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The Shuffled Complex Evolution—University of Arizona (SCE-UA) is a classical

algorithm in the field of hydrology and water resources, but it cannot solve

constrained optimization problems directly. Using penalty functions has been

the preferred method to handle constraints, but the appropriate selection of

penalty parameters and penalty functions can be challenging. To enhance the

universality of the SCE-UA, we propose the Constrained Shuffled Complex

Evolution Algorithm (CSCE) to conveniently and effectively solve inequality-

constrained optimization problems. Its performance is compared with the SCE-

UA using the adaptive penalty function (SCEA) on 14 test problems with

inequality constraints. It is further compared with seven other algorithms on

two test problems with low success rates. To demonstrate its effect in

hydrologic model calibration, the CSCE is applied to the parameter

optimization of the Xinanjiang (XAJ) model under synthetic data and

observed data. The results indicate that the CSCE is more advantageous

than the SCEA in terms of the success rate, stability, feasible rate, and

convergence speed. It can guarantee the feasibility of the solution and avoid

the problem of deep soil tension water capacity (WDM)<0 in the optimization

process of the XAJmodel. In the case of synthetic data, the CSCE can accurately

find the theoretical optimal parameters of the XAJ model under the given

constraints. In the case of observed data, the XAJmodel optimized by the CSCE

can effectively simulate the hourly rainfall-runoff events of the Hexi Basin and

achieves mean Nash efficiency coefficients greater than 0.75 in the calibration

period and the validation period.
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1 Introduction

The Shuffled Complex Evolution algorithm (SCE-UA) was proposed by the

University of Arizona (Duan et al., 1993). It offers a global search strategy by the

synthesis of the down-hill simplex method (Nelder and Mead, 1965), clustering,

competitive evolution, complex shuffling, and so on. Since its invention, the SCE-UA
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has been widely used in the automatic calibration of hydrologic

models such as the Sacramento model (Ajami et al., 2004), the

Tank model (Cooper et al., 1997), and the Xinanjiang (XAJ)

model (Jayawardena et al., 2006). In addition, it has been applied

in other domains such as the optimal allocation of water

resources (Ayad et al., 2021), optimal reservoir operation (Le

Ngo et al., 2007), and groundwater management (Ketabchi and

Ataie-Ashtiani, 2015). Over the past 30 years, the SCE-UA has

undergone many improvements and has derived many improved

versions, such as the SCEM-UA (Vrugt et al., 2003b) for

uncertainty assessment, the MOCOM-UA (Yapo et al., 1998)

and MOSCEM (Vrugt et al., 2003a) for solving multi-objective

optimization problems. Previous research mainly focused on

improving search capability, multi-objective optimization, and

uncertainty assessment, but studies on the application of the

SCE-UA under constraints are still limited (Naeini et al., 2019).

Many problems in the field of hydrology and water

resources can be generalized to constrained nonlinear

optimization problems. For example, in the field of

hydrologic model calibration, it is sometimes necessary to

add inequality constraints between parameters to obtain

optimization results that conform to the physical meaning

of parameters. In the field of reservoir operation, there are

constraints on the reservoir water level, water balance, and

flood discharge. However, the SCE-UA cannot directly solve

constrained optimization problems because its default

feasible region is a multidimensional space composed of

the upper and lower boundaries of each parameter. Using

penalty function is a simple and efficient way to handle

constraints, it converts a constrained optimization

problem to an unconstrained one (Askarzadeh, 2016;

Gupta et al., 2017). In the field of water resources, many

studies have used penalty functions to address the

constraints of groundwater management (Eusuff and

Lansey, 2004) and reservoir operation (Chang et al., 2010).

The static penalty function is the simplest method. In this

method, the penalty value is added to the objective function

so that the infeasible individual will be penalized for violating

the constraints. However, the penalty parameter and the

penalty function are difficult to configure subjectively

(Deb, 2000), they are problem-dependent. Adaptive

penalty functions have been developed to overcome the

drawbacks of static penalty functions (Farmani and

Wright, 2003). They have been applied to constrained

optimization problems in earth science such as seismic

inversion (Guo et al., 2021). Adaptive penalty functions

do not require users to adjust the penalty parameters in

advance. However, there are still infeasible points involved in

the calculation of the objective function, and the result may

also be an infeasible solution. In addition, if the objective

function value cannot be calculated at the infeasible points,

this method is invalid. Lee and Kang (2016) combined the

adaptive penalty function proposed by Tessema and Yen

(2009) with the SCE-UA algorithm (hereinafter referred to as

SCEA) and applied it to the calibration of the stormwater

management model (SWMM) (Kang and Lee, 2014).

However, the SCEA was tested only on two two-

dimensional test functions in their paper and it has not

been compared with other algorithms yet.

The constrained shuffled complex evolution algorithm

(CSCE) we developed aims to solve inequality-constrained

optimization problems more efficiently and conveniently. Its

structural design ensures that all its solutions are feasible. As

with the adaptive penalty function, the CSCE has no new

parameters to be adjusted before optimization. Later in this

paper, the CSCE is tested on 14 problems and compared with

the SCEA. Then, it is applied to the calibration of the XAJ

model.

2 Algorithms

2.1 The SCE-UA

The main parameters of the SCE-UA are the dimension of

the problem n and the number of complexes p. The

recommended values (Duan et al., 1994) for other parameters

are as follows: the number of points in each complex m=2n+1,

the number of points in each subcomplex q=n+1, the number of

times each complex is adjusted β=2n+1, and the number of times

each subcomplex is adjusted α=1. Therefore, the number of

complexes p determines the size of the initial population

(s=mp), and it can be set according to the complexity of the

optimization problem. The main steps of the SCE-UA are as

follows:

Step 1: Randomly initialize s sample points (s=mp) in the

feasible region, and calculate their objective function values.

Step 2: Sort the sample points in ascending order by objective

function values.

Step 3: Divide the s sorted points into p complexes, and each

complex contains m points.

Step 4: Evolve each complex β times with the competitive

complex evolution (CCE) algorithm. In each evolution, q

points in a complex are selected to form a subcomplex, and

the subcomplex is adjusted α times using reflection, contraction,

and mutation steps.

Step 5:Mix all points in the evolved complexes and sort them in

ascending order of objective function value.

Step 6: Determine whether the termination criteria are met, if

not, return to Step 3.
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The SCE-UA is popular mainly due to the following

reasons: The algorithm is easy to understand and be

implemented by programming; Many parts of the

algorithm such as the initialization of complexes and the

evolution of complexes are parallelizable, which is suitable

for parallel computing when optimizing large and complex

problems (Kan et al., 2016); Only the number of complexes p

needs to be adjusted by users when using the recommended

values of other parameters (Duan et al., 1994), and these

recommendations have stood the test of time; The

algorithm has proven to be more efficient and robust than

some classic algorithms such as the genetic algorithm (GA),

the simulated annealing algorithm (SAA), and the differential

evolution algorithm (DE) in solving some problems in the

field of hydrology and water resources by some researches

(Cooper et al., 1997; Arsenault et al., 2014). For detailed

information about the SCE-UA, please refer to the original

paper (Duan et al., 1993).

2.2 The SCEA

The adaptive penalty function in the SCEA was proposed

by Tessema and Yen (2009). It can adjust the penalty

coefficient adaptively by using the feasible ratio in the

current population (the proportion of the feasible

individuals in the population) to control the intensity of

the penalty. It was initially embedded in genetic algorithms

to solve constrained optimization problems, and achieved

good results on 22 benchmark functions. Lee and Kang

(2016) embedded this adaptive penalty function into the

SCE-UA and proposed the SCEA.

Optimization problems with inequality constraints can

usually be expressed as:

Minimize f( �x)
subject to

⎧⎪⎨⎪⎩ gj( �x)≤ 0 , j � 1, . . . ,m

�x∈ X

(1)

where n is the number of decision variables, �x � (x1, x2, . . . , xn);
m is the number of inequality constraints; and X is the search

space composed of the upper and lower boundaries of each

decision variable. The region in X that satisfies all inequality

constraints is the feasible region Ω.
The objective function of all current points will be evaluated

first, and each point’s function value will be normalized by the

following formula:

~f( �x) � f( �x) − fmin

fmax−fmin
(2)

where ~f( �x) is the normalized objective function value; f( �x) is the
original objective function value; f max and f min are the maximum

and minimum values of the objective function in the current

population respectively. The violation of each infeasible point is

calculated by the following formula:

v( �x) � 1
m
∑m
j�1

cj( �x)
cmax ,j

(3)

cj( �x) � max{0, gj( �x)}, j � 1, . . . , m (4)

where cj( �x) is the violation of the point �x for constraint j; v( �x) is
the violation of the point �x for all constraints; cmax ,j is the

maximum value of cj( �x) in the current population. Then, the

modified objective function value is calculated by the following

formula:

F( �x) �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
~f( �x), r> 0 and �x is feasible
v( �x), r � 0����������
~f( �x)2+v( �x)2

√
+ [(1 − r)v( �x) + r~f( �x)], r> 0 and �x is infeasible

(5)

r � number of feasible points in the current population
population size

(6)

where r is the ratio of feasible points in the current

population; F( �x) is the modified objective function. If

there is no feasible point (r=0) in the current

population, the original objective function value will be

disregarded, and F( �x) is equal to the violation of point �x.

This helps to find feasible points first before searching for

the optimum value. If there are feasible points in the

current population (r>0), F( �x) is equal to the normalized

FIGURE 1
Pseudocode of the SCEA.
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objective function value for feasible points, and for

infeasible points, F( �x) is determined by the violation, the

normalized objective function value, and the feasibility

ratio. Then, the adaptive penalty function method is

embedded into the SCE-UA in the form of a subroutine

(Figure 1).

FIGURE 2
Flow chart of the initial feasible point search strategy.
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2.3 The CSCE

The SCE-UA has two parts for generating and updating

points: 1. the generation of initial points. 2. the competitive

complex evolution (CCE) algorithm. Therefore, the above two

parts were modified to ensure that all new points were in the

feasible region. Meanwhile, the improved simplex search method

proposed by Muttil and Jayawardena (2008) was introduced to

enhance search efficiency. The remaining steps of the CSCE are

the same as those of the SCE-UA.

2.3.1 Strategy for generating initial feasible
points

X is the space composed of the upper and lower boundaries of

each decision variable. The task of the initial feasible point search

is to search space X to find a point in the feasible region Ω. For

many real-world problems, the feasible region is usually not very

small, random searching by computer is sufficient to find the

initial feasible point, using a complex algorithm increases the

running time of the program instead. However, for problems

with high dimensions and complex constraints, this method will

become time-consuming. Therefore, quickly and efficiently

finding the initial feasible points that satisfy the constraints is

a difficult problem in the field of optimization.We used a strategy

similar to the univariate search technique (Liu et al., 2001) to

generate the initial feasible points. �x � (x1, x2, . . . , xn) is a vector
of decision variables; �a � (a1, a2, . . . , an) and �b � (b1, b2, . . . , bn)
represent the lower and upper boundaries of each variable

respectively; S represents how many constraints �x can satisfy,

and it is the guidance of searching, the point meeting more

constraints will be retained as a new basic point for searching to

approach the feasible region. If �x is feasible, S=m; Q is the

maximum number of adjustments in each dimension, and its

default value is 10; L is the maximum number of adjustments

based on a starting point, and the default value is four; and �Y �
(y1, y2, . . . , yn) is the retention point. Q and L only affect the

search time, and they can be adjusted by users according to

specific problems if necessary. Here we use their default values.

The search steps are as follows:

Step 1: Randomly generate a starting point x0
→ in space X, calculate

S, and let S1 � S and �Y � x0
→. If S1=m, find the feasible point,

output �Y, and stop the algorithm; otherwise, go to step 2.

Step 2: Adjust based on �Y. Fix x2, . . . , xn, and adjust �Y in the

x1-axis direction. e1
→ � (1, 0, 0, . . . , 0), randomly generate x1 in

the interval [a1, b1], new point x1
→ � �Y + (x1 − y1)e1→, calculate S.

(a) If S=m, find the feasible point, output x1
→ , and stop the

algorithm.

(b) If S1 < S<m, find the better point, set S1 � S, and set �Y � x1
→.

Go to step 3.

(c) If S≤ S1, return to step 2. If no feasible point or better point is

found after Q adjustments in the x1-axis direction, go to step 3.

Step 3: Perform operations similar to step 2 in the x2, . . . , xn axis

directions in turn completing a round of adjustment. If no

feasible point is found, return to step 2 and start a new round

of adjustment. If no feasible point is found after L rounds of

adjustment, return to step 1, regenerate a new starting point x0
→

and repeat until a feasible point is found.

By performing the above algorithm s times, s initial feasible

points are generated. Figure 2 shows the flow chart of this search

strategy.

To show the effect of this method, 30 points meeting the

following constraints were generated. They are the constraints of

the subsequent test problem G07 in this paper, and the feasible

region is only 0.0003% of the search space. The experiment was

done on the Windows operating system and Pycharm 2021.2.1.

The search strategy uses 25s to find all feasible points while it

takes 1136s to randomly generate all feasible points by computer.

Subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0
10x1 − 8x2 − 17x7 + 2x8 ≤ 0

−8x1 + 2x2 + 5x9 − 2x10 − 12≤ 0
3(x1 − 2)2 + 4(x2 − 3)2 + 2x2

3 − 7x4 − 120≤ 0
5x2

1 + 8x2 + (x3 − 6)2 − 2x4 − 40≤ 0
x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6 − 30≤ 0

−3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0
−10≤ xi ≤ 10, i � 1, 2, . . . , 10

(7)

2.3.2 Improvements to the CCE algorithm
The steps of the improved CCE algorithm for a single

complex A are as follows:

Step 1: A � {x1→, x2
→, . . . , xm

�→} is a complex containing m sample

points arranged in order of increasing objective function value,

which is the input of the CCE algorithm.

Step 2: Assign a probability to each point in A, pi �
2(m+1−i)
m(m+1) , i � 1, . . . ,m.

Step 3: Randomly select q distinct points in A according to pi to

construct a subcomplex. The locations of A that are used to

construct the subcomplex are stored in L.

Step 4: Replace the worst point in the subcomplex.

(a) Sort the points in the subcomplex B in order of the increasing

objective function value. B � {u1→, u2
→, . . . , uq−1

���→, uq
�→}, uq�→ is the

worst point in B. Compute the centroid of good points �g �∑q−1
i�1 ui
→

q−1 .

(b) Compute the reflection point xref
��→ � 2 �g − uq

�→, then compute

the new point �r � (1 − θ)xref��→+ θu1→. This step moves the

original reflection point to the best point u1
→ by a certain
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FIGURE 3
Flow chart of the improved CCE algorithm.
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distance and has been proved to enhance the efficiency of the

original SCE-UA (Muttil and Jayawardena, 2008). The

default value of θ is set to 0.2.

(c) If �r is a feasible point, compute its function value fr, and go to

step (d); otherwise, generate a new feasible point �z by the

improved mutation method (The detailed steps will be

described later), set �r = �z and fr=fz.

(d) If fr < fq, replace uq
�→ with �r, and go to step (f); otherwise,

compute the contraction point xcon
���→ � �g+uq

�→
2 , then compute

the new point �c � (1 − θ)xcon���→+ θu1→ and its function value fc.

The default value of θ is also set to 0.2.

(e) If fc < fq and �c is feasible, replace uq
�→with �c, and go to step (f);

otherwise, use the improved mutation method to generate a

mutation point �z, and replace uq
�→ with �z.

(f) Repeat (a) through (e) α times, replacing the worst point in B

each time.

Step 5: Replace the corresponding points in A with the points in

B according to the locations stored in L. Sort A in order of

increasing function value.

Step 6: Repeat Step 1~Step 5 β times to complete the evolution

of a complex.

Figure 3 shows the flow chart of the improved CCE

algorithm:

The steps of the improved mutation method are as follows, it

utilizes the location information of the known feasible points and

guides the starting point to move to the centroid of A to search

for the feasible mutation point.

Step 1: Randomly generate a starting point x0
→ in the smallest

hypercube H⊂ Rn containing all points in A according to the

uniform probability distribution in each dimension. If x0
→ is

feasible, set �z � x0
→, output �z and stop the mutation; else, go to

step 2.

Step 2: Compute the centroid of complex A, gA
�→ � 1

m∑m
i�1 xi
→.

Step 3: Set i=1, compute the new point x1
→ � x0

→+ λ(gA�→− x0
→),

λ � i
T, T is the maximum number of adjustments based on the

starting point x0
→, and the default value is 10. If x1

→ is feasible, set

�z � x1
→, output �z and stop the mutation; otherwise, let i=2, . . . , T,

recompute x1
→ and determine whether it is in the feasible region. If no

feasible mutation point is found after adjusting T times, go to step 4.

Step 4: Return to step1, randomly generate a new x0
→ in H.

Repeat steps 1–4 until a feasible mutation point is found.

The CSCE uses a new strategy to generate initial feasible points

quickly and efficiently. Meanwhile, it adds feasibility review steps

and uses the improved reflection step, the improved contraction

step, and the improved mutation step to update points in the CCE

algorithm. Due to the structural characteristics of the CSCE, there

will be no infeasible points involved in the calculation of the

objective function during the optimization process. Meanwhile,

this method does not introduce new parameters, which is

convenient for users to add constraints during optimization.

2.4 Termination criteria

To avoid the infinite loop of the algorithm, the termination

criteria need to be set. In this paper, the termination criteria

TABLE 1 Termination criteria for the algorithms.

SCEA CSCE

Iteration criterion Stop when reaching the maximum number of iterations

Convergence criterion |f( �x*)t−N−f( �x*)t
f( �x*)t−N |< γ |f( �x*)t−N−f( �x*)t

f( �x*)t−N |< γ

|cj( �x*)t−N−cj( �x*)t
cj( �x*)t−N |< γ, ∀j, j=1, . . . , m

TABLE 2 Details of the test problems.

Problem n Type of
function

ρ (%) LI NI a

G01 13 quadratic 0.0111 0 0 6

G02 20 nonlinear 99.9971 0 2 1

G04 5 quadratic 52.1230 0 6 2

G06 2 cubic 0.0066 0 2 2

G07 10 quadratic 0.0003 3 5 6

G08 2 nonlinear 0.8560 0 2 0

G09 7 polynomial 0.5121 0 4 2

G10 8 linear 0.0010 3 3 6

G12 3 quadratic 4.7713 0 1 0

G16 5 nonlinear 0.0204 4 34 4

G18 9 quadratic 0.0000 0 13 6

G19 15 nonlinear 33.4761 0 5 0

G24 2 linear 79.6556 0 2 2

T01 2 polynomial 0.7000 0 2 1
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consist of the convergence criterion and the iteration criterion

(Table 1). If any of them is met, the algorithm will stop.

Where �x* in the above table is the best point in the current

population. The CSCE will stop early if the objective function

value does not change by convergence tolerance (γ) during the

number of iterations N. However, the SCEA needs one more

convergence criterion about constraints since the violation may

still change in subsequent iterations, despite the convergence of

the unpenalized objective function. This phenomenon was

explained in detail by Lee and Kang (2016).

3 Experiment on test problems

This section shows a performance comparison between the

CSCE and the SCEA on a suite of 14 test problems with inequality

constraints. Table 2 shows the details of these test problems. 13 of

these test problems were proposed in the IEEE Congress on

Evolutionary Computation (Liang et al., 2006) and they have

been widely used to test algorithms for constrained optimization

problems. The last test problem (hereinafter referred to as T01,

the formula is as follows) is described in (Deb, 2000). G06 and

T01 were used to test the SCEA by Lee and Kang (2016).

T01: Minimize f( �x) � (x21 + x2 − 11)2 + (x1 + x22 − 7)2
subject to

⎧⎪⎨⎪⎩
(x1 − 0.05)2 + (x2 − 2.5)2 − 4.84≤ 0

−x21 − (x2 − 2.5)2 + 4.84≤ 0
0≤ x1 ≤ 6, 0≤ x2 ≤ 6

(8)

where the optimum solution is �x* � (2.246826, 2.3881865) with
the corresponding function value f( �x*) � 13.59085.

Where n is the number of decision variables; ρ is the ratio

between the feasible region and the search space, which reflects

the difficulty of searching feasible points; LI and NI represent the

number of linear and nonlinear inequality constraints

respectively; a is the number of active constraints at the

optimum solution. Except for G12, the feasible region of each

test problem is a convex set. The feasible region of G12 consists of

9³disjointed spheres. The following termination criteria were set:

TABLE 3 Performance of the two algorithms on the test problems.

Problem Complexes Algorithm Minimum Median Maximum Mean STD MI FR (%) SR (%)

G01 (-15.000) 10 SCEA −15.000 −15.000 −15.000 −15.000 0.000 229 76.7 76.7

CSCE −15.000 −15.000 −15.000 −15.000 0.000 59 100.0 100.0

G02 (-0.804) 15 SCEA -0.440 −0.435 −0.414 −0.431 0.009 47 100.0 0.0

CSCE −0.441 -0.425 -0.404 -0.425 0.011 44 100.0 0.0

G04 (-30665.539) 6 SCEA −31668.425 −31436.893 −30665.526 −31267.807 338.283 1807 3.3 3.3

CSCE −30665.534 −30665.527 −30665.517 −30665.527 0.004 37 100.0 100.0

G06 (-6961.814) 5 SCEA −6961.814 −6961.812 -6961.305 −6961.752 0.121 184 100.0 76.7

CSCE −6961.814 −6961.814 −6961.811 −6961.813 0.001 30 100.0 100.0

G07 (24.306) 10 SCEA 15.858 17.325 25.570 18.779 2.665 1837 0.0 0.0

CSCE 24.306 24.307 24.331 24.309 0.005 76 100.0 100.0

G08 (-0.096) 4 SCEA -54.064 -0.096 -0.096 -6.956 17.431 86 80.0 80.0

CSCE −0.096 −0.096 −0.096 −0.096 0.000 18 100.0 100.0

G09 (680.630) 9 SCEA 680.630 680.630 680.630 680.630 0.000 299 100.0 100.0

CSCE 680.630 680.630 680.630 680.630 0.000 29 100.0 100.0

G10 (7049.248) 15 SCEA 3191.211 3648.252 7711.421 4154.824 1321.635 1564 0.0 0.0

CSCE 7049.257 7049.275 7049.554 7049.295 0.058 97 100.0 96.7

G12 (-1.000) 4 SCEA −1.000 v1.000 −1.000 −1.000 0.000 22 100.0 100.0

CSCE −1.000 −1.000 -−1.000 −1.000 0.000 16 100.0 100.0

G16 (-1.905) 7 SCEA −1.923 −1.908 −1.458 −1.891 0.081 1241 0.0 0.0

CSCE −1.905 −1.905 −1.905 −1.905 0.000 40 100.0 100.0

G18 (-0.866) 5 SCEA −1.542 −0.724 −0.374 -0.831 0.352 1864 0.0 0.0

CSCE −0.866 −0.866 −0.866 −0.866 0.000 53 100.0 100.0

G19 (32.656) 29 SCEA 27.837 30.130 34.495 30.541 1.540 1904 6.7 0.0

CSCE 32.662 32.848 34.233 32.953 0.318 205 100.0 26.7

G24 (-5.508) 4 SCEA -5.508 -5.508 -5.508 -5.508 0.000 37 100.0 100.0

CSCE -5.508 -5.508 -5.508 -5.508 0.000 27 100.0 100.0

T01 (13.591) 2 SCEA 13.591 13.591 13.591 13.591 0.000 36 100.0 100.0

CSCE 13.591 13.591 13.591 13.591 0.000 22 100.0 100.0
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1. The maximum number of iterations is 2000; 2. The iteration

interval N=10 and the convergence toleranceγ=0.001%. For each

test problem, the number of complexes p was set to the same

value for the two algorithms, and the recommended values were

used for other parameters. Therefore, for each algorithm, the size

of the initial population is (2n+1)p, and pαβ points are replaced

in one iteration. Considering randomness, each algorithm was

tested by running 30 times independently on each test problem.

The minimum, median, maximum, mean, and standard

deviation (STD) of the 30 results were recorded. The mean

number of iterations (MI) was used to assess the algorithm’s

convergence rate. Feasible rate (FR) refers to the proportion of

feasible solutions in all results. Whether a trial is successful or not

cannot be judged only by the objective function value

corresponding to the solution. For example, the value of the

function may be smaller than the theoretical optimum since the

solution is outside the feasible region. Therefore, a trial will be

deemed a success only if the solution is in the feasible region and

its function value is close to the theoretical optimum

(|f( �x) − f( �x*)|≤ 0.1). Success rate (SR) refers to the

proportion of the number of successful trials to the total

number of trials. Table 3 shows the optimization results of the

14 test problems. The theoretical optimum corresponding to

each problem is also listed in the first column.

The first thing we notice is that due to the structural design of

the CSCE, 100% of its solutions are feasible solutions, which is its

greatest advantage. In contrast, the SCEA has a low proportion of

feasible solutions for many problems, and there are even no

feasible solutions in the results of G07, G10, G16, and G18, the

feasible region of which are very narrow (ρ<0.02%). Although the

SCEA often finds function values smaller than the theoretical

optimal value in some problems such as G04, G07, G10, and G19,

these solutions are outside the feasible region. This does not

mean that there are no feasible points (r=0) in the population.

Figure 4 shows an optimization process of G04. We can notice

that the SCEA has a proportion of feasible individuals in each

generation, but the final solution of G04 is often unfeasible.

Furthermore, as the number of iterations increases, the value of

the function fluctuates and fails to converge to the theoretical

optimum value. When there are feasible individuals in the

population (r>0), the modified objective function of SCEA is

affected by the function value, the violation, and the status of the

current population. In these problems, the infeasible points with

small objective function values and violations are not necessarily

eliminated but are likely to be retained because of small modified

objective function values. In terms of the success rate, the CSCE

has apparent advantages on all test problems except G02. 100%

success rates are found in G01, G04, G06, G07, G08, G09, G12,

G16, G18, G24, and T01. The SCEA can achieve high success

rates in G01, G06, G08, G09, G12, G24, and T01, but the success

rates in other problems are very low. G02 is a very complex

function with a high dimension and its minimum value found by

existing research is -0.804, the results of the two algorithms are

near it but they both fail to find the theoretical minimum value.

In terms of algorithm stability, the standard deviation of the

optimization results of the CSCE is very small in each problem. In

contrast, the stability of the SCEA is not good, especially in

G04 and G10. The mean number of iterations of the CSCE is less

than that of the SCEA, especially in G01, G04, G07, G10, G16,

G18, and G19. Moreover, the CSCE achieves higher success rates

in these problems, while the SCEA performs poorly. Both

algorithms achieve a 100% success rate in G09, but the

FIGURE 4
The optimization process of G04.

FIGURE 5
Iteration curve of the CSCE in the case of the different initial
populations.
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number of iterations required by the CSCE is far less than that of

the SCEA. Overall, the CSCE can converge faster. A faster

convergence speed is significant for the automatic calibration

of hydrologic models because the structure of a hydrologic model

is usually complex, and a large amount of data is involved in one

computation. Therefore, more iterations mean more runs of the

model, which is time-consuming.

Lee and Kang (2016) only used T01 and G06 to test the

SCEA, but it can be seen from our experiment that it is not

comprehensive to test the SCEA on only two low-dimensional

functions. The performance of the SCEA differs greatly for

different problems. Overall, the CSCE is significantly better

than the SCEA in terms of the success rate, stability, feasible

rate, and convergence speed.

To test the CSCE algorithm’s ability to explore the whole

feasible region, we initialized the algorithm with all its initial

feasible population located in a very small region that is far

away from the global optimum and observed whether the

FIGURE 6
Iteration curves of different optimization algorithms for solving G02 and G19.

TABLE 4 Parameters of the XAJ model using synthetic data.

Parameter Explanation Unit Range “True” value Constraint

K The ratio of potential evapotranspiration to pan evaporation 0.8–1.2 0.9

B The exponent of the tension water capacity distribution curve 0.1–0.6 0.3

C Evapotranspiration coefficient of the deeper layer 0.1–0.2 0.14

WM Areal tension water capacity mm 90–180 130 WM-WUM-WLM>0
WUM Tension water capacity of the upper layer mm 5–30 20

WLM Tension water capacity of the lower layer mm 60–90 70

IM The ratio of impervious area 0–0.04 0.01

SM Free water capacity mm 5–60 30

EX The exponent of the free water capacity distribution curve 1–1.5 1.4

KI Outflow coefficient of interflow 0.1–0.7 0.4

KG Outflow coefficient of groundwater runoff 0.1–0.7 0.3 0.6<KI+KG<0.8
CG Groundwater runoff recession coefficient 0.8–1 0.96 CG>CI
CI Interflow recession coefficient 0.3–0.9 0.8

CS River network recession coefficient 0.1–1 0.4

L Lag time of river network confluence h 1–5 1

F Drainage area km2 2595.5

T Calculation interval h 24
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algorithm could expand the search scope and found the global

optimal solution. The optimum solution of G04 is (78, 33,

29.995, 45, 36.776) where the function value is -30665.539, and

the boundaries of variables are: 78≤ x1 ≤ 102, 33≤ x2 ≤ 45,
and 27≤xi ≤ 45 (i � 3, 4, 5). Using the strategy for

generating initial feasible points, we generated 66 initial

points (p=6) that satisfied all constraints of G04 in a very

small hypercube far away from the global optimum

solution (101.8≤ x1 ≤ 102, 44.8≤ x2 ≤ 45, 44.8≤ x3 ≤ 45,

27≤x4 ≤ 27.2, 27≤x5 ≤ 27.2). Figure 5 shows the iteration

curve of the CSCE in the case of different initial feasible

populations. When using the random initial feasible

population, the CSCE iterates 35 times and finds the

solution (78.000, 33.000, 29.995, 45.000, 36.776) where the

function value is -30665.520. When using the restricted

initial feasible population in the small hypercube, the CSCE

iterates 47 times and finds the solution (78.000, 33.000, 29.995,

45.000, 36.776) where the function value is -30665.531. The

result indicates that the CSCE can explore the feasible region

outside of the hypercube defined by the range of the initial

feasible population during the optimization.

The success rates of the CSCE in G02 and G19 are not

satisfactory. To compare the CSCE with more algorithms, some

classic or modern optimization algorithms using the exterior

penalty method were also used to solve these two problems.

They were the differential evolution algorithm (DE) (Storn and

Price, 1997), the genetic algorithm (Holland, 1992), the particle

swarm optimization algorithm (PSO) (Shi et al., 1998), the

sparrow search algorithm (SSA) (Xue and Shen, 2020), the

seagull optimization algorithm (SOA) (Dhiman and Kumar,

2019), the whale optimization algorithm (WOA) (Mirjalili and

Lewis, 2016), and the moth-flame optimization (MFOA)

(Mirjalili, 2015). The following form of penalty function was

used:

F( �x) � f( �x) +Msinh⎛⎝∑m
j�1
max (gj( �x), 0)⎞⎠ (9)

where M is the penalty parameter. To reduce the influence of

the adjustment of M on the optimization results, the

hyperbolic sine function was introduced to construct the

penalty item, and the greater the violation value of all

constraints, the faster the penalty item value increases. For

each algorithm, the size of initial points was set to 574 for

G02 and 868 for G19, corresponding to p=14 and p=28 in the

CSCE. The number of iterations was set to 2000 without

convergence judgment to show the complete optimization

process of each algorithm (Figure 6). The penalty

parameters and the parameters of each algorithm were

determined by trial and error several times.

After 2000 iterations, the optimization results of the DE,

the GA, the PSO, the CSCE, the SSA, the SOA, the WOA, and

the MFOA are -0.803, -0.454, -0.423, -0.464, -0.759, -0.439,

-0.609, -0.396 respectively for G02, and 42.639, 71.255, 36.075,

32.656, 66.606, 125.048, 43.668, 39.881 respectively for G19.

These results are all feasible. In the optimization process of

G02 and G19, the CSCE converges faster than most other

algorithms. In contrast, some algorithms such as the DE, the

GA, the SSA, and the MFOA have many apparent flat regions

in their iteration curves where the function value changes very

FIGURE 7
Study area and station distribution.
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slowly. The CSCE outperforms all other algorithms in

the optimization of G19, while its performance

is not better than the DE, the SSA, and the WOA in G02.

4 Case study

The SCE-UA was originally invented to calibrate

conceptual rainfall-runoff (CRR) models and has since

been mainly used for the calibration of hydrologic and

terrestrial models (Moradkhani and Sorooshian, 2008).

The Xinanjiang (XAJ) model is a world-famous CRR

model that has been widely used for runoff simulation

and forecasting in humid and semi-humid areas. For

detailed information about the XAJ model, please refer to

the relevant paper (Zhao, 1992). The parameters of the XAJ

model are listed in Table 4. Due to the correlation between

the parameters, it is necessary to add some constraints

during optimization. Among these constraints, the

inequality WM-WUM-WLM>0 must be satisfied,

otherwise the deep soil tension water capacity WDM will

be negative, and the XAJ model program cannot run

successfully. Few papers have mentioned this problem

before. In previous studies, researchers usually increased

the lower boundary of WM or changed to optimize

WUM, WLM, and WDM (Cheng et al., 2006) to avoid

this problem. However, compared with WDM, the

research on WM is more comprehensive and the range of

WM is easier to be estimated according to the climate and

underlying conditions of the basin. In the National Flood

Forecasting System of China (NFFS), the parameters WUM

and WLM in the XAJ model are expressed as coefficients

(UMx and LMx, the formula is as follows) rather than their

absolute values. This method can avoid WDM<0 during

optimization, but it enhances the correlation between

parameters in the optimization process and makes the

parameters difficult to understand, especially when

training hydrological forecasters.

WUM � UMx ·WM
WLM � LMx · (WM −WUM)
WDM � WM −WUM −WLM

UMx, LMx ∈ (0, 1)
(10)

TheCSCE can fundamentally avoid this trouble since the infeasible

parameter sets will be directly eliminated in the optimization process

andwill not be input into theXAJmodel. To verify its effectiveness and

convenience in the automatic calibration of hydrologic models, the

CSCE was applied to the calibration of the XAJ model. The synthetic

data were used to test whether the CSCE could find the theoretical

optimal parameters of the XAJ model under the constraints, and the

observed data was used to test its application effect.

4.1 Study area and data

The Hexi Basin is located in northwestern Hunan Province,

China. It is a typical fan-shaped basin with a drainage area of

2595.5 km2. The Hexi hydrometric station is located at the outlet

of the basin, which plays an important role in the flood defense of

the basin and has been a key station in flood forecasting research

in recent years. The observed precipitation, pan evaporation, and

discharge data of the Hexi basin from 1/1/2014 to 31/10/

2020 were collected, including long series of daily data, and

hourly data of 20 rainfall-runoff events. The areal precipitation of

the basin was calculated using the Thiessen polygon method

based on the five rain gauging stations (Duoxi station, Aizhai

station, Sangongqiao station, Xinglongchang station, and Hexi

station). Figure 7 shows the station distribution of the Hexi Basin.

TABLE 5 Parameter calibration results using synthetic data.

Trial Iterations MSE K B C WM WUM WLM IM SM EX KI KG CG CI CS L

1 158 0.000 0.90 0.30 0.20 130.00 20.00 70.00 0.01 30.00 1.40 0.40 0.30 0.96 0.80 0.40 1

2 172 0.000 0.90 0.30 0.16 130.00 20.00 70.00 0.01 30.00 1.40 0.40 0.30 0.96 0.80 0.40 1

3 153 0.000 0.90 0.30 0.16 130.00 20.00 70.00 0.01 30.00 1.40 0.40 0.30 0.96 0.80 0.40 1

4 159 0.000 0.90 0.30 0.17 130.00 20.00 70.00 0.01 30.00 1.40 0.40 0.30 0.96 0.80 0.40 1

5 155 0.000 0.90 0.30 0.17 130.00 20.00 70.00 0.01 30.00 1.40 0.40 0.30 0.96 0.80 0.40 1

6 165 0.000 0.90 0.30 0.12 130.00 20.00 70.00 0.01 30.00 1.40 0.40 0.30 0.96 0.80 0.40 1

7 171 0.000 0.90 0.30 0.20 130.00 20.00 70.00 0.01 30.00 1.40 0.40 0.30 0.96 0.80 0.40 1

8 158 0.000 0.90 0.30 0.18 130.00 20.00 70.00 0.01 30.00 1.40 0.40 0.30 0.96 0.80 0.40 1

9 153 0.000 0.90 0.30 0.17 130.00 20.00 70.00 0.01 30.00 1.40 0.40 0.30 0.96 0.80 0.40 1

10 153 0.000 0.90 0.30 0.16 130.00 20.00 70.00 0.01 30.00 1.40 0.40 0.30 0.96 0.80 0.40 1

True 0.000 0.90 0.30 0.14 130.00 20.00 70.00 0.01 30.00 1.40 0.40 0.30 0.96 0.80 0.40 1

Mean 160 0.000 0.90 0.30 0.17 130.00 20.00 70.00 0.01 30.00 1.40 0.40 0.30 0.96 0.80 0.40 1

STD 6.856 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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4.2 Optimization based on synthetic data

This section shows the performance of the CSCE in the

calibration of the XAJ model using synthetic discharge data.

The long series of daily areal precipitation and pan

evaporation data for the basin from 1/1/2014 to 31/10/

2020 were input into the XAJ model, and a set of

parameters were specified as “true” (i.e., known)

parameters to generate synthetic discharge data. This

method can artificially eliminate the model structure error

and the observational error (Li et al., 2013) so that the

theoretical optimal value of each parameter is known, and

then help us to know whether the CSCE can retrieve the “true”

values of the parameters of the XAJ model under the given

TABLE 6 Parameter calibration results using observed data.

Parameter K WM WUM WLM IM SM KI KG CG CI CS L

Lower boundary 0.80 90.00 5.00 50.00 0.00 10.00 0.20 0.20 0.700 0.300 0.100 1

Upper boundary 1.20 200.00 30.00 90.00 0.04 60.00 0.70 0.70 1.000 0.900 1.000 6

Result 0.80 200.00 5.00 50.00 0.04 59.94 0.41 0.33 0.989 0.482 0.869 4

TABLE 7 Results of the two algorithms in the calibration of the XAJ model using observed data.

Fobj F1 F2 F3 Iterations Number of
model runs

SCEA -0.556 0.138006 0.111892 0.805538 83 22006

CSCE -0.6135 0.112087 0.098313 0.823901 67 16627

TABLE 8 Simulation error statistics of the XAJ model optimized by the CSCE.

Flood No. NSE MAE MRE (%) PRE (%) FVE (%)

Calibration 2014070100 0.92 146.1 32.4 11.0 5.9

2014071301 0.84 450.4 23.8 −21.7 −10.8

2014081717 0.94 234.3 45.8 0.0 4.3

2015060123 0.57 139.9 24.8 0.0 −3.0

2015062013 0.96 67.5 28.2 −6.6 −0.4

2015063000 0.92 53.7 9.1 11.4 2.3

2015090518 0.77 86.9 45.0 −22.7 −15.6

2016041501 0.83 60.5 37.1 −12.0 16.9

2016050703 0.75 78.9 17.8 21.5 15.8

2016051801 0.84 66.8 32.8 −27.5 −1.0

2016071901 0.73 150.0 69.1 −14.9 36.0

2017062209 0.80 362.2 94.4 −0.8 18.4

2017091906 0.90 103.6 23.4 −22.2 4.3

2018070100 0.86 43.0 57.7 −5.8 −1.5

2018070510 0.81 41.5 21.1 0.1 −13.9

2019051115 0.75 77.0 20.3 −1.3 −7.2

MAV 0.82 135.2 36.4 11.2 9.8

Validation 2019052505 0.47 85.0 46.5 7.3 23.1

2019062805 0.80 82.5 27.0 11.1 24.3

2020070101 0.80 103.7 21.1 −26.9 0.4

2020071811 0.93 72.0 19.2 −18.4 −10.6

MAV 0.75 85.8 28.4 15.9 14.6
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range and constraints. Table 4 shows the ranges, “true” values,

and constraints of the XAJ model parameters.

The values of F and T were already known, so there were

15 parameters to be optimized. The lag time of river network

confluence is required to be an integer, but the SCE-UA algorithm

does not consider integer programming, so Lwas allowed to be input

into the objective function in decimal form, but it needed to be

rounded to an integer before being input into the XAJ model.

KI+KG reflects the runoff recession duration of the basin, and its

value is approximately 0.7 for the medium basin with a duration

of 3 days (Zhang et al., 2015). The shorter the runoff recession

duration is, the larger the value of KI+KG. Therefore,

0.6<KI+KG<0.8 was set according to the conditions of the

Hexi Basin. CG>CI was set since the runoff recession of

interflow is often faster than that of underground runoff. The

mean square error (MSE) of the simulated discharge process and

the ideal discharge process was taken as the objective function:

Fobj � MSE � 1
k
∑k
i�1
[y(i) − y0(i)]2 (11)

where y(i) is the ith simulation value; y0(i) is the ith observed

value; k is the length of the sequence; and Fobj is the objective

function. The number of complexes p was set to 8. The following

termination criteria were set: 1. The maximum number of

iterations is 1000; 2. the iteration interval N=10 and the

convergence toleranceγ=0.001%. The CSCE was run 10 times

independently and the results are shown in Table5. The result of

each parameter is rounded to 2 decimal places.

This is a constrained optimization problem with 15 decision

variables. We can notice from the table that except for parameter

C, the CSCE can find out the theoretical optimum of each

parameter very accurately in each run. C is a very insensitive

parameter in the XAJ model and has little impact on the runoff

process, so its optimization results are not equal to 0.14 but

always around it. The standard deviation corresponding to each

parameter is small and close to zero, which means that for

different initial populations, the CSCE can always converge to

the theoretically optimal parameter set of the XAJ model under

the constraints.

4.3 Optimization based on observed data

The hourly data of 20 rainfall-runoff events from 2014 to

2020 were used to construct the XAJ model, of which 16 floods

were used for calibration and 4 floods were used for validation.

As demonstrated by Lu and Li (2015), reducing the number of

dimensions and the range of parameters can effectively improve

the convergence of the optimization and the possibility of

obtaining a globally optimal solution. Therefore, some

insensitive parameters were fixed: B=0.4, C=0.14, and EX=1.4.

The following constraints were set: WM-WUM-WLM>0,

0.6<KI+KG<0.8, and CI<CG. The CSCE was used to optimize

the remaining 12 parameters, p=7, and the remaining parameters

of the SCE-UA were set to the recommended values.

Flood peak, flood volume, and flood process are the key

points in flood forecasting. It is difficult to comprehensively

evaluate the simulation effect using a single objective function.

Therefore, the objective function was set as a combination of the

peak relative error (PRE), the flood volume error (FVE), and the

Nash-Sutcliffe efficiency coefficient (Moriasi et al., 2015). The

mean absolute error (MAE) and the mean relative error (MRE)

were also used to quantify the simulation effect. The following

termination criteria were set: 1. The maximum number of

iterations is 1000; 2. the iteration interval N=10 and the

convergence toleranceγ=0.001%.

PRE � (Y − Y0)/Y0 (12)

FVE � ∑k
i�1
[y(i) − y0(i)]/∑

k

i�1
y0(i) (13)

NSE � 1 − ∑k

i�1[y(i) − y0(i)]2∑k

i�1[y0(i) − y0]2
(14)

Fobj � F1 + F2 − F3 � 1
F
∑F

i�1|PREi| + 1
F
∑F

i�1|FVEi| − 1
F
∑F

i�1NSEi

(15)

MAE � 1
k
∑k
i�1

∣∣∣∣y(i) − y0(i)
∣∣∣∣ (16)

MRE � 1
k
∑k
i�1

∣∣∣∣y(i) − y0(i)
∣∣∣∣/y0(i) (17)

where Y represents the simulated peak discharge; Y0 represents the

observedpeak discharge; y(i) is the ith simulation value; y0(i) is the
ithobservedvalue;kisthelengthofthesequence;y0 isthemeanofthe

observed values; F is the number of floods for calibration. Table 6

shows the parameter results optimized by the CSCE.

The SCEA was also used for comparison. The termination

criteria and the number of complexes are the same as those of the

CSCE. WUM, WLM, and WDM were optimized instead of WM,

WUM,andWLMtoavoidWDM<0.Therangeof theWDMwasset

to 25–60 mm.Table 7 shows the comparison of the two algorithms.

We can notice that the CSCE achieves a smaller objective

function value with fewer iterations and each item of the

objective function (F1, F2, and − F3) has a better value than

the result of the SCEA. This means that the XAJ model

optimized by the CSCE has a better simulation performance

in terms of the flood peak, flood volume, and flood process in the

calibration period. During the optimization process, the SCEA

needs to run the XAJ model 22006 times while the CSCE only

needs 16627 times. Table 8 shows the error statistics of the

simulation results. MAV is the mean absolute value.

The XAJ model optimized by the CSCE has a good

simulation effect in the calibration period and the validation

period. Each simulated flood has a high NSE or small peak error.
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The MAV of the NSE is between 0.7 and 0.9 in both periods and

the simulation precision achieves the B standard according to the

standard for hydrological information and hydrological

forecasting in China. In terms of the process simulation effect,

the NSE is greater than 0.9 for six floods, between 0.7 and 0.9 for

12 floods, between 0.5 and 0.7 for one flood, and less than 0.5 for

only one flood. In terms of the peak simulation effect, the

absolute value of the PRE is less than 10% for eight floods,

between 10% and 20% for six floods, and between 20% and 30%

for six floods. In terms of the flood volume simulation effect, the

absolute value of the FVE is less than 10% for 10 floods, between

10% and 20% for seven floods, and greater than 20% for three

floods. Overall, the XAJ model optimized by the CSCE can

effectively simulate the hourly rainfall-runoff events in the basin.

5 Conclusion

In this paper, the CSCE algorithm is proposed to solve

inequality-constrained optimization problems and is compared

with the SCEA and some other algorithms. According to its

performance on the test problems and the XAJ model, we draw

the following conclusions: (1) The CSCE is more advantageous

than the SCEA in terms of the success rate, stability, feasible rate,

and convergence speed. It performs well on most test problems,

while the performance of the SCEA differs greatly in different

problems. (2) The CSCE only searches for the optimal solution in

the feasible region, this feature can guarantee the feasibility of the

solution and avoid the problem of WDM<0 in the optimization

process of the XAJ model. (3) When using synthetic data, the

CSCE can accurately find the theoretical optimal parameters of

the XAJmodel under the given constraints. When using observed

data, the XAJ model optimized by the CSCE can effectively

simulate the hourly rainfall-runoff events in the Hexi Basin.

The SCE-UA is a classical algorithm in the field of hydrology.

On the one hand, we propose the CSCE for solving inequality-

constrained optimization problems and prove its effectiveness, on

the other hand, we usemore problems to test the SCEA and find its

shortcomings, which is also a complement to the existing studies.

However, the CSCE still deserves further exploration. When the

feasible region is narrow, the search for feasible points takes extra

time, which is obvious in the optimization of G07 and G18. The

smaller the feasible region, the greater the time cost for the CSCE to

search for feasible points. As demonstrated in the experiment on

G04, when the feasible domain is a convex set, the CSCE can

expand the search scope and find the optimal solution despite the

initial feasible points being compressed in a small range. However,

when the feasible domain is discrete and the initial feasible points

are restricted in a small range at the same time, the CSCEmay face

difficulties in jumping between sub-feasible domains, in which case

the diversity of initial feasible points becomes more important. In

addition, this paper only shows its application in the calibration of

the hydrologic model. As a new optimization tool, its application

effect on reservoir operation, optimal allocation of water resources,

and other domains are also worthy of further study.
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