to find these characteristics in

the withered grass. However, the discovery of DGI can well

promote the estimation of biomass of withered grass and it is

more convenient, practical and effective, which can be used

for large area application of high-resolution remote sensing

satellite in the estimation of withered grass biomass.

Therefore, this study will use high spatial resolution

remote sensing images to estimate the hay, in order to

explore a new method for retrieving the amount of hay

fuel. And establishing remote-sensing images with higher

spatial resolutions and then calculating the hay biomass

from these is a current important mission.

Determinations of the spatial distribution patterns and

fuel loads of grasslands during the dry-grass season can not

only be used to provide a practice basis of grassland fire safety

management, soil carbon accumulation and remediation

(Qixia Long et al., 2022), but can also provide a

theoretical basis for fire prevention (Duwala et al., 2012;

Hui Xu et al., 2015). This is of great importance for the

management of grasslands and the formulation of fire-

prevention measures (Shirong Chen et al., 2006). In this

study, based on high-resolution Sentinel-2 data as the data

source and results from previous studies, two kinds of fuel

index were calculated, and a remote-sensing estimation

model was established. This was done in combination with

measured ground data in order to calculate the spatial

variations in fuel quantity in the Longzhao Marsh during

the dry-grass season, and in order to provide theoretical

guidance and a scientific basis for local grassland fire

prevention and soil carbon remediation. The study can

promote the application of Sentinel-2 with high resolution

in the estimation of large-scale grassland AGB, and provide

methods and data support for the relevant departments in the

study area to reasonably determine the balance of grass and

livestock and use grassland resources.

2 Materials and methods

2.1 Overview of the study area

The study area was located in the ecological barrier area in

western Northeast China (see Figure 1), within the area defined

by 45°00′–45°28′N and 123°15′–124°13′E. The hydrological

system comprised one main stream and two tributaries––the

Taoer and Huolin Rivers. The abundant water resources in the

area have resulted in a series of small brackish-water lakes and a

brackish-water marsh. The rich river, lake, marsh, and marsh-

meadow ecosystems in the region have given rise to high regional

biodiversity. According to incomplete investigations and

statistics, there are 239 species of plants in the Longzhao

Marsh, belonging to 39 families and 132 genera. The

vegetation mainly includes Suaeda salsa community, Artemisia

alkali community, Phragmites australis community and Cyperus

sedge community. The former two are typical salt-marsh

communities, embedded in grasslands, meadows, and

marshes, and widely distributed across this area. Suaeda salsa

was the dominant species in those two communities,

accompanied by Artemisia suaeda, Swertia hydropiper,

Polygonum polygonum, and Sibiricum plantarum. Reed and

sedge communities occurred in shallow water and around

marshes. The dominant species in these was Phragmites

communis, accompanied by cattails and small rushes. The

dominant species in the sedge community was sedge,

accompanied by shallots and Scirpus mariqueter. The

dominant natural vegetation provides important habitats for a

wide variety of animal populations, rich in 164 species––mainly

birds, mammals, amphibians, reptiles, and fish. Abundant animal

and plant resources and high quality ecosystems mean that this

region has an important position in the ecological strategy of

western Northeast China.

2.2 Data collection and processing

2.2.1 Sample plot selection and pretreatment
At total of 58 sample sites were set up in the study area in

November 2019 and March 2020 based on geomorphic type and

vegetation community. The different vegetation types included

Suaeda suaeda, Phragmites australis, and sedge communities.

Three 1 × 1-m subplots were set up in each sample plot. The

locations––longitude and latitude, altitude, plant community

composition, height, coverage, and frequency––of each sample

site were recorded with the aid of the Global Positioning System

(GPS). The location of the study area and the distribution of the

sampling points are shown in Figure 1. The AGB harvesting

method (Bingru Zhao et al., 2004; Qingdong Cui et al., 2009) was

used to obtain direct measurements. The plots were mowed

uniformly and the samples taken inside for natural air-drying

in order to determine the quantity after finding the constant
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weight (involving several weighings). The weight of hay (i.e., the

measured amount of fuel) was obtained for each sample.

2.2.2 Image data source and preprocessing
Data was accessed via the European Space Agency’s

(ESA’s) Copernicus data center website (https://scihub.

copernicus.eu/dhus/). Surface reflectance products from the

multi-temporal Sentinel-2B remote-sensing image were

obtained. This is the only optical satellite with more than

three red-edge bands (Yihan Pu et al., 2021). The wavelength

distributions and spatial resolutions of the bands are provided

in Table 1. Because Northeast China is completely covered in

snow in December through February, continuous-time images

were not selected. For this work, images fromMarch 2020 that

were consistent with the measured data from the ground were

selected for modeling. Other data, reflecting changes in the

quantity of fuel during the dry-grass season, were selected for

predicting the amount of dry grass, including one scene image

each from September, October, and November 2019 and one

from April and May 2020 (see Table 2). For the downloaded

images, first, we made radiometric calibration and

atmospheric corrections (Fugen Jiang et al., 2021) using the

Sen2cor tool in the Sentinel-2 software toolbox provided by

the ESA. Then we applied SNAP software to resample the

image at a 10-m spatial resolution for each pixel from a 20-m

spatial resolution.

2.2.3 Calculation of the dry-grass index
The reflectance curves for soil and the subsoil are

obviously different, with the reflectance of the subsoil layer

being lower than that of soil in the visible and near-infrared

bands. The reflectance differs with the amount of subsoil on

the surface of the ground, with the reflectance reaching a

maximum when the ground is completely bare and a

minimum when the ground is completely covered by

withered grass. When the ground is covered by subsoil,

the reflectance is between the maximum and the minimum.

The field spectroscopic measurements showed significant

differences between the fuel spectra in these bands. In the

short-wave infrared imagery bands (Zhengxiang Zhang

2010), the dominant features of all the reflectance spectra

were two water-absorption bands, centered at 1,400 and

1,900 nm, and one reflection peak at 1,650 nm. In the

2,100-nm band, associated with cellulose and lignin, there

was a significant absorption feature in the spectra of the dry-

grass fuels. This feature was not visible in the soil

spectrum. However, the contrast between the reflection

peak and the absorption trough was marked. Based on

variations in the spectral curve characteristics of the

different vegetation types and the soil during the dry-grass

season, and with reference to the dry-grass inversion model

based on the other satellite images that the relevant MODIS

data was based on (Zhenyu Xu et al., 2020; Suying Li et al.,

2007), the 1,600-nm band represented a stable reflection peak

TABLE 1 Description of downloaded Sentinel-2 image data.

Year Date Spacecraft ID Level

2019 2019/09/12 Sentinel-2 L1C

2019 2019/10/24 Sentinel-2 L1C

2019 2019/11/15 Sentinel-2 L1C

2020 2020/03/12 Sentinel-2 L1C

2020 2020/04/24 Sentinel-2 L1C

2020 2020/05/12 Sentinel-2 L1C

TABLE 2 Description of Sentinel-2 band information.

Band number S2A S2B Spatial resolution (m)

Central wavelength (nm) Central wavelength (nm)

B1 443.9 442.3 60

B2 496.6 492.1 10

B3 560.0 559.0 10

B4 664.5 665.0 10

B5 703.9 703.8 20

B6 740.2 739.1 20

B7 782.5 779.7 20

B8 835.1 833.0 10

B8a 864.8 864.0 20

B9 945.0 943.2 60

B10 1373.5 1376.9 60

B11 1613.7 1610.4 20

B12 2202.4 2185.7 20
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in the spectral curve of the dry-grass fuel, and 2,100 nm

represented the absorption characteristics of lignin and

cellulose. In the short-wave infrared region of the

electromagnetic spectrum, absorption characteristics

associated with cellulose and lignin are usually observed at

2,100 nm in the subsoil spectrum (Zhengxiang Zhang 2010;

Zhang et al., 2015). This absorption characteristic does not

occur in the soil spectrum. This observation provided the basis

for distinguishing dry grass from soil. Because the withered

grass has a stable reflection peak at 1600 nm on its reflection

spectrum curve, and has lignin absorption and cellulose

absorption characteristics at 2100 nm, the B4, B11,

B12 bands of the high-resolution remote sensing image

Sentinel-2 data can be used to distinguish the withered

grass, soil and other surface objects. And the index

established between the bands should have a greater

response to the biomass of withered grass. Therefore, the

dry-grass fuel indices (DGI1 and DGI2), based on Sentinel-

2 bands 4, 11, and 12, were significantly correlated with the

field measurements of dry-grass fuel quality, and the contrast

between the reflection peak and absorption trough was

significant. From this, we progressed to determining

DGI1 and DGI2 in order to calculate the amount of fuel in

the withering-grass season. The specific calculations are as

follows:

DGI1 � B4 (1)
DGI2 � (B11 –B12)/(B11 + B12) (2)

where B4 is the reflectance of the red band of the Sentinel-2 data,

and B11 and B12 are the reflectances of the short-wave infrared

band of the Sentinel-2 data.

2.2.4 Evaluation of the accuracy of the
calculation

Based on the coordinates of the field survey quadrats, the

straw index values of the corresponding pixels were extracted in

order to generate datasets for the dry-weight biomass of the

grassland. Then, correlation models for the dry weight biomass of

the grassland and each straw index were established. Of the

58measured samples, 45 were selected for establishing themodel,

while the remaining 13 were used to verify the model. Because the

RMSE and R2 are popular in various model evaluations, and the

fitting effect is good. The accuracy of the model was evaluated

using the root mean square error (RMSE) and coefficient of

determination (R2) (Jiaxing Huang et al., 2021; Zhang 2021). In

order to make full use of the samples to improve the reliability of

the model, the keep-one-cross method was used to verify the

estimation results––that is, only one sample site was left as the

test set each time, with the other sample sites being used as the

training set. The final estimation results were determined after n

repeated times (Qingdong Cui et al., 2009). The accuracy of the

models were assessed using the R2 and total RMSE values. The

formula for calculating the accuracy of the evaluation index is as

follows:

R2 � 1 −
∑n
i�1
(Xi − X̂i)2

∑n
i�1
(Xi −X

–

i i)2

RMSE �

�����������∑n
i�1
(Xi − X̂i)2

N

√√ (3)

where, Xi and X̂i represent the measured and calculated values,

respectively, �Xi represents the average measured values, n is the

number of samples, and N is the number of reserved samples.

The smaller the RMSE, the better the fitting effect. The R2

represented the degree of fitting between the predicted and

measured values of the trend line of the regression analysis.

When the R2 trend line approached 1, the reliability was higher.

3 Results and analysis

3.1 Construction of the fuel quantity
estimation model

Statistical analysis software was used to generate scatter plots

of the DGI1 and DGI2 values for all the samples and the

measured quantities of combustible matter in the grassland

(see Figure 2). According to the scatter plots in Figure 2,

there was a significant correlation between the two groups

of data.

The two types of DGI values for all the samples used in the

modeling were statistically analyzed, and the correlation between

the grassland-fuel field data and the same quasisynchronous DGI

was analyzed using SPSS software (Yingzhong Ma et al., 2012).

Table 3 provides the correlation between the measured data and

the calculated DGI based on Sentinel-2 data.

According to the statistical results, there was a correlation

between the Sentinel-2B remote-sensing data and the measured

data. The correlation was significant at the test level of 0.01, and

the absolute value of the correlation coefficient was greater than

0.6. Therefore, based on the Sentinel-2B remote-sensing data, an

estimation model for the dry season was established and can be

used to calculate fuel quantity. By comparison, the DGI2 had a

higher correlation with the actual fuel measurements.

A regression model for estimating fuel quantity and two

kinds of DGI was established using SPSS statistical software. In

this study, six models––unary linear regression, quadratic curve,

cubic curve, logarithm, exponential, and power function––were

set up, and all the established models passed the significance test

(see Table 4).

The correlation coefficient and significance of each model in

Table 4 showed that all the models established based on the two
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types of subsoil index were significantly correlated. Except for the

cubic curve and logarithmic models, all the other R2 values for the

index model constructed using DGI2 were greater than for the

model constructed using DGI1. The fitting degree of the

exponential model based on DGI1 was the best, with R2 =

0.639. The exponential model based on DGI2 also had the

best-fitting degree, with R2 =0.664, which was the highest

among all the models.

Therefore, according to the significance of the model and

the comparison of the fitting degree of R2, the exponential

model constructed using DGI1 and DGI2 can be used to

estimate and calculate fuel quantities during the dry-grass

season.

3.2 Evaluation of model accuracy

The 13 reserved randomly selected independent samples

were used for model evaluation (Deng Pan 2017). Based on the

two exponential models selected above, the correlation and

RMSE between the actual measurements and estimations of

fuel quantities were calculated using the cross-validation

method to evaluate the model’s accuracy. The accuracy

evaluations of the two models are shown in Figures 3, 4. It

can be seen from Figure 3 that the two DGI values of the

samples used for verification were exponentially correlated

with the actual fuel measurement, and can be used to verify the

accuracy of the previously selected exponential model. As can

be seen from the evaluation results in Figure 4, the correlation

coefficient between the estimated measurement and the

FIGURE 2
Scatter plots showing the amount of combustibles and the DGI values for construction of the dry-grass biomass model.

TABLE 3 Correlation between the dry weight of the combustible
matter and the subsoil index derived from the Sentinel-2 remote-
sensing data.

Indicator DGI1 DGI2

Correlation −0.630** 0.678**

**Correlation highly significant.

TABLE 4 Model for estimating the amount of combustible matter during the dead-grass season.

DGI Type Fit model R2 Sig.

DGI1 Linear Y=−0.205X+496.007 0.396 0.000

Secondary Y=0.207×10-4X2–0.941X+1100.995 0.532 0.003

Third Y=−(3.022E–7)X3+0.002X2–3.748X+2606.413 0.624 0.006

Logarithmic Y=−371.535lnX+2895.481 0.483 0.000

Exponential Y=1415.142e-0.002X 0.639 0.003

Power Y=X-2.481 0.631 0.000

DGI2 Linear Y=2914.118X–155.718 0.460 0.014

Secondary Y=0.455×105X2-6579.54X+285.819 0.576 0.039

Third Y=0.103×107X3+0.002X2–3.748X+2606.413 0.661 0.031

Logarithmic Y=250.356lnX+732.281 0.382 0.000

Exponential Y=12.745e20.454X 0.664 0.000

Power Y=X1.902 0.646 0.000

Sig. < 0.01 was highly significant; Sig. < 0.05 was significantly correlated with Sig. > 0.01.
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measured value established by the exponential model based on

DGI1 was 0.777, whereas the correlation coefficient between

the estimated measurement and the measured value

established by the exponential model based on DGI2 was

0.863, with significant correlation, with the R2 being

0.604 and 0.745, respectively. The RMSEs were 43.316 and

32.771 g/m2, respectively, and the model’s accuracy was 63%

and 82%, respectively.

By comparison, based on the DGI1 exponential model, the

simulation effect was mediocre, whereas the DGI2-based

exponential model simulation effect was better. The

correlation between the estimated and the measured values

was high, and the relative minimum RMSE and model

precision were the highest. So, this was chosen as the best

option and the best model for calculating the amount of fuel in

the dry grass in the study area.

3.3 Variation in the spatial characteristics
of fuel quantity during the dry-grass
season

The exponential model from DGI2 was used to calculate

the amount of dry-grass fuel in September, October, and

November 2019, and March, April, and May 2020 in the

study area. The amount of dry-grass fuel and its spatial

distribution are shown in Figure 5. As the map color gets

darker, the number of grams of fuel per square meter goes

from low to high (Qingqing Li et al., 2013). As can be seen

from the spatial distribution of combustible matter in each

month (Figure 5), there were significant differences across in

the study area. In Figure 5, the aboveground biomass of

grassland was the largest in October, and decreased in

other months. The biological quantity value in the white

FIGURE 3
Correlations between the field-measured AGB data and the DGI index.

FIGURE 4
Correlations between the field-measured AGB data and the estimated values based on the DGI1 and DGI2 indices.
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FIGURE 5
Spatial distribution of the dry-grass biomass.
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area is the lowest, being mainly covered by a water body,

roads, residential zones, etc. The biomass of the area near

Chagan Lake was higher in the southeast, which is dominated

by wetland grasslands and swamp grasslands. The biomass

was higher in most parts of the north and lower in

saline–alkali land and paddy fields. The central and

southwestern regions had less biomass, lower grassland

density, and more saline land. The results showed that the

aboveground biomass of grassland in the Longzhao Marsh

increased gradually from southwest to northeast. Except in

April and May, the aboveground biomass of grassland in

northeast was generally above 200 g/m2, which was

significantly better than that in southwest. And the AGB of

different grassland types varies greatly. In order to fully

understand the cumulative difference in the combustibility

of different vegetation types, including swamp grassland,

wetland grassland, natural grassland, and other grasslands,

all of which were included in the visual interpretation of the

corresponding Sentinel-2B image, and based on the spatial

distribution of combustible materials in each month, the

combustibility of the four main vegetation types was

calculated, as shown in Figure 6. In Figure 6, the grading of

the biomass corresponds to the calculated map grade for the

subsoil biomass. Levels 1–5 in the figure correspond to the

biomass being less than 100, 100–300, 300–500, 500–700, and

more than 700 g/m2, respectively. From the statistical bar

chart, across the entire study area, regardless of grassland

type, most of the grassland biomass fell into Grades 1 and 2,

indicating that the withered-grass biomass of various

grassland types in the study area was relatively small, being

mainly less than 100 and 100–300 g/m2––equivalent to low

coverage grassland. In particular, the less-than-100-g/m2 type

dominated, followed by 100–300 g/m2. This challenges the

protection of the western ecological barrier area.

FIGURE 6
Monthly dynamic distributions showing the quantity of combustible grassland.
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3.4 Dynamic temporal changes in fuel
quantity during the dry-grass season

In order to explore the seasonal cumulative variation in fuel

in the study area, based on calculations of the monthly fuel

quantity and on the monthly dynamic distribution map of fuel

quantity for the dry-grass season as shown in Figure 7A, the

average value of available fuel per square meter was calculated

and a curve showing the change in fuel quantity during the dry-

grass season was drawn, as shown in Figure 7B. The average fuel

volumes for the 6 months from October 2019 to May 2020 were

203.8, 285.7, 263.7, 155.6, 90.5, and 70.2 g/m2, respectively. Using

the area for September as the base, the ratio of the quantity for

each subsequent month to the previous quantity was used as the

fuel accumulation rate, as shown in Figure 7B. As can be seen

from Figure 7A, the amount of fuel in the study area during the

dry-grass season decreased month by month, changing

significantly––that is, the amount of fuel present in October

2019 was the highest, and the amount in May 2020 was the

lowest. The amount of fuel in March 2020 was significantly less

than in November 2019, while the amount of fuel in April and

May 2020 was significantly less than in March. It can also be seen

from the average values for each month that the fuel stock had a

decreasing trend, which is consistent with the change in fuel

quantity in the actual dry-grass season. Note that the dry-grass

AGB reached its maximum value in October, not the entire AGB

of the grassland.

4 Discussion

The challenges involved in calculating remotely sensed grass

AGB include a lack of effective and stable calculation models

based on spectral indices from remote-sensing images that could

be used to rapidly and accurately discriminate between grassland

and acquire the state and quantity of grassland. Given the

improvements required in various applications and the rapid

development of high-resolution remote-sensing technology, the

extraction and calculation of high-quality remote-sensing

information is particularly urgent (Jinlong Gao et al., 2019).

FIGURE 7
Monthly dynamic distribution chart (A) and variation curves (B) showing the amount of combustible matter in the dry season.
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In this regard, the aim of this study was to establish an effective

model for estimating the biomass of dry grass based on new and

high-resolution images from Sentinel-2B. Furthermore, the

application of this model to the inversion of withered grass

biomass can provide theoretical guidance and scientific basis

for local grassland fire prevention, and this study can promote

the application of high-resolution Sentinel-2 in the estimation of

AGB of large grassland.

4.1 Advantages of using DGI2

In this work, two kinds of DGI were constructed from the

Sentinel-2B image, and the calculation model was established

using field-measured hay biomass data for the corresponding

period. After evaluating the accuracy, the exponential model

based on DGI2 had the best fitting effect, with R2 = 0.664, and

this was used to calculate the dry-grass biomass for different

seasons across the research area. In addition, the spatial and

temporal changes in the dry-grass biomass were explored.

The significance of this study is that the rapid retrieval of

biomass data from small and medium-scale grasslands can be

achieved using Sentinel-2B remote-sensing images with high

spatial resolution, and which are freely available for use.

Compared with the grassland biomass calculation model

based on hyperspectral field measurement data

(Zhengxiang Zhang 2010; Jinlong Gao et al., 2019), the

accuracy of the calculation model, based on an index

obtained from images, may not be better (Weize Song

et al., 2014; Y Zhang et al., 2019), but this method more

convenient, practical, and efficient. Moreover, the

construction of DGI index can also provide some

theoretical support and reference for the research on the

inversion of withered grass biomass with high spatial

resolution remote sensing data.

4.2 Further improvements in the number
and spatial distribution of sampling points

Different grassland types can be predicted for the AGB by

applying the calculation model based on field sampling.

According to the reference, the model’s precision is affected

by the field sampling, including the spatial distribution and

number of sampling points (Sucharita Pradhan et al., 2021).

The terrain of the study area was flat, so evenly distributed

sampling points was helpful in improving the model’s accuracy,

while the principle of mathematical modeling indicates that a

sufficient number of sample points is also be beneficial. So,

enough spatially well-distributed field sampling points should

be used in such studies. Further study of the grassland AGB in

this region would be of great use for better understanding

vegetation protection and fire-risk warning signs. In a more

in-depth study, it would be useful to devise a better form of DGI

(Hao Pei et al., 1995), in order to establish a more-representative

and accurate monitoring model based on more field-

measurement and remote-sensing data, and also to obtain a

better understanding of the impact of terrain and other

environmental factors (Qingqing Li et al., 2013; Shan Yu

et al., 2014).

4.3 Improvement of spatiotemporal
inconsistencies

There is a spatial inconsistency between the sampling plots

of 1 x 1 m and the DGI pixel of 10 x 10 m, the latter obviously

being significantly larger. This large disparity inevitably

produces modeling errors (Sucharita Pradhan et al., 2021).

Also, in the field, the sample plots were set up in relatively

homogenous places, but this choice bias has led to errors in

some heterogeneous regions (Shaoqin Yang et al., 2022). In

the process of constructing the biomass calculation model, the

accuracy was greatly affected by the location and quantity of

the hay index value extracted from the image. In order to

improve the accuracy of the biomass calculation model, so it

better corresponds with the measured field data from GPS-

located sample points, the location value could be gradually

expanded on the image when the correlation coefficient has

reached the maximum value.

There is no absolute synchronization in time between the

sampling plots and the remote-sensing image, which will

inevitably lead to uncertainty in the calculation model. To

address this, we acquired data via the DGI, with data from the

sampling sites coming from the same period, as far as possible, and

this may have reduced the error in the model simulation to some

extent. However, the number of AGB samples in this experiment

was still insufficient. In the future, the number of sampling points

should be appropriately increased to further improve the accuracy of

the calculation model (Lati R.N et al., 2011; Unmesh Khati et al.,

2021; Martin Paar et al., 2021).

5 Conclusion

Based on the need for a rapid and accurate remote-sensing

model for estimating dry-grass AGB, and using field-

measured AGB data from the Longzhao Marsh wetland in

Da’an and applying ENVI, SNAP, and ArcGIS software, we

established correlations between the AGB and two types of

DGI. The two indices were significantly correlated (0.678)

with the amount of dry-grass fuel. Six models of DGI fitting,

based on Sentinel-2 remote-sensing data, were compared,

and the optimal model was used to calculate and define the

spatial distribution of the grass subsoil biomass across the

study area. It was found that there was a significant
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correlation between the measured dry AGB and the selected

grass indices. The best model had a high calculation accuracy,

with the fuel estimation models reaching the standard of

macroscopic monitoring, the correlation between the

calculated results for the best model and the measured

values being 0.863. Therefore, the model for estimating

grassland biomass by remote-sensing based on the DGI is

feasible. According to the calculation, the fuel content in the

Longzhao Marsh had a decreasing trend during the entire

dry-grass season, and the decreasing trend was from October

to May. Spatially, this equated to a decreasing trend from the

northeast to southwest. These findings may provide a

scientific reference for the early warning of grassland fires

in western Jilin province, facilitate the management of

grassland resources by local departments and promote

economic development.

Due to the long, cold dry periods that affect the study area,

it is difficult to collect field data, and so a model for estimating

fuel quantitities would be enhanced by plenty of ground data.

Calculations from the remote-sensing image using the model

would also be affected by snow cover. In order to improve the

accuracy of the estimation model of withered grass biomass

and make it better correspond to the measurement data of gps

positioning sampling points, the position value can be

gradually expanded on the image when the correlation

coefficient reaches the maximum value. The most

important thing is to increase the number of ground

sampling points and the location distribution of sampling

points to find classical distribution points as far as possible to

improve the accuracy of the estimation model. In future

research, it is necessary to build a better DGI, so as to

build a more representative and accurate monitoring model

based on more field measurements and remote sensing data,

and refer to more topographic and other environmental

factors to eliminate errors.
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