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Accurate landslide susceptibility maps are relevant for stakeholders to take

effectivemeasures and perform land use planning. The present research aims at

using three data-driven approaches to generate landslide susceptibility map for

the middle Yellow River catchment (northwest China) and comparing their

performances, including the weighted information value (WIV), where the IV

model was integrated with analytic hierarchy process (AHP), the support vector

machine (SVM) and the random forest (RF) models. A landslide inventory map

including 684 historical landslides was generated first by visual interpretation of

remote sensing images combined with a field survey. A total of 14 thematic

layers were applied to serve as the landslides influencing factors. The Pearson

correlation coefficient analyzed the correlation among these factors, and the

C5.0 decision tree algorithm determined the factor importance. The results

demonstrated the correlation between every two factors were all less than 0.5.

Three factors (including distance to road, distance to river, and slope) were the

most important contributions to the landslide occurrences in the region,

whereas five factors (including NDWI, plan curvature, profile curvature,

surface roughness, and aspect) had minor importance. All the models

predict that most of the historical landslides are identified in moderate and

high susceptibility areas. For the prediction percentage of landslides in high

susceptibility areas, both SVM and RF models exceed 70%. The RF model

represented the best performance, with high susceptibility zones accounting

for 21.9% and landslide numbers accounting for 90.5%. The comparison among

the receiver operating characteristic curves indicated that the accuracy was

higher in the RF model than in the other two models: the area under the curve

(AUC) for the RF was 0.904, whereas that for the WIV and the SVM were

0.845 and 0.847, respectively. Hence, the RF was proven suitable for assessing

the landslide susceptibility in the region. Current results can provide valuable

references for future studies and landslide risk mitigation strategies.
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1 Introduction

Landslides cause significant economic losses and fatalities

every year and have been one of the deadliest natural hazards

worldwide (Petley, 2012; Froude and Petley, 2018; Guo et al.,

2020a). In mountainous areas, landslide risks are a common

phenomenon due to external conditions, including human

activities and extreme climatic events. One third of the

geohazards in China occur in the Loess Plateau, among which

85% are landslides, which is one of the most disastrous

geohazards in the area. According to field investigations,

around 15,000 geohazards occurred in the Loess Plateau of

Shaanxi province with an average density of over six per

square kilometer (Zhuang et al., 2018). During the decade, the

several fatal landslides have been reported in the region. For

instance, Zhuang and Peng (2014) researched on a landslide that

occurred on 17 September 2011 in Xi’an, which caused 32 deaths.

As the starting risk assessment step, landslide susceptibility

analysis provides helpful information on landslide spatial

distribution (Tian et al., 2019). Therefore, it has been

considered foundational research for local authorities to

conduct accurate landslide susceptibility analysis. Commonly-

used models for landslide susceptibility mapping can be roughly

classified into three categories, namely expert-based, physical (or

deterministic), and data-driven models (Goetz et al., 2011;

Huang et al., 2017; Reichenbach et al., 2018; Medina et al.,

2021). Expert-based models are usually considered qualitative

techniques that mainly rely on the overall knowledge about the

hazard responsible experts possess to describe the phenomenon

(Sezer et al., 2017). Physically-based models combine the slope

failure mechanics and geotechnical parameters and consider the

infinite slope model as the calculation criterion (He et al., 2021).

Standard Physically-based models include TRIGRS (Ciurleo

et al., 2019), Scoops3D (He et al., 2021), SINMAP (Lin et al.,

2021), and FSLAM (Medina et al., 2021), which can assess

landslide susceptibility and hazard by considering rainfall

condition (Li et al., 2021). However, determining the

hydromechanical properties of rock and soil is a conceptual

and operational challenge for this model. In contrast, data-driven

models assume that landslides in the future are more likely to

occur under conditions that are identical/similar to where the

past events happened (Zêzere et al., 2017). These models simulate

the landslide probability through the deep analysis of the

statistical or nonlinear relationship between historical

landslides and environmental variables. Therefore, data-driven

models typically express a higher apparent prediction ability and

objectivity than other models (Achour and Pourghasemi, 2020;

Huang et al., 2020). An evident increase has been observed in the

literature during the last decade regarding the studies on the

landslide susceptibility assessment by using this type of models

(Goetz et al., 2015; Huang et al., 2017; Chen et al., 2019; Dou

et al., 2020). Within this subject, two kinds of models are mainly

included, namely statistically-based and machine learning

models. Some methods have been widely mentioned and

applied, for example frequency ratio (Yilmaz, 2009), analytical

hierarchy process (Shirzadi et al., 2017), logistic regression

(Zhang et al., 2018), random forest (Nhu et al., 2020a),

artificial neural network (ANN) (Huang et al., 2017), support

vector machine (SVM) (Dou et al., 2020), deep learning neural

networks (Nhu et al., 2020b) and so on. Additionally, some

recent advances in data processing techniques show that

ensemble learning methods can further improve the

performance of machine learning methods and alleviate their

limitations (Bui et al., 2019; Pham et al., 2019).

Benefit from the fast development of GIS and remote sensing

(RS) techniques recently, various types of landslide-related

factors have been included in the data-driven models,

including but not limited to geomorphological, hydrological,

geological, and environmental factors. However, the best

combination of influencing factors for a given landslide

inventory is still an open issue. On one side, stakeholders

attempt to consider more factors in the analysis to include

more helpful information. On the other side, researchers must

balance the model complexity and performance. More factors

may result in better model accuracy but reduce the model

efficiency due to more considerable complexity (Crozier and

Glade, 2005; Tang et al., 2020), which is still a challenge in the

landslide susceptibility assessment. Additionally, few researchers

have discussed the geomorphological significance of factors

(Segoni et al., 2020) or explained the relevance of a single

factor in slope stability/instability. The conditional

independence of landslide influencing factors also has not

been considered extensively (Pereira et al., 2012). The

relevance and independence of considered factors are of great

importance for the quality of data-driven models (Reichenbach

et al., 2018). Some approaches have been proposed and employed

to investigate the factor contribution during landslide

susceptibility modelling, such as principal component analysis,

information gain ratio, forward elimination, and

multicollinearity techniques (Pham et al., 2019; Nsengiyumva

and Valentino, 2020; Tang et al., 2020; Chen and Chen, 2021). In

this study, the Pearson correlation coefficient was applied to

calculate independence between factors, and the C5.0 decision

tree method was considered to evaluate the factor importance.

Some previous studies have compared the performances of

different data-driven models, including bivariate, multivariate,

and machine learning techniques (Yilmaz, 2009; Kouli et al.,

2014; Bueechi et al., 2019; Moayedi et al., 2019). Most
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comparative results showed that the multivariate techniques are

superior to bivariate techniques (Rossi et al., 2010), whereas

machine learning algorithms are better than both. However, the

comparison study considering both the factor independence and

importance was few. For landslide-prone areas, comparing

model performance may be essential because it can help local

land use planning and civil protection.

Regarding the investigation of regional landslide

susceptibility in the Loess Plateau of China, some researchers

have made efforts, for instance, Niu et al. (2018), Tang et al.

(2020) and Mao et al. (2022). However, most of these studies

were conducted at a county scale (<500 km2), and the ones over

larger areas are missing. Considering this, the main objective of

the present study is to determine a suitable model to create

effective landslide susceptibility maps for the middle stream of

the Yellow River (China) (>1000 km2), and reveal important

factors for landslide occurrence. Very few studies have been

made to asses landslide susceptibility in the region before.

Specifically, our objectives include: 1) considering different

types of influencing factors as model inputs and evaluating

their independence and contribution to landslide occurrence;

2) generating landslide susceptibility maps by using three data-

driven techniques (WIV, SVM, RF), and 3) the comparison of

model performances to determine a better model for assessing

landslide susceptibility in the region.

The structure of the paper is organized as follows: in Section

2, we introduce the general settings of the study area, whereas

methodologies and datasets applied are described in Section 3.

Section 4 presents and analyses the test results. In Section 5 the

results are discussed and compared with other studies. In Section

6, we make a conclusion.

2 Study area

The middle stream of the Yellow River of northwestern China

was selected as the study area, which lies within longitude

110°30′0″–110°0′0″E and latitude 37°10′0′′–37°40′0″N and

expands from Shaanxi Province (West) to Shanxi Province

(East) (Figure 1). The total area is approximately 1,661 km2

with a length of ~62 km, containing seven counties. The most

representative geomorphology unit is the Loess Plateau, which has

been proved as a typical landslide-prone area (Zhang and Liu,

2010; Zhuang et al., 2018).

The region’s elevation varies from 590 to 1500 m above sea

level, with a lower elevation in the center part because the Yellow

River flows through here, which is the second biggest river in

China. From the geology perspective, the main geological

structure within the area is the Wangjiahui anticline which

has a direction of NW 30°. The lithology units include the

strata from the Cambrian System to the Quaternary, with the

primary outcrop sediment being the loess and the interlayer of

sandstone and mudstone (Figure 2). The climate regime is

temperate arid climate, with an average annual precipitation

of 460 mm. The temporal-spatial variation of rainfall is evident:

the rainfall season is generally during July and September, which

can account for nearly 70% of the annual rainfall. The southern

part has more rainfall than the northern part (Tang et al., 2020;

Tang et al., 2022).

Topographically, the middle stream of the Yellow River has

an appropriate individuality to explore and compare the data-

driven techniques in simulating landslide susceptibility.

Moreover, the vegetation cover is not extensive due to the

local environment, which cannot provide enough protection

FIGURE 1
(A) Location of the study area, where the two blue lines represent the two biggest rivers in China, namely the Yangtze River and the Yellow River,
whereas the blue boundary shows the coastline of China; (B) Spatial distribution of the landslides in the study area, and the digital elevation mode is
used as the base map.
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when the rainfall infiltrates (Guo et al., 2020b). Under such

geological conditions, the government reported several

landslides, which have caused considerable losses (Peng et al.,

2019; Dai et al., 2021). For example, Zhuang and Peng (2014)

introduced a landslide that occurred on 17 September 2011 in

Xi’an, which caused 32 deaths. Although these landslides have

posted evident risk to residents and local authorities, no

comparative studies by using data-driven techniques have

been proposed to conduct the spatial prediction of landslide

distribution. Hence, these backgrounds in the regional settings

make the area an ideal case study.

3 Materials and methodology

3.1 Description of landslide inventory

Landslide inventory mapping is critical for regional

susceptibility assessment, representing the essential

characteristics of landslides, such as the location, area,

volume, and so on (Fell et al., 2008; Pradhan, 2013).

Additionally, it is essential information in the validation phase

because users need to compare the reallocation of landslides with

the predictive results (Wu et al., 2020; Huang et al., 2021). This

study determined the landslide by field investigation and satellite

images. The satellite images included a LandsatTM8 image and a

Google Earth image for early identification of potential

landslides. The field investigation was a detailed field survey

conducted by China Geological Survey (Xi’an Center) in 2018.

The location of each landslide was recorded by the portable GPS

equipment in the field and reprojected into the map. The details

were determined from the archived landslide report. We also

conducted some interviews with local residents and stakeholders

to collect some supplementary information. During the next

phase, all the characteristics of the landslides were stored in the

attribute table in GIS and linked to the spatial location of

landslides.

In the inventory map, there are a total of 684 landslides

identified in the area, among which 414 landslides are in Shaanxi

Province, and 270 landslides are in Shanxi Province. The depths

(h) of these landslides range from 0.5 to 30 m, which can be

divided into three levels specially, including shallow landslides

(h ≤ 10 m), moderate-depth landslides (10 m < h ≤ 25 m) and

deep-seated landslides (h > 25 m). As seen in Figure 3A, the

number of deep-seated landslides are the smallest accounting for

only ~8% of the total landslides. Regarding the volume

(Figure 3B), approximately 85% of the landslides have the

volume less than 1 × 105 m3, whereas only 6 landslides have

volume more than 106 m3, and all of them developed on the

banks of the Yellow River. The primary materials that consist of

landslides are sandstone and loess. Given the updated landslide

classification method (Hungr et al., 2014), most of the historical

inventory points are Earth slides, among which only 2.2% are

Earth flows (the number is 15). From the perspective of triggering

factors, rainfall and human activities are the most common

reasons to induce these landslides.

3.2 Landslide influencing factors

Selecting input factors is a fundamental task for assessing

landslide susceptibility because it determines which information

can be included in the modelling process. In this study, 14 factors

were considered as the input parameters based on the

understanding/knowledge of loess landslide mechanisms of

the study area (Tang et al., 2020) and previous similar

literature (Catani et al., 2013; Dou et al., 2020). These factors

can be classified into five types: 1) geomorphological factors, 2)

geological factors, 3) hydrological factors, 4) environmental

factors, and 5) triggering factors. All the aspets associated

FIGURE 2
Typical vertical distribution of soil and lithology in the study area.
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with landslide occurrence are included in these factors, and all

the considred factors can be found in previous studies. The data

sources we used for these factors are shown in Table 1. The role

each factor plays in the landslide occurrence and their

preparations are described below.

Elevation (Figure 4A): Elevation indicates the difference

between landslide potential energy and human engineering

activities, and it also has an impact on the environmental

conditions on slopes (e.g., climate and vegetation, etc.). The

DEM of the study area was obtained from an open-source

website (http://www.gscloud.cn/). The resolution was selected

as 30 m which has been proven to be the ability for quantitative

assessment of geomorphological processes (Purinton and

Bookhagen, 2017).

Slope (Figure 4B): Slope can express the steepness at every

cell surface can contribute much to slope stabilities (Liu and

Duan, 2018). The slope was generated by DEM in the GIS

environment, which ranges from 0 to 59°.

Aspect (Figure 4C): Aspect can cause the difference in

microclimate (e.g., sun exposure and temperature) and impact

vegetation on slopes. The study area’s aspect can be extracted

using DEM. It can be divided into eight directions (north, south,

west, east, northwest, northeast, southwest, southeast) and a flat

area (the value is −1).

Plan curvature (Figure 4D): This factor can control the

flowing water across land surface, thus influencing deposition

and erosion. The values of plan curvature in the area varies

from −2.825 to 4.227.

Profile curvature (Figure 4E): This factor controls the

acceleration and deceleration of flows through slopes so that

the flow process can be influenced. It was also derived from the

DEM, and the values are from −3.908 to 4.199.

Surface roughness (Figure 4F): Surface roughness refers to

the ratio of ground surface area to its projected area and is a

macro indicator reflecting the surface morphology (Goetz et al.,

2015). It was obtained by calculating the ratio between the surface

area of a slope and the projected area in the vertical direction. It is

also equal to the standard deviation of slope (SDS) (Atkinson

et al., 1998); thus, the equation for this factor is as:

SDS � 1/cos(slope) (1)

Lithology (Figure 4G): It is considered as the material basis

for various geological disasters and plays an essential role in

controlling the landslides development (Catani et al., 2013).

China Geological Survey provided this thematic layer. The

geological features were divided into five units according to

formation ages and geotechnical properties, including sandy

loam, clay, red clay, sandstone, and limestone. The

classification was based on the Chinese Soil Taxonomy (Gong

et al., 2001).

Geological structures (Figure 4H): Many physical processes

(e.g., deformation) on the slopes are related to geological

FIGURE 3
(A) Percentage of landslides with different depths; (B) Percentage of landslides with different volumes.

TABLE 1 The data sources used in this study and their detailed information.

Data Source Resolution/scale Data type Purpose

DEM http://www.gscloud.cn/ 30 m Raster Preparation of factors

Landslide point Field work — Vector Landslide inventory

Landslide report China geological survey — Document Landslide inventory

Geology map China geological survey 1:100000 Vector Used for lithology and distance to geological structures

Land use map https://www.resdc.cn/ 30 m Raster Used for land use map

Landsat 8 TM images http://www.gscloud.cn/ 30 m Raster Used for NDVI and NDWI

Frontiers in Earth Science frontiersin.org05

Guo et al. 10.3389/feart.2022.1033085

http://www.gscloud.cn/
http://www.gscloud.cn/
https://www.resdc.cn/
http://www.gscloud.cn/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1033085


movements; thus, geological structures are essential for landslide

susceptibility assessment. Moreover, the geological structures

also influence the joints and fractures on the slopes (Vick

et al., 2020). This map came from the geology map, and the

Euclidean distance from every pixel to the nearest geological

structure was calculated.

FIGURE 4
(Continued).
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NDWI (Figure 4I): NDWI can reflect the influence of rivers

on the land surface (Wang et al., 2020). It was mainly from the

Landsat 8 TM remote sensing (RS) images. Mathematically, it

can be calculated by the spectral reflectance of different bands in

the images as follows:

NDWI � P(Green) − P(NIR)
P(Green) + P(NIR) (2)

where P (Green) represents the spectral reflectance of the green

band, whereas P (NIR) is that of the near infrared band, in this

study, NDWI ranged from −0.475 to 0.240.

Distance to rivers (Figure 4J): Rivers can cut and erode river

banks, and river water level fluctuations can reshape the

topography and affect the groundwater of slopes. Similar to

the distance to geological structures, the Euclidean distance

was calculated from every cell to the nearest river to represent

the effects of rivers.

NDVI (Figure 4K): NDVI reveals the greenness degree of a

specific area and can influence hydrological processes on slopes.

It was also obtained from the RS images. The equation is as

follows (Chang et al., 2020):

NDVI � P(NIR) − P(Red)
P(NIR) + P(Red) (3)

where P (Red) is the spectral reflectance of the red band, and P

(NIR) is that of the near-infrared band.

Land use (Figure 4L): Land use refers to the impact of human

beings on the natural environment (Shu et al., 2019; Hürlimann

et al., 2022) and affects the root cohesion as well as the

hydrological process. The study area mainly has five types of

land use: water, settlement, forest, grassland, and farmland.

Rainfall (Figure 4M): Rainfall is the most common triggering

factor for landslides. It is still debated its role in the landslide

susceptibility assessment because it is a predictive variable

FIGURE 4
(Continued). Influencing factors: (A) elevation, (B) slope, (C) aspect, (D) plan curvature, (E) profile curvature, (F) surface roughness, (G) lithology,
(H) geological structures, (I) NDWI, (J) distance to rivers, (K) NDVI, (L) land use, (M) rainfall, and (N) distance to road.
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sensitive to temporal changes (Goetz et al., 2015). However, it

was included in the current analysis since the archived profiles

showed that most landslides in the inventory were induced by

rainfall. This is similar to that in some existing literature (e.g.,

Catani et al., 2013; Medina et al., 2021). The average annual

rainfall map during the past decades was created in GIS, and it

showed that the rainfall in the south part was higher than that in

the north part.

Distance to road (Figure 4N): The study area is highly

populated, so human activities are also an essential factor in

triggering landslides. Many national roads, highways, and

railways are distributed in the area, so we used the distance to

roads as a proxy to reflect the human activity intensity.

3.3 Factor independence test and
importance calculation (C5.0 decision
tree)

The preliminary selection of factors in this study mostly

depends on the expert experience and the literature review of

other research (Catani et al., 2013; Guo et al., 2021). The

independence and importance test of influence factors has a

significant influence on the susceptibility modelling, reducing

the complexity of the calculation process and improving the

accuracy of landslide susceptibility assessment. Although the

above 14 influence factors have different geological

backgrounds, they have an internal correlation to landslide

susceptibility. Hence, the Pearson correlation coefficient

method was first employed to calculate the selected factors’

independence. Different influencing factors have different

contributions to the performance of susceptibility mapping,

so the importance calculation is also necessary to indicate how

much environmental factors can affect landslide events (Zhu

et al., 2022). In the present study, the C5.0 decision tree model

(Hwang et al., 2009) was applied. The C5.0 algorithm

considers the information gain ratio (IGR) method to

calculate the importance, which allows obtaining the level

of uncertainty reduction based on a probability measure. The

best solution was achieved by the decision tree growing

downward with the split calculation using the maximum

IGR. The IGR (GainRatio) can be denoted as follows (Guo

et al., 2021):

GainRatio � Gains(Sq, m)
Split(Sq,m) (4)

where Sq is a subset of the training data set D randomly selected

by Bootstrap resampling, and m is the predictor variable.

Split(Sq,m) represent the split information. Gains(Sq,m)

represent the information gain, which can be denoted as:

Gains(Sq, m) � H(Sq) − ∑
v∈V(m)

|Sv|∣∣∣∣Sq∣∣∣∣H(Sv) (5)

whereH(x) is the entropy of data set x, V(m) is the value range of

predictor variable m, SV is a subset of the set Sq.

Additionally, the boosting algorithm was proposed to

improve the model robustness, and to reduce the classification

error (Dou et al., 2020). Moreover, a cross-validation method was

adopted to evaluate the model’s performance. This method is

beneficial for addressing the overfitting issue and improving

model generalization capability (Yao et al., 2008). The package

built in the R software was applied to implement the C5.0 DT

model, where a function was developed to determines the

TABLE 2 AHP judgement matrix for the 14 influencing factors.

EI A B C D E F G H I J K L M N W (weight)

A 1.0 1.0 3.0 3.0 3.0 2.0 1.0 2.0 2.0 2.0 0.3 0.2 1.0 1.0 0.073

B 1.0 1.0 3.0 3.0 3.0 3.0 2.0 3.0 3.0 3.0 1.0 1.0 1.0 1.0 0.107

C 0.3 0.3 1.0 1.0 1.0 1.0 0.3 0.5 1.0 1.0 0.3 0.2 0.3 0.3 0.031

D 0.3 0.3 1.0 1.0 1.0 1.0 0.3 0.5 1.0 1.0 0.3 0.2 0.3 0.3 0.031

E 0.3 0.3 1.0 1.0 1.0 1.0 0.3 0.5 1.0 1.0 0.3 0.2 0.3 0.3 0.031

F 0.5 0.3 1.0 1.0 1.0 1.0 1.0 2.0 1.0 1.0 0.3 0.3 0.5 0.5 0.042

G 1.0 0.5 3.0 3.0 3.0 0.5 1.0 1.0 0.5 0.5 0.3 0.3 1.0 1.0 0.052

H 0.5 0.3 2.0 2.0 2.0 1.0 1.0 1.0 2.0 2.0 0.3 0.3 0.5 0.3 0.049

I 0.5 0.3 1.0 1.0 1.0 1.0 2.0 0.5 1.0 1.0 0.3 0.3 0.5 0.3 0.038

J 0.5 0.3 1.0 1.0 1.0 1.0 2.0 0.5 1.0 1.0 0.3 0.3 0.5 0.3 0.038

K 3.0 1.0 4.0 4.0 4.0 3.0 3.0 3.0 3.0 3.0 1.0 1.0 2.0 1.0 0.136

L 5.0 1.0 5.0 5.0 5.0 3.0 3.0 4.0 4.0 4.0 1.0 1.0 3.0 1.0 0.159

M 1.0 1.0 3.0 3.0 3.0 2.0 1.0 2.0 2.0 2.0 0.5 0.3 1.0 1.0 0.080

N 1.0 1.0 3.0 3.0 3.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 1.0 0.132
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importance of input data by computing the percentage of factors

falling into the training data set.

3.4 Landslide susceptibility models

3.4.1 Weighted information value model
The information value model is a statistically-based

method, which can integrate the subjective experience of

engineering experts and the objective characteristics of the

correlation between influence factors and landslides. This

model has clear objectives and has been applied for regional

landslide susceptibility assessments (Bhandary et al., 2013;

Bourenane et al., 2015). The IV model calculates the

information value of each evaluation factor of different

grades (Wang et al., 2019), and the expression is as follows:

I(xi, A) � ln
P(xi/A)
P(xi) (6)

I(xi, A) � ln
Ni/N
Si/S � ln

Ni/Si
N/S (7)

where, S is the region’s total area; N is the number of landslide

disasters; Si is the area of the i-th factor; Ni is the number of

landslide disasters in the i-th factor; Ii is the VI given to the class

of a parameter. Ii < 0 shows that the failure possibility of the

landslide in this class is less than the stability possibility. This

factor has a lower contribution to landslide susceptibility; Ii >
0 indicates that the failure possibility of landslide is higher than

that of stability.

However, the traditional IV model does not consider the

difference in the “contribution” of triggering factors to the

landslide. In this study, we applied the AHP method (Saaty,

2008) to improve this drawback and calculated the weighted

information value (WIV) by summing the product of the

correlation weight of each factor and its classification IV (He

et al., 2019). The equation is as follows:

FIGURE 5
(A) c, g optimal value; (B) Training set prediction results; (C) Test set prediction results.

FIGURE 6
(A) The RF model performance analysis; (B) Training set prediction results; (C) Test set prediction results.
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L � ∑n
i�1
WiIi (8)

where Wi is the weight of the ith factor, and L is the landslide

susceptibility index (LSI).

3.4.2 Random forest model
The RF model is commonly considered to assemble many

random decision trees, called classified regression trees

(CART). One of the fundamental techniques is the

bootstrap resampling technique, which randomly and

repeatedly selects some samples in the training set to train

the decision tree and generates other trees to compose a

random forest. Following multiple decision trees being

randomly generated, the samples can choose the best

classification according to the statistical results of each

decision tree. The formation of the decision tree requires

the complete splitting of leaf nodes, and each leaf node

cannot continue splitting (Pradhan, 2013). The advantages

of the RF model include that (Zhang et al., 2020): overfitting

can be avoided to a certain degree due to randomly choosing

samples in the decision tree, and anti-noise ability can be

enhanced; this model can calculate high-dimensional

samples without feature engineering. Therefore, this

research chooses the RF model to evaluate the landslide

susceptibility of the region.

3.4.3 Support vector machine model
The SVM model is an intelligent algorithm for the binary

classification of statistical data. This model maps the above

14 influence factor databases from the original space to a

higher dimensional space through a kernel function; thus,

the samples become linearly separable in the space and

analyze the maximum spacing between the positive and

negative classifications of disaster points and non-disaster

points. The optimal hyperplane is searched in the space to

separate the samples to maximize the sample interval and

then classify the samples through the classification decision

function (Goetz et al., 2015). {xi, yi} is a character vector of

the sample data, in which i=1,2,. . .,l, xi∈Rn, yi∈{−1, +1}, l is
the number of samples whereas n represents the input

dimension. Nonlinear mapping Φ (x) maps the sample

from the input space to the feature one. The classification

hyper-plane can be calculated as wΦ(x) + b=0, where w, b are

the coefficients of the classification decision function. The

optimal hyper-plane needs a maximum 2/‖w‖, which can be

transformed into a quadratic programming problem. The

Lagrange multiplier method is proposed to solve this

equation:

TABLE 3 Correlation analysis result of landslide-affecting factors.

EI A B C D E F G H I J K L M N

A 1

B −0.268 1

C 0.179 −0.317 1

D −0.036 0.120 −0.139 1

E −0.080 0.281 −0.269 0.027 1

F −0.111 0.486 −0.259 0.061 0.059 1

G 0.021 0.209 −0.169 0.144 −0.064 0.130 1

H 0.084 −0.296 0.194 −0.151 −0.040 −0.171 −0.459 1

I 0.208 −0.017 0.017 −0.019 −0.026 −0.077 −0.064 0.096 1

J 0.295 −0.299 0.204 −0.027 −0.078 −0.126 0.019 0.113 0.198 1

K −0.060 −0.118 0.000 −0.012 0.002 0.128 0.057 −0.036 −0.349 −0.058 1

L −0.064 0.048 −0.034 0.039 −0.021 0.035 0.032 0.084 0.055 −0.031 −0.015 1

M −0.078 0.356 −0.125 0.026 0.086 0.048 0.020 −0.090 0.048 −0.114 −0.243 −0.055 1

N −0.310 0.171 −0.300 0.018 0.140 0.040 −0.111 −0.500 0.066 −0.073 −0.120 −0.177 0.096 1

FIGURE 7
The importance of factors obtained from the C5.0 decision
tree model.
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TABLE 4 Calculation of the IVs of the landslide influencing factors.

Landslide
factor

Level Ni/
N

Si/
S

Density
ratio

I Weight WIV Rank

(A) Elevation/m 594–774 0.39 0.39 1.00 0.90 0.073 0.0657 9

774–901 0.22 0.76 0.29 −0.33 0.02409 61

901–1028 0.26 0.69 0.38 −0.07 0.00511 40

1028–1183 0.11 0.51 0.21 −0.67 0.04891 66

1183–1510 0.01 0.08 0.16 −0.92 0.06716 68

(A) Slope/° 0–7 0.14 0.19 0.74 −0.30 0.107 −0.0321 62

7–12 0.20 0.29 0.68 −0.39 0.04173 64

12–17 0.26 0.28 0.96 −0.05 0.00535 42

17–23 0.25 0.18 1.39 0.33 0.03531 15

23–59 0.14 0.06 2.44 0.89 0.09523 4

(A) Aspect North (0–22.5) 0.09 0.06 1.56 0.45 0.031 0.01395 22

Northeast (22.5–67.5) 0.13 0.12 1.13 0.12 0.00372 28

East (67.5–112.5) 0.15 0.13 1.14 0.13 0.00403 27

Southeast (112.5–157.5) 0.10 0.12 0.79 −0.23 0.00713 44

South (157.5–202.5) 0.12 0.13 0.94 −0.06 0.00186 34

Southwest (202.5–247.5) 0.10 0.15 0.68 −0.38 0.01178 51

West (247.5–292.5) 0.09 0.14 0.68 −0.39 0.01209 52

Northwest (292.5–337.5) 0.14 0.11 1.27 0.24 0.00744 25

North (337.5–360) 0.08 0.05 1.57 0.45 0.01395 22

(A) Plan curvature −2.824~−0.345 0.06 0.06 1.00 −0.16 0.031 0.00496 38

−0.345~−0.097 0.22 0.25 0.88 −0.12 0.00372 36

−0.097–0.095 0.35 0.34 1.03 0.03 0.00093 31

0.095–0.343 0.31 0.27 1.13 0.12 0.00372 28

0.343–4.227 0.07 0.07 1.00 −0.10 −0.0031 35

(A) Profile curvature −3.908~−0.393 0.05 0.06 0.85 −0.16 0.031 0.00496 38

−0.393~−0.140 0.16 0.20 0.79 −0.23 0.00713 44

−0.140–0.082 0.28 0.37 0.77 −0.26 0.00806 47

0.082–0.367 0.36 0.29 1.23 0.20 0.0062 26

0.367–4.199 0.15 0.08 1.84 0.61 0.01891 18

(A) Surface roughness 1–1.023 0.34 0.48 0.69 −0.37 0.042 0.01554 55

1.023–1.052 0.33 0.32 1.02 0.02 0.00084 32

1.052–1.097 0.21 0.15 1.41 0.35 0.0147 21

1.097–1.199 0.09 0.04 2.23 0.80 0.0336 16

1.199–1.919 0.03 0.01 3.00 2.15 0.0903 8

(A) Lithology Sandy loam 0.16 0.19 0.88 −0.13 0.052 0.00676 43

Clay 0.33 0.43 0.77 −0.26 0.01352 53

Red clay 0.06 0.03 2.00 0.50 0.026 17

Sandstone 0.43 0.31 1.38 0.32 0.01664 19

Limestone 0.02 0.04 0.49 −0.71 0.03692 63

(A) Geological structure/m 0–2709.069 0.37 0.28 1.30 0.26 0.049 0.01274 24

2709.069–5727.746 0.29 0.28 1.03 0.03 0.00147 30

5727.746–9056.030 0.16 0.19 0.83 −0.18 0.00882 48

9056.030–13003.531 0.11 0.16 0.72 −0.32 0.01568 56

13003.531–19814.904 0.07 0.09 0.79 −0.23 0.01127 50

(A) NDWI −0.475~−0.235 0.06 0.10 0.56 −0.58 0.038 0.02204 60

−0.235~−0.196 0.25 0.37 0.69 −0.38 0.01444 54

−0.196~−0.151 0.47 0.43 1.09 −0.02 0.00076 33

(Continued on following page)

Frontiers in Earth Science frontiersin.org11

Guo et al. 10.3389/feart.2022.1033085

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1033085


⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
1
2
‖w‖2 + C∑n

i�1
ξi

s.t.yi(wpxi + b)≥ 1 − ξ i

ξi ≥ 0, i � 1, 2/n

(9)

where ξi is the relaxation factor, and C is the penalty parameter.

The duality principle is proposed to calculate the above formula.

The simplified Lagrange high-dimensional mapping function can

be expressed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K(xi, xj) � ϕ(xi)ϕ(xj)
maxQ(a) � ∑n

i�1
ai − 1

2
∑n
i�1
∑n
j�1
aiajyiyjK(xi · xj)

s.t.∑n
i�1
aiyi � 0, 0≤ ai ≤C

(10)

where K(xi, xj) is the kernel function. The SVRmodel can then be

established as:

f(x) � sgn⎡⎣∑n
i�1
aipyiK(xi · x) + bp⎤⎦ (11)

The kernel function mentioned above method is used to

simplify the high-dimensional space problem into a low-

dimensional space problem. In this study, we adopted the

RBF (radial basis kernel function) since it is the most widely

applied one in the literature (Zhou et al., 2016).

3.5 Modelling procedure

The proposed landslide susceptibility modelling procedure

for the middle Yellow River catchment includes the following

phases:

TABLE 4 (Continued) Calculation of the IVs of the landslide influencing factors.

Landslide
factor

Level Ni/
N

Si/
S

Density
ratio

I Weight WIV Rank

−0.151–0.008 0.13 0.06 2.19 1.07 0.04066 11

0.008–0.240 0.09 0.04 2.27 2.47 0.09386 5

(A) NDVI −0.198–0.008 0.02 0.01 2.00 1.13 0.038 0.04294 10

0.008–0.135 0.31 0.20 1.53 0.43 0.01634 20

0.135–0.180 0.35 0.40 0.88 −0.13 0.00494 37

0.180–0.235 0.26 0.30 0.87 −0.14 0.00532 41

0.235–0.536 0.05 0.09 0.57 −0.57 0.02166 59

(A) Distance to river/m 0–100 0.35 0.15 2.33 0.85 0.136 0.1156 3

100–200 0.16 0.12 1.32 0.28 0.03808 14

200–300 0.11 0.13 0.86 −0.15 −0.0204 58

300–500 0.14 0.21 0.66 −0.41 0.05576 67

500–1776.851 0.23 0.38 0.60 −0.51 0.06936 69

(A) Distance to road/m 0–100 0.72 0.16 4.56 1.52 0.159 0.24168 1

100–200 0.12 0.12 0.95 −0.05 0.00795 46

200–300 0.05 0.12 0.41 −0.90 −0.1431 71

300–500 0.06 0.18 0.34 −1.07 0.17013 72

500–2835.437 0.05 0.42 0.12 −2.11 0.33549 74

(A) Land use Water 0.03 0.02 1.65 0.50 0.08 0.04 12

Settlement 0.17 0.05 3.22 1.17 0.0936 6

Forest 0.24 0.28 0.87 −0.14 −0.0112 49

Grassland 0.28 0.48 0.58 −0.54 −0.0432 65

Farmland 0.29 0.17 1.66 0.50 0.04 12

(A) Rainfall/mm <400 0.10 0.22 0.47 −1.45 0.132 −0.1914 73

400–425 0.22 0.11 1.99 0.69 0.09108 7

425–450 0.12 0.13 0.87 −0.14 0.01848 57

450–475 0.10 0.22 0.44 −0.82 0.10824 70

>475 0.46 0.33 1.40 1.57 0.20724 2
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(i) The grid unit was determined as the susceptibility assessment

unit. The cell resolution was set as 30 m × 30m of the 1:50000 scale,

with 1,849,962 units. The grid-point turning function was proposed

in the GIS environment to transfer the influence factors and obtain

the attribute data of all influence factors in the region. Due to the

different value ranges of each influencing factor, it is necessary to

normalize the attribute of each factor to the [0, 1] closed interval to

ensure unity in the evaluation results. After establishing the

influencing factors system, the AHP approach was applied to

compute the weight of factors. The geological background of the

region constructed the judgment matrix of landslide influencing

factors. As seen in Table 2, the expert experience was employed to

summarize the normalized weight of each weight. The results of

different statistical indicators (random index = 1.58; consistency

index = 0.092; consistency ratio = 0.058< 0.1; λmax= 15.191) showed

that the matrix passed the consistency check.

FIGURE 8
LSI maps obtained from different models: (A) WIV model, (B) SVM model, (C) RF mode.

FIGURE 9
Landslide susceptibility level maps obtained from different models: (A) WIV model, (B) SVM model, (C) RF model.
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(ii) The 684 landslide points investigated in the field were

proposed as landslide samples, and the attributes of influence

factors were extracted into the samples in the GIS environment.

According to the principle of non-landslide point extraction,

684 non-landslide samples were randomly selected in the buffer

areas 500 m outside the landslide point range. The distance

between non-landslide points is more significant than 100 m.

Similarly, the influence factor attributes were extracted from

non-landslide samples. In the MATLAB environment,

547 landslide and non-landslide samples (80% of the entire

dataset) were randomly divided as the training dataset for

susceptibility assessment. In contrast, the remaining 20% were

used as the test dataset. 1,849,962 grids of the study area were

substituted into the trained model for prediction, which obtained

the susceptibility distribution map of the whole area.

(iii) The SVM and the RFmodels were implemented inMatlab

software to compute the landslide susceptibility. The SVM model

with RBF considered non-negative relaxation variables to

determine the optimal hyper-plane improved the optimization

of the samples with classification errors, and simulated the train

and test set samples. The k-fold cross-validation method

determined the two critical parameters, namely the penalty

factor C and kernel function parameter g, and finally obtained

the optimal parameters c = 0.7579 and g = 0.5843 (Figure 5A).

There were 1,094 test samples, 995 successful predictions, and

99 failures, and the accuracy of training set samples was 90.95%

(Figure 5B). There were 274 test samples, 238 of which were

predicted successfully and 36 failed, and the accuracy of test

samples was 86.86% (Figure 5C).

The RF model adopted the bootstrap approach to extract

500 samples from the training data that have been put back to form

500 decision trees and randomly choose 12 influencing factors

from 14 factors. The optimal factor set was proposed as the growth

and splitting node of the decision tree for model operation. The

created RF classifier was introduced for sample prediction, and the

results represent that it has good prediction performance

(Figure 6A). There were 1,092 test samples, 1,090 successful

predictions, and 2 failures, and the accuracy of training set

samples was 99.82% (Figure 6B). There were 274 test samples,

246 of which were predicted successfully and 28 failed, and the

accuracy of test samples was 87.97% (Figure 6C).

4 Results

4.1 Analysis of influencing factors

The bivariate correlation analysis in SPSS software was

adopted to analyze the independence of the above 14 factors.

FIGURE 10
Statistical indicators of the historical landslides in each susceptibility level: (A) WIV model, (B) SVM model, (C) RF model.

FIGURE 11
The ROC curves of the three data-driven models in landslide
susceptibility assessment.
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The correlation coefficient R [−1, 1] is the judgment index of the

calculation result. As shown in Table 3, the results represent that

the correlation coefficient |R| max = 0.486 < 0.5, thus indicating

the influencing factors have little influence on the susceptibility

assessment of landslide disasters, and the selection is reasonable.

As we can see in Figure 7, five factors among the total 14 factors

had higher contributions during the landslide susceptibility

modeling, including distance to road (IM = 1), distance to river

(IM = 0.97), slope (IM = 0.93), rainfall (IM = 0.92), elevation (IM =

0.91). The contributions of lithology (IM = 0.67), land use (IM =

0.42), geological structure (IM = 0.32), and NDVI (IM = 0.32) were

moderate. The other five factors represented low contribution,

including NDWI, plan curvature, profile curvature, surface

roughness, and aspect. The importance calculation results are

consistent with the weight calculated by the AHP in Table 2, in

which the distance to road (W = 0.159), distance to river (W =

0.136), rainfall (W = 0.132), and slope (W = 0.132) have higher

weights, which verifies the rationality of the subjective weight results

and the objective importance of the model calculation. Overall, the

results reveal that the two triggering factors (distance to river and

rainfall) are of more importance than other factors for the landslide

occurrance of the middle stream of the Yellow River catchment. In

addition, no factor had a negative importance value, therefore all the

factors are reasonable to be included to conduct landslide

susceptibility assessment.

Eqs 4, 5 was used to calculate the IV of different grades of

each influencing factor in the GIS environment, and then the

IV was multiplied by the factor weight to obtain the WIV and

ranking of each factor. Table 4 summarizes the ratio between

the number of landslides distributed within a specific

influencing factor to the total number (Ni/N), the ratio

between the area of landslides distributed within a specific

influencing factor to the entire region (Si/S), IV (I), weight,

WIV, and the rank for each level of each influencing factor.

According to the results, the IV in the area ranges

from −2.11 to 2.47. The WIV of the first six factors are as

follows: distance to road (0–100 m), rainfall (>475 mm),

distance to rivers (0–100 m), slope (23°–59°), NDWI

(0.008–0.240), land use (settlement). These factors

significantly influence the development of the historical

landslides of the study site.

4.2 Landslide distribution in different
landslide susceptibility maps

The WIV of different ranges of each factor calculated in

Table 4 was assigned by ArcGIS and superimposed by the ArcGIS

grid calculator to determine the region’s landslide susceptibility

index (LSI). The distribution range of LSI ranges from −0.838 to

0.940 (Figure 8A). The LSI predicted by SVM and RF methods

were assigned to the corresponding grids of the study area

through ArcGIS software to obtain susceptibility maps. The

range of LSIs of the study area from the SVM and random

forest models is between −4.236 and 1.807 (Figure 8B) and

between 0 and 1 (Figure 8C), receptivity. The natural

breakpoint method was adopted to divide the susceptibility

distribution map (SDM) calculated by the three data-driven

models: high, moderate, low, and very low (Figure 9). The

results showed that high susceptibility zona is consistent with

the spatial distribution of the landslides inventory points. The

values of Ni/N and Si/S are shown in Figure 10. All the indicators

increased with the susceptibility level, thus indicating that these

models predicted the landslide-prone/non-prone areas well. Each

level of the WIV model accounts for a relatively uniform

proportion of the total area. The area of high susceptibility

accounts for 10.8% of the total area, whereas the landslide

number accounts for 57.8% of the total points. In contrast,

the area with a very low susceptibility level accounts for

33.2% of the entire region, but the number of landslides

accounts for only 2.5% of all the inventory points. For the

landslide number identified in the high susceptibility level

FIGURE 12
Typical shallow landslides triggered by human engineering activities.
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area, both SVM and RF models exceeded 70%, thus indicating

that most landslides were predicted successfully. The RF had the

best performance: the area of high susceptibility accounts for

21.9%, whereas the landslide number accounts for 90.5%, the

very low susceptibility area, its area accounts for 39.4% of the

total area, while the number of landslides accounts for only 0.7%.

These results demonstrated that the RF approach better

predicted historical landslides in high susceptibility level

regions, and the resulting landslide susceptibility map was

more efficient.

4.3 Model validation and comparison

The model validation is critical for both the model fitness

evlauation and the quality assessment of the generated landslide

susceptibility maps (Guzzetti et al., 2005). In the present study, the

confusion matrix-based statistical index was proposed to evaluate

the prediction ability of these models, and the receiver operating

characteristic (ROC) was generated. As seen in Figure 11, the area

under the ROC curves (AUC) of the three used models is all over

0.8, representing that these models all have prediction ability in the

landslide susceptibility assessment and can provide a reference for

current government risk management strategies. The RF model

achieved excellent performance of AUC 0.9035, while the SVM

model and WIV model are AUC 0.8472, 0.8446 respective. There

are only 5 landslide points in the very-low susceptibility area

obtained from the SVM and RF models, accounting for 0.7% of

inventory points. Although the WIV model can quantify the

relationship between factors and landslide occurrence, expert

judgments are predominantly non-qualitative and empirical;

thus, the error is higher than that from machine learning

models. The validation results of SVM and RF models are

more objective and accurate. Combined with the ROC curves

for the three models, the prediction ability of random forest is

significantly better than that of theWIV and SVMapproaches, and

the assessment results of the landslide susceptibility in the study

area agree better with the observations from remote sensing images

and field investigation.

5 Discussion

5.1 Relationship between landslide
susceptibility and planning

The susceptibility mapping results from all the three models

indicated that the northern part of the study area is more susceptible

to landsliding than the southern part. Moreover, it is evident that the

highest susceptibility zone is mainly along with the Yellow River.

This agrees well with the spatial distribution of historical inventory

points. Previous studies in the Loess Plateau also observed similar

results. For instance, a landslide susceptibilitymapping conducted in

the YangouWatershed (Gao and Zhang, 2022) showed that the very

high susceptibility is the area along the river and road. Our statistical

results showed that 62%of landslides are located at the areas with the

distances to the river smaller than 300 m. In the three landslide

susceptibility maps, the high susceptibility level in this area

accounted for 78%, 82% and 79% of the total area with high

susceptibility level, respectively. As previous literature concluded

(Fell et al., 2008; Skilodimou et al., 2019; Guo et al., 2020c), the

landslide susceptibility zonation can be used as a guide for land use

planning because it is most commonly required at the local

government level for planning urban development. This is also

supported by the present study, which advised that the area nearby

the large river may be not suitable to develop urban and major

infrastructures. This can be explained by the weak engineering

geology properties of loess that has been widely reported by

other studies (Zhuang et al., 2018): Several severe landslide

occurrences were triggered under hydraulic conditions due to the

collapsibility and porosity of loess (e.g., Zhao and Zhao, 2020).

Nevertheless, the current situation of the middle Yellow River

catchment is that most settlements are still located along with

the riverbanks because the topography is quite flat in this area.

However, the human engineering activities following the high

urbanization may result in more landslides especially shallow

small-scale ones (Figure 12). Such situations highlight an open

issue in the Loess Plateau, namely that the contradiction between

environments (natural hazards, soil erosion, and so on) and land use

requirement. For example, a recent detailed statistic (Xu et al., 2017)

in the landslides on the Loess Plateau showed that with the

development of the Chinese economy, residential areas on the

Loess Plateau are rapidly expanding along steep slope terraces

and adverse destabilization from human activities, which is the

major cause of landslides. Hence, the improvement of ecological

conditions is a operational challenge for local authorities.

Fortunately, the policies of local authority during the past decade

encourage planting and afforestation, which have evidently reduced

risks of loess landslides (Tang et al., 2020).

5.2 Insights for the factor combination
used for modelling

One of main objectives of the present study is to reveal the

role of various influencing factors in the landslide susceptibility

of the study area, because very limited similar efforts have been

made for the loess environments (Zhuang et al., 2015). Our

results indicated three factors (distance to road, distance to river,

and slope) which are more important for landslide occurrence,

whereas five factors have evidently smaller importance (NDWI,

plan curvature, profile curvature, surface roughness, and aspect).

Hence, if the time or economic cost of end-users (or civil

protection department) are limited, these factors can be

skipped, turning to those really matter. Some previous studies

for this region confirmed the current results. For example, Gao
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and Zhang (2022) obderved that the high landslide susceptibility

area in the middle stream of the Yellow River is commonly

characterized by a larger slope. However, it should be also noted

that some studies present different results. Tang et al. (2020) find

that rainfall and land use are are more important for the

occurrences of the landslides in the Loess Plateau. Such

comparisons lead us to conclude that the contribution of

factors may depends much on local geological settings.

A simple test of landslide susceptibility assessment without

these five factors showed that the accuracy of final results did not

change much: the AUC values were 0.9017 (RF model), 0.8541

(WIVmodel) and 0.8658 (SVMmodel), respectively. It can be seen

that some scenarios even had better performance, which agreed

well with what stated by Glade and Crozier (Glade and Crozier,

2005): adding data into the combination of input data can improve

the performance of a model with a given complexity, but the

prediction ability of the model decreases if the data availability

continues to increase. Hence, it is important to find a better

combination of influencing factors to improve the performance

of regional landslide susceptibility mapping in the future.

6 Conclusion

The middle Yellow River catchment in China is prone to

landslides, but few studies focused on regional landslide

susceptibility modelling in this area. The present study

employed three data-driven approaches to generate regional

landslide susceptibility maps for the region and tried to reveal

the contributions of different influencing factors. The Pearson’s

correlation coefficient among influencing factors showed that all

the selected 14 factors were conditionally independent. The results

obtained from the C5.0 decision tree approach revealed the most

critical factors for the landslide occurrance of the area, namely

distance to road, distance to river, and slope. Validation and

comparison results by using the ROC curve demonstrated that

the RF model (AUC = 0.904) had a high accuracy than WIV

(AUC = 0.845) and SVM (AUC = 0.847) models. The RF model

identified 97.1% of historical landslide inventoty points in the area

with high susceptibility level, whereas only 0.7% of landslides were

located at the low susceptibility zones. Overall, the three techniques

have been confirmed as promising models for the landslide

susceptibility assessment in China’s Loess Plateau, particularly

the RF model. Conclusively, the current results may be helpful

for future landslide risk management and mitigation in areas with

similar geological and environmental settings. Potential future

works for us are to find a better combination of influencing

factors to improve the performance of landslide susceptibility

mapping, and use the results to guide local land use planning.
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