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The dynamic Young’s modulus (Edyn) is a parameter needed for optimizing

different aspects related to oil well designing. Currently, Edyn is determined

from the knowledge of the formation bulk density, in addition to the shear

and compressional velocities, which are not always available. This study

introduces threemachine learning (ML) models, namely, random forest (RF),

adaptive neuro-fuzzy inference system with subtractive clustering (ANFIS-

SC), and support vector regression (SVR), for estimation of the Edyn from

only the real-time available drilling parameters. The ML models were

learned on 2054 datasets collected from Well-A and then tested and

validated on 871 and 2912 datasets from Well-B and Well-C,

respectively. The results showed that the three optimized ML models

accurately predicted the Edyn in the three oil wells considered in this

study. The optimized SVR model outperformed both the RF and ANFIS-

SCmodels in evaluating the Edyn in all three wells. For the validation data, the

Edyn was assessed accurately with low average absolute percentage errors

of 3.64%, 6.74%, and 1.03% using the optimized RF, ANFIS-SC, and SVR

models, respectively.
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1 Introduction

Rock static elastic properties are key parameters affecting

in situ stress distribution prediction, hydraulic fracturing

design, and wellbore stability (Labudovic, 1984; Lacy, 1997;

Nes et al., 2005; Hammah et al., 2006; Fjaer et al., 2008).

Nowadays, these static elastic properties are predicted using

laboratory measurements (Barree et al., 2009) or empirical

correlations which evaluated the static elastic parameters

based on the dynamic elastic parameters predicted from

the well log data (King, 1983; Brotons et al., 2016; Asef

and Farrokhrouz, 2017; Karagianni et al., 2017).

Young’s modulus is an important elastic property, and the

static values of Young’s modulus (Est) could be predicted with

high accuracy using laboratory measurement or predicted

with empirical correlations developed to predict the Est.

Table 1 lists different empirical correlations suggested for

estimation of Est in different rock types.

The dynamic Young’s modulus (Edyn) which is required

for Est prediction by all empirical correlations in Table 1 is

currently determined from acoustic velocities and rock

density using Eq. 1 (Fjaer et al., 2008). The inputs required

to estimate the Edyn using Eq. 1 are obtained from the

laboratory experiments or well logging, and the use of

laboratory experiments limits the possibility of obtaining a

continuous profile for the Edyn along the whole wellbore. On

the other hand, the vertical resolution of the logging tool and

the interference between the different formations

significantly influence the accuracy of the well logging data.

Edyn � ρV2
s(3V

2
P − 4V2

s )

V2
P − V2

s

, (1)

where ρ is the bulk density of the rock (g/cm3), VS is the shear

wave velocity (km/s), and VP is the compressional wave velocities

(km/s).

Machine learning (ML) models were utilized successfully

to estimate different parameters and to solve issues related to

different aspects of petroleum engineering (Mahmoud et al.,

2017; Ahmed et al., 2019; Mahmoud et al., 2020a; Mahmoud

et al., 2020b; Al-Abduljabbar et al., 2021; Mahmoud et al.,

2021a; Marquez, 2021; Noufal et al., 2021). In this study, the

Ed-yn was correlated with the real-time measurable drilling

parameters to enable real-time prediction of Edyn using

three ML algorithms, namely, random forest (RF), adaptive

neuro-fuzzy inference system (ANFIS-SC), and support

vector regression (SVR).

2 Methodology

In this study, three ML models, namely, RF, ANFIS-SC,

and SVR, were optimized to estimate Edyn from the drilling

parameters, i.e., standpipe pressure (SPP), torque, drillpipe

rotation speed (DSR), drilling fluid flow rate, weight-on-bit

(WOB), and rate of penetration (ROP). Since these drilling

parameters are obtained from the surface sensors in real-time

during the drilling operation, their use could enable

evaluation of the Edyn on a real-time basis.

TABLE 1 Different correlations suggested by previous studies for Est estimation.

Author/s Empirical
correlation

Input Square
correlation
of coefficient

No. of
data
point

Rock type/s

Eissa and Kazi (1988) log(Est) � 0.77 log (Edyn) + 0.02 Dynamic and static Young’s
modulus

0.92 76 NA

Bradford et al. (1998) Est � 0.0018 E2.7dyn Dynamic Young’s modulus NA 10 Sandstones and shales

Horsrud, (2001) Est � 0.076V3.23
P Acoustic P-wave velocity 0.99 14 Shale

Lashkaripour, (2002) Est � 0.103*σ1.086c UCS 0.807 NA Mudstone

Ameen et al. (2009) Est � 0.541 Edyn + 12.852 Dynamic Young’s modulus 0.6 400 Carbonate

Martínez-Martínez et al.
(2012)

Est � 1.263 Edyn
3.8α−0.68s

Dynamic and static Young’s
modulus

NA 60 Carbonate rocks

αs ultrasonic spatial attenuation

Brotons et al. (2014) Est � 0.867 Edyn − 2.085 Dynamic Young’s modulus 0.96 24 Calcarenite stone

Najibi et al. (2015) Est � 0.014 E1.96dyn Dynamic Young’s modulus
and Vp

0.87–0.9 45 Limestone

Est � 0.169V3.324
P

Ghafoori et al. (2018) Est � 0.022 E1.774dyn Dynamic Young’s modulus 0.912 60 Limestone rocks

Feng et al. (2019) Est � 0.81 Edyn − 13.88 Dynamic Young’s modulus 0.70–0.92 18 Tight sandstone and
siltstone
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2.1 Date description

The drilling parameters and their corresponding Edyn values

considered in this work were collected from three different wells; all

wells are located in the same oil field from theMiddle East. A total of

2054, 871, and 2912 datasets from Well-A, Well-B, and Well-C,

respectively, were used to train the ML models on estimating Edyn.

Well-A’s data were used to learn the ML models, as indicated in

Figure 1, Well-A has complex lithology which consists of four

formations of sand, shale, and carbonate.

Table 2 lists the statistical features of the training data, which

shows the applicable range of the optimized ML models. To

FIGURE 1
Lithology column for Well-A.

TABLE 3 Optimum ML algorithms design parameters for TOC
estimation.

RF

Number of decision trees 100

Maximum depth of the trees 11

Minimum number of the observations 2

Maximum number of inputs Log2

ANFIS-SC

Cluster radius 0.3

Number of iterations 300

SVR

Verbose 1.0

Regression factor 102

Epsilon 10–5

Lambda 10–5

Kernel Gaussian low

Kernel option 5

TABLE 2 Statistical parameters for the training data.

Statistical
parameter

WOB, Klbf SPP, psi Torque, Kft.lbf ROP, ft/hr DSR, rpm Flow rate,
gpm

Minimum 1.9 2237 4.4 35 92 639

Maximum 24 3,008 11 108 160 853

Median 11 2616 7.1 70 134 700

Standard deviation 7.0 191 1.7 17 15 74
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ensure the high accuracy of the Edyn with the optimized ML

models, the drilling data used to predict the Edyn must be within

the range shown in Table 2.

2.1 Concepts of machine learning models

In total, three machine learning models were used in this

work. The first model is the random forest (RF) which is a

kind of ensemble model applicable to solve both regression

and classification problems. In this model, hundreds or

thousands decision trees are combined and trained on a

slightly different set of observations. Then, in a process

called bootstrapping, the splitting nodes of each tree

considered only a limited number of input variables to

decrease the variance and enhance the predictability of

the algorithm (Efron, 1982). Finally, prediction through

RF is achieved by averaging the predictions of all trees.

RF was successfully applied to solve problems in

petroleum engineering (Alsaihati et al., 2021; Osman

et al., 2021).

The second model is the adaptive neuro-fuzzy inference

system with subtractive clustering (ANFIS-SC). The

adaptive neuro-fuzzy inference system (ANFIS) was

developed in the early 1990s as a combination of

artificial neural networks and fuzzy interference systems

(Jang, 1991; Jang, 1993). This way, the ANFIS system could

combine the advantages of both neural networks and fuzzy

logic in a single model, and it is used mainly for

classification purposes, as well as for regression problem.

The subtractive clustering is used to group the data based

on its potential density to identify the cluster center

compared to the surrounding data points. Recently,

ANFIS-SC showed high accuracy in solving petroleum

FIGURE 2
Input data used to learn the ML models were collected from Well-A.
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engineering-related problems (Mahmoud et al., 2021b;

Gamal et al., 2021).

The third model is support vector regression (SVR) which

works based on the principles of the support vector machine

(SVM) developed by Vapnik, 1998. The SVM was developed

as a classification model, while SVR could be used to solve

regression problems. Several previous studies showed the

high accuracy of the SVR to identify different parameters

related to the petroleum industry (Mahmoud et al., 2020c;

Mahmoud et al., 2022).

2.3 Learning the machine learning models

The ML models were trained and optimized in this work

using the 2057 datasets of different input parameters

collected from Well-A. These inputs are plotted in

Figure 2 with the change of depth. To investigate the

performance of the different design parameters of the RF,

ANFIS-SC, and SVR algorithms in predicting Edyn, sensitivity

analysis was performed on different combinations of these

design parameters.

FIGURE 3
Actual and assessed Edyn by the RF, ANFIS-SC, and SVR models for the 2054 training data points of Well-A.
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The RF model was optimized on its design parameters of the

optimum number of decision trees, the maximum depth of the

trees, the minimum number of observations, and the maximum

number of inputs. The results showed that the RF model built

with 100 decision trees, with a maximum depth of trees of 11,

minimum number of observations of 2, and maximum number

of inputs of log2, was the best in estimating the Edyn from the

surface measurable drilling parameters.

Two design parameters of ANFIS-SC were optimized,

namely, cluster radius and number of iterations. The use

of cluster radius from 0.2 to 0.7 was evaluated with an

increment of 0.05, while the use of iterations from 100 to

1,000 iterations was investigated. The results indicated that

the optimum cluster radius was 0.3 when 300 iterations were

considered to accurately predict the Edyn.

The SVR model was optimized for its design parameters of

the kernel, kernel option, lambda, verbose, regression factor, and

epsilon. The optimized SVR model was constructed with the

“Gaussian low” kernel, kernel option of 5.0, lambda of 10–5,

verbose of 1.0, regression factor of 102, and epsilon of 10–5.

To ensure evaluation of the performance of all design parameter

combinations for the different ML models considered in this study,

inserted for loops built inMATLABsoftwarewereused to optimize these

parameters. Then, the optimum parameter combination was considered

the one that predicted the Edyn with the lowest average absolute

percentage error (AAPE) and highest correlation coefficient (R). The

optimum parameters for all optimized models are listed in Table 3.

To avoid the model’s overfitting while training, the training

data were subdivided into two subgroups, one considered for

training (85% of the data) and the other group (15% of the data)

was used for validation. The mean square errors for the training

and validation data were observed during model training and as a

function of the number of trials. These errors were decreasing

with the number of trials until the model started memorizing the

data because of overfitting, where the error for validation data

started increasing with the number of trials, while the error for

training data is still decreasing. To avoid overfitting, the optimum

number of trials used to train all the ML models was then chosen

as that before the validation error started increasing.

2.4 Evaluation of the accuracy of
optimized models

After optimizing the ML models, they were tested using

871 data points obtained from the second well (Well-B), and

finally, 2912 data points gathered from Well-C were

considered for the model’s’ validation.

FIGURE 4
Actual and assessed Edyn by the (A) RF, (B) ANFIS-SC, and (C) SVR models for the 2054 training data points of Well-A.
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3 Results

3.1 Optimizing the RF, ANFIS-SC, and SVR
models

The RF, ANFIS-SC, and SVR models were learned to

assess Edyn from the drilling data. The models were learned on

the 2054 datasets of Well-A. Figure 3 and Figure 4 compare

the actual and assessed Edyn in Well-A, respectively. The ideal

matching of the actual Edyn with these predicted with the RF,

ANFIS-SC, and SVR models as indicated in Figure 3

emphasizes the high precision of the optimized RF,

ANFIS-SC, and SVR models, which predicted the Edyn
with AAPEs of 2.13%, 5.85%, and 0.42%, and Rs of 0.997,

0.963, and 0.999, respectively.

The cross-plots of Figure 4 also show that all the points

fall in the vicinity of the 45° line, which also assures the high

prediction reliability of the optimized RF, ANFIS-SC, and

SVR models. As shown in Figure 4B, the coefficient of

determination (R2) between the actual and estimated Edyn
is 0.986. Previous results indicated that in terms of accuracy,

the model could be arranged as SVR, RF, and ANFIS-SC.

FIGURE 5
Actual and assessed Edyn by the optimized RF, ANFIS-SC, and SVR models for the 871 testing data points of Well-B.
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3.2 Training the machine learning models

The RF, ANFIS-SC, and SVR models optimized in this study

were then tested for Edyn assessment using Well-B data. Figure 5

and Figure 6 compare the actual and estimated Edyn in Well-B,

respectively. Figure 5 shows that there is a perfect matching of the

actual and evaluated Edyn, where the Edyn was predicted with

AAPEs of 3.12%, 5.70%, and 0.99%, and Rs of 0.994, 0.966, and

0.997, using the learned RF, ANFIS-SC, and SVR models,

respectively.

As indicated in the cross-plots of Figure 6, all the points

fall in the vicinity of the 45° line, which assures the high

precision of the optimized RF, ANFIS-SC, and SVR models.

The Edyn in the testing well was assessed with R2 of

0.987 using the RF model, 0.933 using the ANFIS-SC

model, and 0.995 using the SVR model. Again, for the

testing data, the optimized SVR model outperformed the

other models in assessing the Edyn, followed by the RF

model and then the ANFIS-SC model.

3.3 Validating the optimized random
forest, ANFIS-SC, and support vector
regression models

The optimized ML models were validated on the

2912 datasets of Well-C. Figure 7 and Figure 8 show the

prediction accuracy of these models on evaluating Edyn for

Well-C’s data. Figure 7 shows that the optimized SVR model

was the most accurate among all models optimized in this work,

and it assessed the Edyn accurately with a small AAPE of only

1.03% and an R of 0.998. The optimized RFmodel was the second

most accurate, and it determined the Edyn with an AAPE and R of

3.64% and 0.990, respectively. The least precise model was the

ANFIS-SC which assessed the Edyn with an AAPE of 6.74% and R

of 0.963.

Visual comparison of Figure 8 also confirmed the

optimized RF, ANFIS-SC, and SVR models evaluated the

Edyn for the data of Well-C with R2s of 0.980, 0.928, and

0.996, respectively. This result also indicates the high

FIGURE 6
Cross-plots of the actual and assessed Edyn by the optimized (A) RF, (B) ANFIS-SC, and (C) SVRmodels for the 871 testing data points of Well-B.
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reliability of the optimized models in evaluating the Edyn from

the surface measurable drilling parameters only.

3.4 Comparing the precision of the
random forest, ANFIS-SC, and support
vector regression models

Figure 9 compares the accuracy power of the optimized models

of RF, ANFIS-SC, and SVR on assessing the Edyn for training, testing,

and validation data through evaluation of the accuracy measures of

the AAPE, R, and R2. As indicated in Figure 9A, the SVR model

estimated the Edyn with the lowest AAPE for training, testing, and

validation data, followed by the RFmodel, and then the least accurate

model was ANFIS-SC.

Now, considering only the validation data of Well-C and the

three measures of accuracy (Figure 9B), they also confirmed the

high prediction power of the optimized SVR, which estimated the

Edyn with the lowest AAPE of 1.03% and the highest R and R2 of

0.988 and 0.996, respectively.

FIGURE 7
Actual and assessed Edyn by the optimized RF, ANFIS-SC, and SVR models, for the 2912 validation data points of Well-C.
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FIGURE 8
Cross-plots of the actual and assessed Edyn by the optimized (A) RF, (B) ANFIS-SC, and (C) SVR models for the 2912 validation data points of
Well-C.

FIGURE 9
Comparison of the prediction accuracy of the optimized RF, ANFIS-SC, and SVR models; (A) AAPE for the training, testing, and validation data;
and (B) the AAPE, R, and R2 for the validation data of Well-C.
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The results showed the high precision of the optimized ML

models in estimating the Edyn from the surface measurable

drilling parameters; the use of these parameters enabled the

possibility of real-time prediction of the Edyn.

4 Conclusion

Three ML models, namely, RF, ANFIS-SC, and SVR, were

optimized for real-time assessment of the Edyn from the real-time

available drilling parameters only. The ML models were

optimized on 2054 datasets of the different input parameters

and their corresponding Edyn and then tested and validated on

871 and 2912 datasets from another two wells. The following

conclusion can be drawn based on this study:

• The three ML models accurately predicted the Edyn in

the three oil wells considered in this study.

• The optimized SVRmodel wasmore accurate than the RF and

ANFIS-SC models in evaluating the Edyn in all three wells.

• For the validation data, Edyn was assessed accurately

with low AAPEs of 3.64%, 6.74%, and 1.03% using RF,

ANFIS-SC, and SVR models, respectively.

• The use of the surface measurable drilling parameters

enabled real-time assessment of the Edyn.
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