
A high-resolution soil moisture
content analysis product in
Jing-Jin-Ji using the successive
correction method

Changliang Shao1*, Yakai Guo2, Yunchang Cao1 and JiaoWang3

1CMA Meteorological Observation Centre, Beijing, China, 2CMA Henan Meteorological Bureau,
Zhengzhou, China, 3Beijing Tianhe Xiangyun Culture Media Limited Company, Beijing, China

Two soil moisture content analysis products, each with a spatial resolution of

0.0625° and a temporal resolution of 1 h from 1 October 2015 to 1 October

2021 in the Jing-Jin-Ji area, have been developed and evaluated. Using a quality

control (QC) scheme based on the biweight method and a successive

correction method (SCM) with different weighting functions introduced from

the Cressman and/or Barnes methods, the soil moisture collected from China

Land Data Assimilation System version 2.0 was taken as the background data.

Two soil analysis products with induced hourly station soil observations were

constructed and further compared with in situ observations and satellite

products. Results show that with the biweight method, the outliers of soil

moisture could be identified, and that the number of these was less than 10% of

the actual reported samples. The analysis product is more accurate with the

Cressman weighting function than with the Barnes as the root mean square

error was reduced by 30% to 0.06, while the correlation coefficient increased by

73% to 0.59, compared to the control. These results indicate that the Cressman

product is a useful and promising soil moisture data set. The proposed

Cressman method is computationally simple and efficient, so the product

can be easily updated to keep pace with significant increases in the volume

of soil moisture data. The methods used here for QC, SCM, and comparison

could help evaluate and improve land surface models and their soil moisture

products.
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1 Introduction

A regional climate can be affected by soil moisture, which can change the latent and

sensible heat transported to the atmosphere, the reflectance of the surface, and the heat

capacity of the ground. Soil moisture also plays an important role in medium- and small-

scale atmospheric processes (Ma et al., 2001). Thus, it is important to properly use soil

moisture data in the land surface model and to correctly understand the mechanisms

underlying the interaction between the atmosphere and soil moisture (Pan and Mahrt,
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1987; Chen et al., 1997; Gaertner et al., 2010; Seneviratne et al.,

2010; Vereecken et al., 2014; Li et al., 2019; Shi et al., 2019; Song

et al., 2019). The accurate measurement of soil moisture is very

important for accurately understanding its role in atmospheric

and climate processes. Good-quality soil moisture observation is

also needed to improve a numerical model and soil moisture data

assimilation (Kim and Wang, 2007; Li et al., 2012; Li et al., 2015;

Ju et al., 2019). Research on soil moisture variation can be

hindered because of the lack of observations with high

temporal and spatial resolution (Seneviratne et al., 2010).

Therefore, studies of soil moisture content usually depend on

retrieved soil moisture data (Lai et al., 2014; Zhu et al., 2019).

Remote sensing data from satellites can be used to produce a soil

moisture product with high spatial resolution (Njoku et al., 2003;

Parkinson, 2003; Qiao et al., 2007; Dabboor et al., 2019).

However, low temporal resolution does reduce the accuracy of

soil moisture retrieval when such data are used in numerical

models (Lan et al., 2015; Fereidoon et al., 2019).

Powered by developing technologies for ground-based soil

moisture monitoring, automatic devices have been developed

and widely applied (Susha et al., 2014). Since 2004, the China

Meteorological Administration has conducted a systematic

project of generating soil moisture data using automatic

monitoring devices. This project has been in operation since

2009. As of 2020, 2,400 observation stations had been established.

In general, the automatic observation system for monitoring soil

moisture in China has been developed mainly based on

frequency domain reflectometry (Minet et al., 2010). In

addition, the data volume and coverage have exceeded all

previous traditional manual soil moisture observations.

Recently, a growing number of researchers have been utilizing

those automatically measured soil moisture data (Zhu and Shi,

2014; Wang and Gong, 2018).

However, automatic soil moisture stations are still sparse,

and the spatial distribution of observations from the station

system is nonuniform. These constraints have resulted in poor

applications of the station data. Thus, a gridded analysis product

with soil observations is needed, whereas the successive

correction method (SCM) could be selected as a primary

regular way of merging station data when considering

applications in grid space. The advantage of SCM is that

signals with different scales can be captured according to

predefined weighting factors. Unlike other assimilation

methods such as OI, 3DVAR, and EnKF, SCM needs neither

the background error covariance nor the assumption of Gaussian

errors of background and observation. Thus, given the sparse

distribution of soil moisture data and the nonlinearity of the land

surface model or the system, SCM is easier for implementing

gridded product analysis and updates to keep pace with large

increases in the volume of soil moisture data. In this work, the

Cressman scheme (Cressman, 1959; Li, et al., 2017) and the

Barnes scheme (Koch, 1983) are used as weighting factors. On

this basis, the automatic soil moisture data for the areas of Beijing

city, Tianjin city, and Hebei province were integrated into the

China Land Data Assimilation System (CLDAS) version

2.0 dataset (Shi et al., 2014) to conduct the hourly soil

moisture analysis from 1 October 2015 to 1 October 2021.

This area is called Jing-Jin-Ji for short and is located in the

middle of northern China. The newly constructed gridded

analysis datasets were compared and evaluated against in situ

data and Soil Moisture Active Passive (SMAP) satellite retrievals

(Entekhabi et al., 2010). Ultimately, the dataset with higher

quality can be used for further process studies, as well as for

the validation and evaluation of other soil moisture products.

In the following sections, we first introduce the background

data from CLDAS V2.0 and the station data (Section 2.1). The

quality control (QC) methods are presented (Section 2.2). The

algorithms for SCM and validation (Section 2.3) and the

experimental design (Section 2.4) are then described. In

Section 3, we describe several synthetic experiments to

investigate their performances. In Section 4, the results of

these cases are discussed. Conclusions are drawn last, in

Section 5.

2 Experiments

2.1 CLDAS soil data and station soil data

The CLDAS V2.0 dataset, established and updated by CMA,

contains hourly 0.0625° near-surface meteorological variables for

mainland China from 2008 to 2021. This dataset merges surface

measurements from over 2,400 national automatic weather

stations and approximately 40,000 regional CMA automatic

weather stations with 0.125° 3-hourly numerical analysis/

FIGURE 1
Experimental flowchart.
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predicted products from the European Centre for Medium-

Range Weather Forecasts to produce the near-surface wind

speed, air temperature, and specific humidity. Using these

ongoing near-surface data to force the offline land surface

model, the finer land products were determined, the accuracy

of which depends mainly on the quality of the atmospheric

forcing data (Liu, et al., 2019). For this study, the soil moisture

product from CLDAS V2.0 was selected as background data to

combine with the station soil moisture observations.

This study observed soil moisture volumetric content on the

hourly scale, as measured by the automatic soil moisture

observation system, including 417 stations lying loosely in the

Jing-Jin-Ji area, as shown in Figure 1. It should be noted that all

raw soil moisture data used here are in situ observations.

2.2 Quality control

First, extreme values of soil moisture content (larger than

65%) and missing data from the raw data were eliminated. Then,

to check the consistency of the background, the biweight

technique—which was first described by Lanzante (1996) and

further introduced into high spatial-temporal resolution soil

moisture applications by Shao et al. (2020)—was applied to

remove occasional outliers. The biweight function was defined

using the following equation:

ωi � Xi −M

7.5 × MAD
(1)

where the observation bias Xi is defined as Xi � yo
i − yb

i , where

i � 1, 2, . . . , n, n is the total number of the samples, i is the ith

sample, yo
i is the observed value, and yb

i is the background value.

M is the median of Xi, and MAD is the median of |Xi −M|.
When |ωi|> 1, ωi � 1, the biweight mean Xbw, the biweight

standard deviation BSTD, and Zi are defined by the following

equations:

Xbw � M +
∑n
i�1

Xi −M( ) 1 − ω2
i( )2

∑n
i�1

1 − ω2
i( )2 (2)

BSTD �
n∑n
i�1

Xi −M( )2 1 − ω2
i( )4[ ]0.5

∑n
i�1

1 − ω2
i( ) 1 − 5ω2

i( )∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ (3)

Zi � Xi −Xbw

∣∣∣∣ ∣∣∣∣
BSTD

(4)

For a given value of ZT, the ith observed value was identified

as an outlier when Zi ≥ZT. Generally, the value of ZT was

empirically set to be 1.5, 2.0, or 3.0, and the selection of ZT

ensured that the percentage of elements removed was about 10%

of the actual reported elements (Shao et al., 2020). Thus, the ZT

was set to 2.0.

2.3 Data fusion and validation

The SCM can be generally written as follows:

fn+1
i � fn

i +
∑kni

b�1w
n
ib fo

b − fn
b( )∑kni

b�1w
n
ib

(5)

The i, b, and n in equation (Eq. hereafter) (Eq. 5) represent

the ith grid point, the bth observation point, and the nth iteration

number. fn
i is the analysis field after the nth iteration at the ith

grid point, and fo
b is the b

th observation within a predefined scan

radius Rn, called the influence distance. For the nth iteration

interpolation with the location of the bth observation, kni is the

total number of observations collected within Rn of the ith grid

point. Due to different weighting factors, wn
jb, different data

fusion schemes were defined. Two data fusion schemes used

in this study, based on the Cressman and Barnes methods, are

briefly described in the following.

The Cressman scheme is defined as follows:

wn
ib �

R2
n − r2ib

R2
n + r2ib

, r2ib <R2
n

wn
ib � 0, r2ib ≥R2

n.

⎧⎪⎪⎨⎪⎪⎩ (6)

In Eq. 6, rib is the distance between the ith grid point and the

bth observation, while Rn is usually taken to be several times the

value of rib. According to Cressman (1959), to resolve small-scale

signals, Rn should be gradually decreased with successive

iterations. Moreover, to ensure that a large-scale signal is

retained, Rn−1 should be set to a relatively large value.

The Cressman scheme with three iterations (Eqs 5, 6) was

used in this study to conduct the hourly soil moisture analysis.

The scan radii R1, R2, and R3 were set to 281.25, 93.75, and

31.25 Km, respectively (Li et al., 2017).

In the meantime, a refined Barnes scheme was used for

comparison. This scheme was originally proposed and refined

by Barnes (1964, 1973) and is similar to the Cressman scheme.

The main difference between the methods is how they compute

the weighting factor,wn
jb. A Gaussian function is used to compute

wn
jb in the Barnes scheme. Barnes (1973) refined this method by

proposing the modified weighting factor

wn
ib � exp

−r2ib
χγ

( ), r2ib <R2
n

wn
ib � 0, r2ib ≥R2

n,

⎧⎪⎪⎨⎪⎪⎩ (7)

where r2jb and Rn are defined as in Eq. 6, γ is the convergence

factor, and χ is the filtering constant. The number of iterations

required to reach a stable solution can typically be reduced by this

modified weighting factor. Prior to the analysis (Koch, 1983), the

parameters χ and γ were set at 5.052 and 0.25, as one or two

iterations should be used. We selected a two-pass (two-iteration)

analysis in the scheme. Thereby, the scan radii were set to 281.25

(the overall radii of our study area) and 93.75 (1/3 of the overall

radii, for a quick convergence) Km.
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In this study, SMAP retrievals and station observations were

used to compare against and/or validate the analysis obtained

from each experiment over various temporal and spatial scales.

Four metrics (i.e., root mean square error [RMSE], correlation

coefficient [Corr], skewness [SKEW], and kurtosis [KURT]) were

calculated as follows.

RMSE �
������������∑n

i�1 yi − xi( )2
n

√
(8)

Corr � ∑n
i�1 yi − y

−( ) xi − x
−( )�����������∑n

i�1 xi − x
−( )2√ �����������∑n

i�1 yi − y
−( )2√ (9)

SKEW � n

n − 1( ) n − 2( )∑ni�1 xi − �x

s
( )3

KURT � n n + 1( )
n − 1( ) n − 2( ) n − 3( )∑ni�1 xi − �x

s
( )4⎧⎨⎩ ⎫⎬⎭

− 3 n − 1( )2
n − 2( ) n − 3( )

(10)

where xi is the reference data point, yi is the corresponding data

point to be validated, n is the sample size, and x
− (y−) is the mean

value of x (y) of n values. In this article, the cross-validation method

is presented using both station soil moisture observation and SMAP

Level-2 gridded soil moisture product as validation data.

2.4 Experiment description

To efficiently induce the station soil moisture data into the

grid products, QC and assimilation (DA) were the primary

assignment. A brief description of the main procedures of this

work is given in Figure 1. The QC process based on the

biweight method was carried out using the available station

observations. The Ctr was first taken as a comparison

candidate and was conducted to generate two comparison

candidates, following the assimilation process based on SCM

with the diversity of weighting factor. Finally, cross-validation

among the different candidate products and validation data

was further conducted.

The hourly CLDAS V2.0 soil moisture product was used as

the ongoing background data during station soil moisture

assimilation. All types of datasets, including CLDAS V2.0,

SMAP data, and station data in this study, concentrated on

the area 113.2E~120.0E, 36.0N~42.7N, which covers Jing-Jin-Ji,

as shown in Figure 2.

In addition, as shown in Table 1, data in the Ctr

experiment (known as the control experiment) collected

from the CLDAS V2.0 soil moisture product had no QC

nor assimilation. Meanwhile, the experiments BARNESBIW

and CRESSBIW both used the biweight method during QC

and applied the SCM method with Barnes and Cressman

weight factors, respectively, during observation

assimilation. Moreover, to objectively verify the differences

between various grid products, station observation and SMAP

retravel data were used to compare against the three products,

using evaluation indicators including RMSE, Corr, SKEW,

and KURT.

FIGURE 2
Distribution of the soil moisture station in Jing-Jin-Ji.

TABLE 1 Experimental design.

Expr Name QC WF Assimilation

1 Ctr — — No

2 CRESSBIW QCBIW Cressman Yes

3 BARNESBIW QCBIW Barnes Yes

FIGURE 3
Hourly numbers of actual reported (solid line) and valid
samples after QC (dotted line) from 1 September to 1 October
2020.
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3 Results

3.1 QC of the station soil moisture

QC was conducted before assimilation as the CLDAS

V2.0 grid data are continuously spatial and temporal, whereas

raw station observations are discrete, to avoid assimilation

distortion induced by countless differences with non-Gaussian

noises between background and observation. When all

observation and background samples were compared at the

station points, the non-Gaussian noises could be greatly

improved (Shao et al., 2020).

As shown in Figure 3, our datasets include a total of

720 hourly observations collected at 417 stations from

1 September to 1 October 2020, with one observation

record per hour at each station. A total of 300,240 elements

were recorded. After rejecting extreme values and missing

data, the number of actual records was 292,308, accounting for

about 97.36% of the actual reported elements, while after

QCBIW, the number of rejected records was 276,518 and

the corresponding percentages among actually reported

records about 7.7%. Overall, about 10% of the raw data

were rejected in total.

It should be noted that the ongoing results show more

consistent behavior during QC, as compared to former

research (Shao et al., 2020), because the actual reported

rate during the whole QC procedure was higher in this

paper. This indicates that SCMs assimilate more realistic

soil moisture data into CLDAS V2.0 products.

3.2 Comparisons against station
observations

To assess how the two schemes behave differently during the

DA process, it was necessary to compare analysis data with

station data. Station soil moisture data were used to calculate

the RMSEs and Corrs of experiment results. Eighty percent of the

whole-station data records after QC (Section 3.1) were used in

data fusion, while the remaining 20% were used for additional

independent validation. Next, we take the first soil layer, with

more temporal-spatial variants, as an example.

The RMSE and Corr between the station and gridded data

during the first soil layer [e.g., RMSE (1) and Corr (1)] for each

experiment are shown in Figure 4. While distinguished

boundary gaps can be found among different soil moisture

products, both the CRESS and BARNES experiments can

produce better soil moisture than the background (Ctr); at

the same time, it is also clear that CRESS is superior to

BARNES. In addition, we compared the available ESSMRA

data (Naz et al., 2020), which provides long-term surface soil

moisture at a high spatiotemporal resolution, with our results.

Satellite-derived soil moisture data were assimilated into the

community land model (CLM3.5) using an ensemble Kalman

filter scheme in ESSMRA. Table 2 shows the average RMSE

and Corr values for each experiment, as well as the ESSMRA

results. It also shows that the CRESS scheme is superior to the

Ctr, BARNES scheme, and ESSMRA, which coincides with the

result shown in Figure 4.

Overall, these results show improved station scale soil

moisture when observation was properly induced (e.g., smaller

RMSE and larger Corr in CRESS, when compared to

observations, than for both in BARNES or Ctr). This indicates

that the widely used Cressman weighting factor (e.g., ocean data

assimilation) is also suitable for the soil moisture data fusion

scheme, and the results of the station scale promise to be

statistically improved.

FIGURE 4
Hourly RMSEs (A) and Corrs (B) between station observations
and products of each experiment from 1 September to 1 October
2020, including Ctr (black lines), BARNES (blue lines), and CRESS
(red lines).

TABLE 2 Average calculation of hourly RMSEs and Corrs between
station observations and each product of Ctr, CRESSBIW, and
BARNESBIW.

Expr RMSE Corr

Ctr 0.079341 0.261252

BARNESBIW 0.072546 0.338715

CRESSBIW 0.063091 0.425357

ESSMRA 0.104727 0.369636
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3.3 Comparisons against the SMAP grid
dataset

Preliminary validation studies have suggested that SMAP

is meeting its performance targets (Chan et al., 2016; Pan et al.,

2016), and therefore, the SMAP products were used for cross-

validation here. However, the SMAP data records are on a

daily scale while the assimilation results are on an hourly scale.

Thus, the hourly values for the analysis have been averaged

into daily values before validation. As we can see, the spatial

distributions of the two analysis products were both more

similar to the SMAP than to the background or Ctr, as shown

in Figures 5A–F. Thereby, as seen from the difference between

analysis and Ctr, the Cressman scheme clearly has a smoother

FIGURE 5
Distribution ofmonthly averages fromCtr (A), BARNES (B), CRESS (C), and SMAP (D). Difference between analysis [i.e., BARNESminus Ctr (E) and
CRESS minus Ctr (F)].

FIGURE 6
Daily average soil moisture content of SMAP (violet cross), station data (green cross), Ctr (black line), BARNES (blue line), and CRESS (red line)
from 1 September to 1 October 2020.
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and more reasonable spatial distribution than does the Barnes

scheme.

In addition, as the daily spatial average surface soil

moisture content (Figure 6) suggests, the two analysis

products are both closer to the SMAP than to the Ctr and

in situ observation. Also, a consistent variant tendency among

all products can be observed (e.g., the sudden increase of soil

moisture around 15 September), indicating that SMAP agrees

well with the others on domain-averaged daily scales. While

lower surface soil moisture values can be found in SMAP

retrievals than in station data, this should explain the quite

different probe methods and also indicates that soil moisture

data fusion is necessary.

Furthermore, as shown in the daily RMSEs and Corrs

(Figure 7) and the averaging during the analysis of daily

RMSEs and Corrs between SMAP and the analysis of each

experiment (Table 3), the Cressman scheme is clearly superior

to the Barnes scheme when lower RMSEs and larger Corrs can

be found; this is consistent with the results of comparisons

against station data. Also, as shown in both the probability

density distribution (Figure 8) and the values of skewness and

kurtosis (Table 4), the analysis using the Cressman scheme is

closest to the Gaussian distribution and has the smallest

SKEW and KURT for all validation candidates.

Notably, Burgin et al. (2017) have compared SMAP with

products of AMSR2 and ASCAT using the same statistical

evaluation indicators, as shown in Table 4. It is clear that the

FIGURE 7
Daily RMSEs (A) and Corrs (B) between SMAP and products of each experiment from 1 September to 1 October 2020, including Ctr (black lines),
BARNES (blue lines), and CRESS (red lines).

TABLE 3 Comparison of SMAP with Ctr, BARNESBIW, CRESSBIW,
ASCAT, and AMSR2.

Expr RMSE Corr

Ctr 0.089 0.345

BARNESBIW 0.070 0.472

CRESSBIW 0.062 0.590

AMSR2 0.091 0.407

ASCAT 0.112 0.649
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CRESSBIW product is superior to the AMSR2 product.

Compared with ASCAT, although the Corr of CRESSBIW

is smaller by 9.1%, the RMSE is smaller by 44.6%. Therefore,

the CRESSBIW product can capture the comparative daily

scale characteristics as satellite-gridded retrievals. In general,

all the aforementioned results indicate that the CRESSBIW

product is a good choice with a simple SCM assimilation

method and a quality promised gridded dataset.

4 Conclusion and discussions

In this work, we developed and evaluated two analysis products

using SCMs with Barnes and Cressman weight factors. The hourly

CLDAS V2.0 soil moisture content product was adopted as

background data, and the hourly automatic soil moisture station

data as observations to be assimilated. QC was conducted using the

biweight method with the result of eliminating less than 10% of the

actual reported data. Then, two hourly soil moisture content analysis

products were produced using two schemes, including Barnes and

Cressman, with a spatial resolution of 0.0625°. All validation results

showed that the analysis product using the Cressman scheme had

smaller RMSE and larger Corr than that using the Barnes scheme. In

addition, the probability density distribution of deviations from the

Cressman scheme analysis was closer to a normal or Gaussian

distribution than was that of the Barnes scheme analysis, which

should be attributed to the weighting factor. Finally, the Cressman

scheme is recommended for use in analysis production with the

sources of CLDAS V2.0 soil moisture content product and

automatic soil moisture station data in the Jing-Jin-Ji area.

The dataset presented here provides hourly surface soil

moisture analysis at a high spatiotemporal resolution and will

be beneficial for many hydrological applications across the

Jing-Jin-Ji region. Our results indicate that the Cressman

product is a useful and promising soil moisture dataset.

The proposed Cressman scheme is computationally simple

and efficient, so the product can be easily updated to keep pace

with large increases in the volume of soil moisture data. These

findings will help evaluate and improve numerical models and

their corresponding products. The comparison and evaluation

steps employed in this work can also be applied to other data

sources, for example, to satellite remote sensing products and

to soil moisture products produced in other ways. It is noted

that the iterations and scan radius specified in this work may

be altered when the resolution of the data changes. In the

future, new methods for assimilating soil moisture data and

optimal weighting factors will be developed to further

improve the analysis product.
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