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In the context of global warming, river management is essential to maintain

favourable water temperature ranges for aquatic species. Therefore,

understanding the main factors influencing the water temperature becomes a

key part in the management process. In this paper, we used Independent

Component Analysis (ICA) to identify these main factors and improve water

temperature forecasting. The study is caried out on two rivers in Normandy

(France) with quite different characteristics. Each river was equipped with several

temperature sensors which series range from 2011 to 2021. The ICA analysis of the

data series reveals that the thermal regime of these two rivers is mainly controlled by

seasonal and daily climatic factors. The Sélune regime also turns out to be influenced

by the presence of a dam, dismantled during the monitoring of the river. The

temperature of the Odon appears to be clearly controlled by seasonal lightening

conditions in connection with the presence of the riparian vegetation.

Complementary, an innovative approach called “successive ICA” is used to

reconstruct the natural thermal regime of the Sélune without the presence of the

dam. Emphasis is therefore placed here on the interest of ICA in hydrology as en

elementary method for extracting the main influencing factors and quantifying their

importance on the thermal regimeof a river. It also allows to remove the influence of

a particular factor and reconstruct time series better suited for temperature

forecasting. The method used here is not specific to temperature time series and

can be applied to any region even with different hydrological characteristics.
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1 Introduction

Temperature is a key parameter in river ecology as it influences the environment and

several species life cycles (Magnuson et al., 1979; Ebersole et al., 2001; Daufresne and Boët,

2007; Caissie, 2006; Comte et al., 2013; Souchon and Tissot, 2012). Thermal regimes are

mainly influenced by atmospheric factors at the site scale, at the catchment scale or at

larger ones (Webb and Walling, 1993; Poole and Berman, 2001; Webb et al., 2008; Ryan

et al., 2013; Hannah and Garner, 2015; Jones and Schmidt, 2018). Atmosphere-water heat
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transfers, and to a lesser extent water-aquifer transfers, control

the major part of thermal variation in large rivers (Sinokrot

and Stefan, 1994; Evans et al., 1998; Lalot et al., 2015). These

transfers vary with the residence time of the water in the

environment and the river’s width. Also, water temperature

increases from upriver to downriver, with a mean gradient of

0.1°C/km for large plain rivers (Torgersen et al., 2001), until

reaching an equilibrium temperature. Thermal regimes are

also influenced by the river flow, the geo-morphology, the

riparian vegetation or hydraulic constructions (Kelleher et al.,

2012; Arismendi et al., 2013; Ryan et al., 2013; Johnson et al.,

2013; Jackson et al., 2017; Garner et al., 2017; Dugdale et al.,

2018; Beaufort et al., 2020).

In France, most big rivers are monitored in temperature since

the 70 s or 80 s (in accordance with the electricity production)

(Moatar and Gailhard, 2006; Poirel et al., 2008; Larnier et al.,

2010). Environmental monitoring developed from 2008 thanks

to a national network created by the French Office for

Biodiversity in order to better understand river ecology. In

Normandy, the Regional Directorate for Planning and

Housing (DREAL) equipped about one-third of the 18.000 km

Normand rivers.

A particular focus is held on dams’ effects. Dams and

reservoirs usually have a significant impact on rivers

temperature (Webb and Walling, 1993; Poirel et al., 2010;

Seyedhashemi et al., 2021). Large dams tend to decrease rivers

temperature in summer and to modify annual cycles whereas

ponds and shallow reservoirs (less than 15 m) tend to increase

the temperature (Seyedhashemi et al., 2021). This is because

the solar radiation heats the surface layers faster than deeper

layers. Even smaller dams (water drops less than 2 m) can

strongly influence rivers’ thermal regime by increasing the

temperature (Chandesris et al., 2019). Dams’ impact depends

on the surface, the depth and the residency time in the

structure. Thus, rivers with dams present a different

thermal signature than natural rivers. In the Loire

catchment (North-West of France), dam-equipped rivers

can have a mean temperature higher than the air

temperature (Ta) all year long (Seyedhashemi et al., 2021).

In this paper, the thermal regime of two rivers in

Normandy were analysed: the Sélune, influenced by 2 dams

and the Odon, considered as natural. Each river was equipped

with three temperature sensors to analyse the temperature

along the river and identify the main influencing factors and

quantify their importance on a river’s thermal regime

(Table 1). Data was analysed using Independent

Component Analysis (ICA), a statistical method not often

used in hydrology but already tested on two other rivers in

Normandy (Gresselin et al., 2021) and in several studies across

the world (Hannachi et al., 2009; Aires et al., 2000;

Moradkhani and Meier, 2010; Westra et al., 2008;

Middleton et al., 2015; Gong et al., 2014). In addition, a

new way of using ICA is proposed in order to remove

some components from a signal and improve the results of

a linear regression prediction model.

2 Studied catchments

2.1 The Odon catchment

The Odon catchment area extends over 217 km2. The river

travels 49 km before ending in the Orne in Caen (Figure 1).

The Odon flows on the Armorican massif for the most part

and the Parisian massif close to the confluence with the Orne.

It drains successive hills mainly composed of schist and

sandstone. Three temperature sensors are installed on this

river.

TABLE 1 Characteristics for each monitored location (in C). Orientation N-E-S-W stand respectively for North-East-South-West.

Sensors Od1 Od2 Od3 Se1 Se2 Se3

Height IGN 69 (m) 202 110 45 60 30 13

Distance from
the source (km)

3.8 13.6 33.9 41.8 57.5 64.7

Vegetation ++++ ++++ +++++ + ++ +++

Orientation SE/NW SW/NE SSW/NNE NW/SE SSE/NNW NNE/SSW

Width (m) 1.5 3 5 20 19* 22

Downriver from the
dam (km)

N/A N/A N/A N/A 0.4* (V) 3.6 (RQB)

Time depth 30/03/2011 07/06/
2021

30/03/2011 29/10/
2021

27/05/2011 07/06/
2021

30/03/2011 14/06/
2021

30/03/2011 14/06/
2021

30/03/2011 14/06/
2021

* = Before dam’s removal in 2019 (V) = Vezins, (RQB)= la Roche-Qui-Boit.
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The Odon starts in a Variscan syncline where bar sandstones

form high points in the Normandy region. The river then flows

along a narrow valley in a SE/NW orientation. In Od1, the

corridor is around 40 m with a main channel around 1.5 m and

quite shallow. The rivers flows between sills and pools in a

sinuous way. Riverbanks are densely vegetated. The watertable

is relatively low, varying from a few centimeters to a few

decimeters at the end of winter. The riverbed is mainly

composed of rough sediments. After the Variscan syncline,

the Odon follows a meander from West to East then

continues along a N/S orientation in Brioverian lands (hills

and open valleys made of shale and sandstone).

In Od2, the corridor is 100 m wide and the main channel is

an artificial 2.5 m wide section bordered with high trees. The

river flows between pools and high waters with a mix of mud and

stone riverbed. The watertable varies quickly up to several

decimetres. Finally, near the city of Caen, the Odon drops in a

chalk plateau at the west of the Parisian basin. The river takes a

SW/NE orientation until its confluence with the Orne. Slopes are

gentle except at the bottom of the valley where they can reach

30% (Supplementary Figure S1).

In Od3, the site is shaded from the direct influence of the Sun

(especially in winter). The south side is densely forested with

conifers which limits the sunlight all year long. However, the

main river channel reaches 5 m wide so the middle of the river is

exposed to direct sunlight in summer.

2.2 The Sélune catchment

The Sélune is one of the three coastal rivers ending in the

Mont-St-Michel bay in the North-West of France (Figure 2). The

catchment area is close to 1100 km2. It drains several hills on the

schist-sandstone and granite Armorican massif. The Sélune travels

around 76 km in total along its longitudinal profile. In the first half

of the XXst century, two hydroelectric dams were built at a few

kilometers from the mouth of the river: the Vezins dam and la

Roche-Qui-Boit dam, respectively 36 and 16 m high. To reestablish

a natural flow regime and provide ecological benefits, the French

government decided to remove some facilities which did not allow

certain fish species, such as European eels, to cross them. The

Vezins dam was removed in 2019 and the destruction of la Roche-

Qui-Boit dam is scheduled for 2022.

The river water temperature monitoring was performed

using three temperature sensors installed along the river and

respectively named: Se1, Se2 and Se3. Se1 is located upriver the

Vezins dam and its lake (Figure 2). At this location, the river is an

open site (Supplementary Figure S2), about 20 m wide and

strongly influenced by atmospheric factors. Se2 is located

about a hundred meters downriver the dam. At this place, the

vegetation is denser and the riverbed is 19 m wide (before the

dam’s removal). Se3 is located a few kilometers below la Roche-

Qui-Boit dam. At this location, the river is 22 m wide and densely

vegetated on the banks.

FIGURE 1
Odon catchment Digital Elevation Model (DEM) showing the water temperature (Tw) sensors’ locations from upriver to downriver: Od1,
Od2 andOd3. The empty blue circle indicates the location of the gauging station providing the discharge time series. Pictures were taken in a leafless
period (April 2022).
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3 Times series collection and pre-
processing

3.1 Temperature data

The Sélune and the Odon were equipped by the DREAL of

Normandy with temperature sensors HOBO water Temp Pro v2

(U22-001) with an accuracy of ±0.2°C. The sensors were fixed on

riparian trees’ roots, mostly in shaded areas and at depths which

ensure a continuous immersion (except for Se2). Temperature is

measured every 2 h, interpolated to a hourly basis in order to get

a homogeneous time frame with other measurements (Ta,

streamflow etc). In this study, for each river, a dataset of

10 years was analysed. A common time series was chosen

between the 27 May 2011 and the 7 June 2021 (Table 1).

Each dataset is composed of 89,490 time steps.

The temperature on both rivers evolves according to a

seasonal cycle (Figure 3). Colder in winter (November to

February) and warmer in summer (June to September).

Minimal temperatures get close to 0°C for the Odon and the

Sélune upriver and around 3°C for the Sélune downriver. The

mean temperature of both rivers tends to increase downriver.

This rise reaches 1°C in the Odon and 0.7°C in the Sélune.

Measured maxima are higher for the Sélune which is a wider

river and less shaded than the Odon. Stations on the Sélune are

further from the source than stations on the Odon. The distance

has an impact on the sensibility of the thermal regime to climatic

factors (Le Lay et al., 2019).

Concerning Se2, as the temperature sensor was located at the

foot of the Vezins dam, it was regularly emerged during reservoir

fillings to produce electricity. Therefore, the temperature at this

station could reach thermal minima way below 0°C when it was

emerged because then, it measured the air temperature. After the

destruction of the dam in 2019, Se2 was covered by a thick

sediment layer and its thermal amplitude was reduced (Figure 3).

3.2 Pre-processing

Due to occasional sensor failures and/or maintenance

operations, river temperature time series are not perfectly

continuous. In total, less than 0.2% of the time steps was

filtered as outliers or filled with the methods described below.

• Missing data: it can affect a very specific period (a few hours

only) due to maintenance operation or longer periods (several

days, weeks or months) due to sensor failure. To address this

defect, several strategies were considered. If the number of

missing points remained low enough (less than 20 h), linear

interpolation was used to fill the gap without compromising the

physical evolution of the series. If more points were missing,

three options were chosen depending on the needs: 1) averaging

over upriver and downriver stations (if possible and if coherent);

2) simply removing this part of data from all series to perform

ICA or 3) replace with the mean value of the series (in order to

avoid missed raw data presented as NaN; acronym for Not a

Number).

• Outliers: some points displayed extreme values which were

not consistent with the physics involved (such as negative water

temperatures for immersed sensors). In this case, a common

FIGURE 2
Sélune catchment DEM showing the temperature sensors’ locations. The empty blue circle indicates the location of the gauging station
providing the discharge time series. Pictures were taken from the IGN database.

Frontiers in Earth Science frontiersin.org04

Moulin et al. 10.3389/feart.2022.1033673

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1033673


method was to remove data points which were further than x

times the series mean value.

• Homogeneous frequency: all the stations had different time

depth and not all of them use the same measurement settings.

This created heterogeneous time series that were difficult to

compare and much less to use in ICA. To use the data,

stations with a wide common time range were chosen (i.e.

from the 27th May 2011 to the 7th June 2021). Also, the data

frequency was set to a hourly basis. It is to be noted that the

lowest measuring frequency was one point/2 h, so a temporal

down scaling from 2 to 1 h did not affect the interpretation of

the data.

In the following sections, all data presented were pre-processed

with the methods mentioned above for the period 2011–2021.

4 The analysis methods

4.1 Independant component analysis
method

ICA can identify hidden factors which influence the observed

data without knowing mixing mechanisms. It can decompose

one or several random non Gaussian signals X ∈ Rm in a linear

combination of independent signals such as:

X � A · S (1)

with X � [x1, x2, . . . , xm]T gathering all the signals, S an

independent factor matrix S � [s1, s2, . . . , sm]T gathering all

the sources with a standard distribution and A, a coefficient

matrix or mixing matrix.

Decomposing observations in several independent sources

can estimateA and Swith twomain hypothesis. On the one hand,

the sources are statistically independent. On the other hand, not

more than one independent component can have a Gaussian

distribution.

Each independent component S is represented by a graph and a

weight matrix A. The graph shows the variation of S with time

whereas the matrix shows the variation of S with the stations.

ICA analysis was performed using the Fast-ICA package from

the R software (Hyvärinen and Oja, 2000; Marchini et al., 2021).

This algorithm is suited to estimate the mixing matrix A and the

source matrix S. Data are centered so the initial observations X can

be obtained by adding A · S to the mean of the X series.

Xi � ∑Aij · Sj + �xi (2)

with �x the mean value of the initial Xith serie. The main limit of

this method is the number of sources than can be extracted. In

our case, three temperature sensors limit the number of sources

to three for each river.

4.2 The successive ICA method

In order to overcome the limit of the available datasets, we

applied a successive ICA method to extract more information.

This method uses the following steps.

1) From initial temperature datasets, run an ICA.

2) Sort the ICA source components and remove some of them

according to the criteria listed below.

3) Build new temperature datasets by applying the

corresponding matrix coefficients on the remaining

FIGURE 3
Stream temperature time series at the three location on (A) the Odon in Od1-Od2-Od3 and (B) the Sélune in Se1-Se2-Se3. Upriver stations at
the top and downriver stations at the bottom.
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components and by adding the mean value of the datasets

used in 1.

4) Repeat steps 1 to 3.

This successive ICA method allows to extract further

information from the first ICA components. By removing an

obvious contribution after the first ICA, one can get to more

complex phenomena. Choosing which ICA component to

remove relies on several criteria.

• When a physical signal is clearly identified (for example a

seasonal variation correlated with the air temperature).

• To isolate a specific component and identify several factors

included in this specific component.

• When a signal is specific to one location and reflects a

particular condition.

• When a signal is identified as a noise or as a residual signal

(amplitude less than the measurement’s accuracy).

In all cases, the new dataset’s distribution should be non-

Gaussian. Ultimately, the decomposition process ends when the

remaining ICA components are reduced to white noise or when

there is only one exploitable signal left. Therefore, after each ICA,

Box-Pierce tests were performed to remove useless white noise

signals in the process. In this study, signals were considered

exploitable when their amplitude was larger than the sensor’s

accuracy (±0.2°C). Signals with smaller amplitudes were either

considered as residual signals or identified as white noise with

Box-Pierce tests.

The example below shows how after extracting ICA

components, a non-Gaussian component can be refined by

subtracting noise signals. The main calculation steps are

described below.

1) Run a first ICA with the measured time series. Identify a

component to work on (here the seasonal component).

2) Recompose time series using only the chosen component

multiplied by the matrix coefficient for each station and

adding the measured time series mean value.

3) Run a second ICA with the three new times series.

4) Identify the seasonal component and run a Box-Pierce noise

test on the two residual components.

The Box-Pierce test indicates if a signal is characteristic of a

white noise with a p-value > 0.05 (diamond boxes in Figure 4).

This p-value measures the probability of auto-correlation in the

signal. The higher the p-value, the higher the probability for the

signal to be a white noise.

The diagram below (Figure 4) shows the process of the

successive ICA method applied to a measured time series. All

ICA components in this figure were multiplied by the mean of

their matrix coefficients on the three stations. From the first

ICA, only the component X1 is kept (black frame). The second

time series (black frame middle left) are composed from X1

only. The second ICA (red and blue frames middle) displays a

seasonal component (X1’) and two other signals with very low

amplitudes ( < 0.04°C). In the 1) red-framed path, only the

seasonal component is kept and the third datasets 1) are

formed (red bottom middle). The third ICA (red frame

bottom right) shows a seasonal component and two

residual signals X2a and X3a with amplitudes at the limit

of the sensor’s accuracy. In the 2) blue-framed path, the

seasonal component is removed and the third time series 2)

are composed with the residual ICA components X2’ and X3’.

The third ICA (blue frame upper right) displays three

components among which X2b and X3b are tested as white

noises (p-values respectively 0.08 and 0.274). X1b is negative

to the Box-Pierce test but its amplitude remains much lower

than the sensor’s accuracy.

In the end, the last seasonal component X1a can be

considered “cleaner” as its predecessors X1 and X1’. In this

case, the residual signals show very low amplitudes so the

differences between the different stages of the seasonal

components remains subtle.

4.3 The successive ICA method in water
temperature prediction

This study takes advantage of the successive ICA method to

generate a hypothetical temperature time series on the Sélune.

This new signal is a proposition of what the temperature time

series in Se2 would have been if the Vezins dam had not been

constructed. On a long time scale, the dam operation can be

considered as temporary. For example, when confronting the

river thermal regime with climate change, it could be useful to

remove the effect of the dam. To do this, the following steps were

applied.

1) Run a first ICA with the original temperature time series.

Identify the dam component.

2) Recompose temperature time series with only the two other

components (seasonal and daily) by multiplying the ICA

component with the correspond matrix coefficients for

each station and adding the mean value of the original

time series.

3) For further information, run a second ICA with the new time

series.

The chart below (Figure 5) shows in 1) the new time series

on the three stations (solid black) compared with the original

time series. We see that for stations Se1 and Se3, there is

almost no difference as they are little affected by the dam

component. The new signal is shifted by −2 °C in average.

However, in Se2, we can see that the signal is more regular in

the new time series. Irregular peaks and variations originating
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from the dam have disappeared. After 2019 and the dam’s

removal, the two signals are closer and there is less difference

between them.

In (b), the chart shows the ICA components obtained with

the new temperature datasets (black curves in Figure 5). We

can recognise the seasonal component (XS1 in black) as well as

FIGURE 4
Schematic view of the successive ICA process applied on a time series. �x as themean value of the time series X. Diamond boxes show the results
of the Pierce-box test for ICA components.

FIGURE 5
(A) Recomposed temperature time series without the dam’s ICA component in black superimposed on the measured temperature time series.
(B) Second ICA with the new temperature time series from (A).
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the daily component (XS2 in orange). The third one (XS3 in

green) is negative to the Box-Pierce noise test but shows an

amplitude under the accuracy of the measuring sensor.

Therefore, it is likely coming from the sensor itself and

considered as a residual signal.

The interest of the successive method was tested in water

temperature prediction using a regression linear model. In this

test, two runs were made. First, the model was applied on

original TW time series with a separation of 70–30% between

the train and test data. Then, the model was applied on

corrected data for the train part, which means without the

dam component. The test data was kept identical to the first

test. Among the three stations, the difference between the two

runs was most visible on station Se2 where the dam

component is the most important. Removing the dam

component from the time series improved the fit between

predicted and measured test data by 34.4% and contributed to

reduce the RMSE by 8.9% (Table 2).

Although this test used a simple regression model, it shows

the interest of removing a particular signal which affects a

temporary period. In this case, the dam itself is not supposed

to affect the river thermal regime several years after its

removal. By using the successive ICA method, it is easier to

choose the influence of environmental factors for future

thermal regimes.

5 Results and discussions

5.1 About the mixing matrix

From the temperature time series, at least three components

were extracted for each river to take advantage of the number of

stations in the range 2011–2021. Corresponding ICA

components will herein be referred with their code names in

the tables below (Table 3). For each ICA component, the mixing

coefficients make the link with each station. Signs indicate the

relative relationships between the components and the station.

For example, XOdA shows the same kind of relationship for all

stations as all the coefficients have the same sign. Then, the

absolute value of the coefficients shows the impact of each

component on the different stations. A high absolute value

indicates a strong influence of this component on the thermal

regime of the station. On the contrary, a value close to 0 means

that the component has little effect on the thermal regime at this

station. For example, XOdC has a strong influence in

Od2 whereas it has a negligible effect in Od3.

From the matrix coefficients, we can see that the first

components (XOdA for the Odon and XSeA for the Sélune)

clearly have a dominant effect on the thermal regimes and affect

all stations quite equally. On the contrary, looking at the

coefficients values, XOdC affects mainly Od2 and XOdB seems

correlated to the upriver stations Od1 and Od2. On the Sélune,

XSeB affects the upriver station Se1 more and XSeC is clearly

correlated to Se2.

At this stage, we can separate the first components which are

regular and affect all stations with the samemagnitude (including

an increasing effect downriver) on the one hand, and other

components which affect some stations in particular on the

other hand. Complementary to the mixing coefficients,

graphic representations of the ICA components (Figure 6)

show their impacts on the stations. The graphs represent the

time variation of each ICA component for each station weighted

with the corresponding matrix coefficient.5b

On the Odon, the maximum amplitude is obtained with the

first component XOdA (±10 °C). XOdB and XOdC represent

secondary components of the signal with smaller amplitudes

than XOdA (±2°C). Finally, Od3 displays a behaviour quite

different from Od1 and Od2 based on the three ICA

components. In Od3, XOdA’s matrix coefficient is the

strongest of all stations whereas XOdC is almost nil and

XOdB takes an opposite sign compared to Od1 and Od2.

On the Sélune however, the three components take high

amplitudes depending on the stations. The maximum amplitude

is observed for XSeA for all stations. Then, XSeB shows a signal half

the amplitude ofXSeA for station Se1 and XSeC shows an amplitude

almost as high as XSeA in the period 2011–2013 for station Se3.

In the following subsections, physical factors are attributed to

the different components. As the number of ICA components is

limited to 3, all components can contain several factors’

TABLE 3 Mixing matrix coefficients for the ICA components for 1) the Odon
and 2) the Sélune.

Name\Sensors Od1 Od2 Od3 Characteristics

XOdA 3.12 3.71 3.90 Seasonal

XOdB 0.66 0.45 -0.08 Daily

XOdC 0.09 -0.55 -6.68e-4 Effect in Od2

Name\Sensors Se1 Se2 Se3 Characteristics

XSeA 4.09 4.24 4.73 Seasonal

XSeB 1.55 0.21 0.44 Daily

XSeC 0.20 1.43 -0.18 Effect of the dam

TABLE 2 Improvement in water temperature prediction on Se2 by
removing the dam component.

Data type Test 1 Test 2 Difference

Train R2 0.59 0.59 +0%

Test R2 0.32 0.43 +34.37%

Train RMSE 3.11 2.74 −11.90%

Test RMSE 2.88 2.63 −8.87%

Frontiers in Earth Science frontiersin.org08

Moulin et al. 10.3389/feart.2022.1033673

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1033673


signatures. Therefore, the physical factor attributed to the ICA

component will concern the most visible ones. Physical factors

can be separated between climatic factors at the catchment or

regional scale and environmental factor at the measuring site

scale.

5.2 Climatic factors

5.2.1 Seasonal variations
On both rivers, the first ICA components to come out, XOdA

and XSeA, show a clear seasonal variation (Figures 6A,D). These

FIGURE 6
Temperature ICA components for the Odon in (A–C) and the Sélune in (D–F). (A–D) Seasonal components. (B–E) Daily components. (C)
Component specific to Od1 and Od2. (F) Component linked to the Vezins dam.
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signals have their maxima in summer and minima in winter. Due

to heat reservoirs (sea and soils), maxima are shifted by half a

month from the winter and summer solstices. These variations

are quite similar every year. The seasonal components show the

strongest matrix coefficients (Supplementary Table S3) and

increase downriver for both rivers as the water-atmosphere

heat exchanges increase with the surface, the distance from

the source and the width of the river. On the Odon, for

example, XOdA accounts for 80.6% of the three contributions

in Od1 whereas it accounts for 98% in Od3. This confirms that

the seasonal variation is the main physical phenomenon

governing water temperature in Normandy (Gresselin et al.,

2021) and in general (Caissie, 2006). Comparing the rivers,

the seasonal component is stronger for the Sélune (coefficients

around 4) than for the Odon (coefficients around 3). The

amplitude difference can be explained by geometric factors.

The Odon is a narrower river than the Sélune on the

measuring sites, and thus less influenced by atmospheric

factors. Also, measuring sites on the Sélune are further

downriver than the ones on the Odon. Correlation factors

between the seasonal components and the air temperature

(Ta) rise up to 81,89% for XOdA and 76.65% for XSeA (whole

time range).

The high frequency signal superimposed on the seasonal

signal is mostly due to strong thermal variations caused by

cyclonic and anticyclonic events (frequent in Normandy).

This secondary source generates an extra signal common to

all stations. On the Sélune, we can notice that the ICA component

XSeA is much smoother, before 2017, than the corresponding

component on the Odon. The ICA extraction attributes the high

frequency variations to other factors before 2019 than a regular

variation. After 2019 and the dam’s removal, the Sélune seasonal

variation seems closer to a “natural” river such as the Odon and

the high frequency signal appears more clearly in XSeA.

This first components XOdA and XSeA are seasonal

variations strongly correlated with the air temperature. These

seasonal components are not necessarily exclusive to the air

temperature effect but can gather several atmospheric factors

with similar behaviours.

5.2.2 Daily variations (XOdB, XSeB)
After the seasonal variations, the most important factors are

daily variations (Figures 6B,E). Daily variations record day/night

temperature differences over the year but without the seasonal

variation. That is why XOdB and XSeB do not exhibit a “saw-

tooth” type signal as for XOdA and XSeA. The ICA components

XOdB and XSeB show smaller amplitudes over the year than the

seasonal components XOdA and XSeA. Amplitudes vary around

±3 °C for the Odon and ±4 °C for the Sélune.

In order to highlight the different influences over the stations,

typical years were selected in temperature time series for the

Sélune (Figure 7) and the Odon (Figure 8). Figure 7 shows the

component XSeB in 2 years: before the dam’s removal (2014) and

after (2020). Figure 8 shows the component XOdB for the Odon

on a typical year (2013).

On the Sélune, XSeB is more steady throughout the year.

However, we can distinguish two phases before and after the

dam’s removal (Figures 7A,B). The amplitude of the variations is

more important before 2019 (±5°C) than after (±2 C). Before

2019, XSeB is marked by a temperature drop in August and

irregular fluctuations especially in Se1. These fluctuations remain

important until mid-December where the mean temperature

increases again. For this period (2011–2019), it is difficult to

consider a “typical” year as the variations in XSeB are quite

irregular and strong. But in average, the strongest variations

occur in early summer before a drop in early autumn. XSeB in

Se2 and Se3 appear steadier and vary less throughout the year

whereas in Se1, it varies above and under the signal of the

downriver stations. This effect in a river equipped with a dam

was also observed in the Loire basin (France) (Seyedhashemi

et al., 2021). After 2019, the daily variations are lower over the

year and display seasonal variations as on the Odon. We can

notice a higher day/night amplitude from April to October but in

a relatively small range (±2°C).

On the Odon, XOdB can be described by the amplitude of the

day/night variations (Figure 8). Thus, fromMarch, the day/night

amplitude increases until its maximum in May. After that, the

amplitude decreases and stabilises throughout the summer. It

starts to increase again in September and decreases in November

to stabilise in winter. This behaviour does not follow the seasonal

variation seen in XOdA but is caused by a combination of

climatic factors: length of the day, day/night thermal

variations as well as environmental factors described later.

This component affects mainly Od1 and Od2 because the

thermal variations in Od3 are almost exclusively explained by

the seasonal component XOdA. As it will be described later, daily

variations in Od1 and Od2 reflect a group of factors repeatable

every year.

The second components XOdB and XSeB express daily

variations. It contains a seasonal cycle for the Odon stations

and a strong contrast before and after 2019 for the Sélune

stations. Contrary to the first component it shows very

different aspects on the two rivers and on the two

different periods for the Sélune. Unlike XOdA and XSeA

which are mainly explained by atmospheric factors, daily

components XOdB and XSeB also contain environmental

factors’ signatures which will be described in the following

sections.

5.3 Environmental factors

In addition to climatic daily variations, ICA can also

highlight a more general influence of environmental factors.

This section focuses on the temperature ICA components

containing environmental factors’ signatures such as the XB
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and XC components for each river. The most visible factors are

attributed to ICA components. Complementary analysis with

PCA will refine the determination of the factors.

5.3.1 Soils and riparian Vegetation’s influence
(XOdB)

Source component XOdB (Figure 8) shows that the circadian

temperature signal of the river is not only influenced by climatic

factors but also by environmental ones especially in

Od1 and Od2.

In XOdB, the amplitude increases from January to May. At

the beginning of the spring, soils have not yet warmed up. The air

temperature rises during the day but keeps dropping during the

night. In addition, anticyclonic conditions in March and April

create cloudless nights which do not limit nocturnal heat losses in

the atmosphere. This creates strong variations between cold

nights and warm days.

Between mid-March and May, the riparian vegetation’s

foliage progressively grows over the water, thus protecting the

river from the influence of the Sun during the day and also

limiting energy losses during the night (Dugdale et al., 2018). At

the same time, heat accumulation in soils starts. This

combination of factors decreases the amplitude of the signal

at the end of June where it should be at its maximum according to

the local climate.

After that, XOdB rises again from August until almost

November. The upriver part of the Odon (Od1 and Od2) lays

on the Armorican massif in which aquifers are filled quite early at

the end of summer. Their recharge can transfer heat from the soil

to the river during autumn through runoff with the first effective

rains.

Finally, the decline of the signal’s amplitude from mid-

November is explained by climatic factors but also by the

riparian vegetation which loses its foliage on the river. This

contributes to decrease the temperature by several degrees at the

beginning of winter.

The ICA source component XOdB highlights several factors,

and in particular the role of the riparian vegetation and the soil as

a heat reservoir. Od3 highlights less of this effect because its

banks are more protected from the direct sunlight. Thus, the

exposition conditions are very different from Od1 and Od2

(Supplementary Figure S1).

FIGURE 7
Temperature ICA component XSeB for the Sélune on typical years (A) before the dam’s removal (2014) and (B) after the dam’s removal (2020).

FIGURE 8
ICA component XOdB for each Odon station in 2013.
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5.3.2 Vezins Dam’s influence (XSeC)
On the Sélune, the component XSeC (Figure 6F) consists of

a seasonal signal with superimposed high frequency

variations. This signal seems linked with the presence of

the Vezins dam and its destruction in 2019. Indeed, it is

irregular until 2019 but structured after that year. When

discriminating by station on a specific year (Figure 9A), in

2014 for example, XSeC affects mainly station Se2 which is

located at the foot of the dam.

XSeC also contains a seasonal signal which stops at the dam’s

removal. Such signal may be linked to the upriver lake (around

200 ha). It has a large surface exposed to atmospheric factors

which can gather heat from spring to autumn and contribute to

warm the Sélune. This warming is around 1.5°C in July

(Figure 9A). In winter, the presence of the dam seemed to

have a less significant impact even though the lake

contributed to smooth and shift the phase of thermal events

(Figure 10A).

The main hypothesis here is that ICA gathered most of the

dam’s effects in XSeC. It was confirmed by another ICA run with

only XSeA and XSeB (excluding the dam’s effect in XSeC). In this

second run (Figure 5), the new temperature datasets were very

FIGURE 9
Temperature ICA component XSeC for the Sélune for typical years (A) before the dam’s removal (2014) and (B) after the dam’s removal (2020).
The signal before 2019 is highly disturbed by the dam’s activity. After 2019, the signal is smoother and shows an opposite seasonal variation as the
sensor was covered by sediments.

FIGURE 10
(A) Influence of hydraulic peaks on the temperature in Se2. The dam buffers the temperature amplitude and creates phase shifts. When the
sensor is emerged, it measures the air temperature. (B) Temperature time series on the Sélune after removing the influence of the dam.
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similar for stations Se1 and Se3 as on Figure 7, thus confirming

that it was not affected by the presence or absence of the dam.

During the dam’s operation period, the production of

electricity through hydraulic peaks affected the immersion

of the sensor. When it was emerged, it measured Ta

(Figure 10A). Indeed, if the river flow upriver the dam was

low, the hydraulic head took time to come back to its original

value. At these times, the electricity company EDF had to

release part of the water but it was not enough to keep

Se2 immersed. On the contrary, during floods (mostly in

winter), the river flow could be sufficient, so EDF did not

need to use hydraulic peaks. During these times, most of the

upcoming river flow was released and the sensor remained

immersed. Such events occurred from 2012 to 2016

(Supplementary Figure S3). In 2018, although the dam was

not operating anymore, water movements previous to the

dam’s removal were expressed by irregular peaks in XSeC.

After the dam’s removal (Figure 9B), XSeC shows a seasonal

signal in Se3 but opposite to XSeA. This is explained by the fact that

the sensor was covered by sediments after the dam’s removal and

thus, the seasonal signal is strongly shifted from the atmospheric

variation. Even though, it is not possible to state that the river is not

affected by other dams (such as la Roche-Qui-Boit dam located

between Se2 and Se3), it seems that the remaining structures do not

affect the thermal regime as strongly as the Vezins dam. Using the

successive ICA method described above, a reconstruction of the

temperature time series without the influence of the dam

(Figure 10B) was made. It shows a regular seasonal signal similar

to a “natural” stream’s signal such as the Odon.

ICA extraction highlights the impact of a dam on a river and

its effects on a seasonal level as well as on a daily level. In this case,

the operations of the dam led to peak temperatures and a very

irregular thermal regime compared to a natural river. It also led

to two very different thermal regimes between the upriver station

Se1 and downriver stations Se2 and Se3.

5.4 About using ICA

When analysing time series, most commonly methods

such as Fourier or Morlet wavelets are frequency

dependent. The initial signal is separated into several

contributions based on the frequency of the phenomenon.

This first approach can separate different physical phenomena

which operate on very different time scale (seasonal, daily

etc. . .). ICA, however, does not discriminate frequency scaled

phenomena. Therefore, it can separate signals with similar

frequency signatures. Therefore, these methods are

complementary: frequency based methods are sensitive to

the sampling frequency whereas ICA is sensitive to the

homogeneity of the time series. The main limit of ICA lies

in the separation of signals. On the two rivers, ICA could

extract only three mathematically independent components

on the one hand and residual signals and white noise on the

other hand. Physical factors influencing the temperature are

never completely independent and therefore, ICA alone can

not fully separate all the contributions, unless the number of

sensors is important.

However, as a first analysis step, ICA provides useful

information and draws a first study frame for the physical

phenomenon to look into. Also, it can be used in a backwards

methodology where a factor is known to have an impact on the

thermal regime but the way it impacts remains to be determined.

ICA can highlight a specific signal which can be identified as the

specific factor. In this study, the Vezins dam was known to

influence the thermal regime of the Sélune and ICA could extract

a specific signal to remove its temporary effect.

5.4.1 Contributions of ICA components
Figure 11 shows all the ICA contributions weighted by the

matrix coefficients for each station. To sum up, the ICA analysis

highlighted the following points:

• XOdA and XSeA (black), attributed to seasonal

components, explain the majority of the rivers’ thermal

signal.

• XOdB and XSeB (yellow), attributed to daily variations are

regular over the years and generally stronger for upriver

stations. XOdB variations correspond to a combined effect

of four factors: the day/night variations, the sunlight exposition

throughout the year (duration and intensity) and on top of that

the vegetation’s growth and soils’ heat storage.

• XOdC and XSeC (green) contain the remainder of the

temperature signal. Therefore it contains most of the

particular events and local conditions affecting one

station in particular. On the Odon, XOdC concerns

mostly Od2 and a particularly open environment

(Supplementary Figure S2). On the Sélune, XSeC

concerns mostly Se2 and the effects of the Vezins dam.

With this first analysis, several physical factors (climate,

vegetation, soils, dam . . .) could be linked with ICA

components and their impact evaluated according to the local

context based on geology, remote sensing data, topography, land

use and riparian vegetation density. However, some of known

factors such as the river flow did not appear in this analysis.

5.4.2 Importance of the measuring network
ICA allowed to highlight several factors (natural or artificial)

that influence the thermal regime on two rivers in Normandy. It

also showed the downriver evolution of several of them.

This performance comes from themethod itself but also from

the measuring network which focused on less rivers but with a

greater density of sensors. Ideally, five measuring sites on the

Odon would have allowed to highlight the groundwater’s

influence (Le Lay et al., 2019) and the impact of the distance
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from the sea. For the Sélune, three more stations would be

necessary to study the mouth environment (1 station), the

upriver basin (2 stations) which contains two main types of

aquifer. Among all the measuring stations, ICA allowed to isolate

the ones with specific environments. But this is only possible if

the river is equipped with enough stations.

However, with a successive ICA method, more components

than the number of sensors would initially allow can be extracted.

ICA also gives information about the variation of the

components in space (measuring stations along the river) and

time. This information is useful to determine the physical factors

involved.

FIGURE 11
ICA components for each station of the Odon in (A–C) and the Sélune in (D–F). Seasonal components in black, daily components in yellow,
specific components in green.
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6 Conclusion

ICA linearly decomposes the signal with the hypothesis of

noise cancellation. The quality of the decomposition and the

separation can be affected in the case of a strong noise. Source

density under ICA is often either fixed or selected among a

limited family of densities, which can cause a loss of flexibility. To

counter those aspects, it could be interesting to use Independent

Factors Analysis (IFA) which proposes a generative model with

noise (Attias, 1999). In this model, densities are modelled with a

Gaussian mix that is closer to arbitrary densities. In our case, an

IFA model with time structured sources would provide further

information.

In a previous paper (Gresselin et al., 2021), ICA was

combined to PCA with a multiple linear regression model to

characterize the respective role of groundwater and runoff in the

thermal regime of a Normandy river (the Touques, France). The

method has also made it possible to identify the increasing role

from upstream to downstream of two climatic factors: the air

temperature and the solar irradiance.

In this paper, ICA was used to characterise the influence of a

hydrolelectric dam and its dismantling on the thermal regime of

the Sélune (Normandy, France). ICA also identified particular

periods where the sensor was covered by sediments and when it

was emerged. In addition, with a new protocol called “Successive

ICA”, the natural thermal regime of the river was reconstructed

and testes in water temperature prediction.

On the Odon, considered as a natural river, the ICA

characterized the role of the riparian vegetation and the soil

on the thermal regime. The intensity of each environmental

factor identified with the ICA was studied from upstream to

downstream and over 10 years time.

ICA has proved the extent of its performance in classifying a

wide range of control factors from a set of pre-processed time

series on the one hand. On the other hand, the successive method

developed here has shown its ability to remove a temporary

effect, which can be useful when dealing with long-term

processes. In hydrology, ICA can address at least three

situations: what is the importance of other factors than the

atmosphere on a river’s thermal regime? what is the evolution

of a particular known factor on a river’s thermal regime? are there

influencing factors that are related to one station in particular?

In Normandy for example, results produced by this study

led the DREAL to create a regional map of the riparian

vegetation density on the rivers’ banks (about 10 m wide on

each side of the river). This map is used to determine on which

stretches of watercourse the trees’ shade can be used as a

limiting factor to the increasing water temperature. Such

information is essential to guide decisions on river

management to limit the impact of climate change

(Whitehead et al., 2009; Dugdale et al., 2017).
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