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Data reconstruction and data denoising are two critical preliminary steps in

seismic data processing. Compressed Sensing states that a signal can be

recovered by a series of solving algorithms if it is sparse in a transform

domain, and has been well applied in the field of reconstruction, when,

sparse representation of seismic data is the key point. Considering the

complexity and diversity of seismic data, a single mathematical

transformation will lead to incomplete sparse expression and bad restoration

effects. Morphological Component Analysis (MCA) decomposes a signal into

several components with outstanding morphological features to approximate

the complex internal data structure. However, the representation ability of

combined dictionaries is constrained by the number of dictionaries, and cannot

be self-adaptively matched with the data features. Dictionary learning

overcomes the limitation of fixed base function by training dictionaries that

are fully suitable for processed data, but requires huge amount of time and

considerable hardware cost. To solve the above problems, a new dictionary

library (K-Singluar Value Decomposition learning dictionary and Discrete

Cosine Transform dictionary) is hereby proposed based on the efficiency of

fixed base dictionary and the high precision of learning dictionary. The self-

adaptive sparse representation is achieved under the Morphological

Component Analysis framework and is successfully applied to the

reconstruction and denoising of seismic data. Real data tests have proved

that the proposed method performs better than single mathematical

transformation and other combined dictionaries.
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1 Introduction

The data required for seismic exploration are large and

complex, and limited by terrain conditions and the economic

cost, seismic data are often irregularly sampled, which may be

caused by the complex terrain constraints, including

buildings, lakes and forbidden areas for land acquisition

(Sun et al., 2021). The inadequate excitation of the artificial

source may also result in bad traces, thereby leading to

irregular, incomplete and alias frequency of seismic data

(Zhang et al., 2019). In order to meet the higher

requirements for seismic data quality in subsequent

processing, the most direct and effective method is to

supplement acquisition and encryption of missing seismic

traces (Huo et al., 2013; Zhang et al., 2017). However,

restricted by economic cost, it is difficult to re-collect data.

Therefore, it is necessary to use effective seismic data

reconstruction methods to reconstruct the missing seismic

traces in the later period. On the other hand, with the

development of seismic exploration to more complex areas

and deeper layers, the high elevation difference of topographic

relief or the lateral change of near-surface velocity lead to shot

excitation and poor receiver conditions, and the random noise

interference in the collected single shot records is very strong.

If these noises cannot be effectively removed, the migration

imaging quality and reservoir prediction accuracy will be

affected.

There are four main types of seismic data reconstruction

methods. One is the filter-based method (Zhang and Tong,

2003), which using interpolation filtering. However, it usually

treats the non-uniform grid sampling data as regular data, which

leads to large errors. The second is wave field continuation

method (Naghizadeh, 2010), which makes full use of

underground information. However, the unknown prior

information such as underground structure limits the

application of this method. Third, the fast rank reduction

method (Gao et al., 2013; Ma et al., 2013), which regards

interpolation as an image filling problem, has fast calculation

speed and simple parameter setting, but it still has limitations in

the reconstruction of irregular missing channels under non-

uniform grid sampling and its anti-aliasing ability. The fourth

method is the Compressed Sensing (CS) method, which can

reconstruct regular and irregular missing seismic traces without

any prior information such as underground structures, and has

high calculation speed and accuracy. Compressed sensing theory

is considered a key method for dealing with the problem of data

loss, and the three key factors of CS data recovery are data

sparsity, random sampling and optimal reconstruction algorithm

(Jiang et al., 2019). Since seismic data are not sparse, it is vital to

find suitable sparse dictionaries, so that the coefficients of the

signal in the dictionary can remain sparse. Indeed, there are

many mathematical transformations used for CS, such as Radon

transform (Xue et al., 2014; Tang et al., 2020), Fourier transform

(Luo et al., 2015; Wen et al., 2018), Wavelet transform (Cui et al.,

2003), Curvelet transform (Zhang et al., 2013; Han et al., 2018;

Wang et al., 2018), Seislet transform (Liu et al.,. 2013), etc. (Wang

et al., 2021). Seismic data are usually composed of different waves

and cannot be fully and effectively represented by a single

transformation (Wang et al., 2021). Li et al. proposed the

application of Morphological Component Analysis (MCA) to

seismic data reconstruction, which separates signals mainly by

virtue of the difference between components of different signals

(Li et al., 2012). MCA was first proposed to image denoising or

restoration and achieved good results. At present, it is widely

used in signal denoising, reconstruction, separation, repair and

fusion and other fields. Zhou et al. quantitatively evaluated the

data reconstruction effect of different sparse dictionary

combinations under the framework of MCA, and found that

the combination of discrete cosine transform (DCT) and curvelet

dictionary is provided with the highest reconstruction accuracy

(Zhou et al., 2015). Zhang et al. proposed the combination of the

Shearlet and DCT dictionary that can represent seismic data

more fully and guarantee more accurate reconstruction data

(Zhang et al., 2019). In addition to MCA, many more

advanced algorithms have been applied to seismic data

processing. In 2014, the Variational Mode Decomposition

(VMD) algorithm was first proposed and made a significant

achievement in the field of signal decomposition. The VMD is an

iterative search for the optimal solution of the variational model

to determine what we know about the modes and their

corresponding center frequencies and bandwidths. Each mode

is a finite bandwidth with a central frequency, and the sum of all

modes is the source signal (Dragomiretskiy and Zosso, 2014).

Subsequently, many experts and scholars have applied the other

decomposition methods to seismic data processing. In 2019, Liu

et al. proposed an improved EWT (IEWT) to decompose a non-

stationary seismic signal into several IMFs and describe its

frequency features. Finally, an adaptive spectrum

segmentation using detected boundaries based on the SSR is

obtained (Liu et al., 2019). They also first identify the major

components of the ground roll adopting the multichannel

variational mode decomposition (MVMD), which shows

significant improvements compared to the conventional

single-channel VMD. Next, separating ground roll and

reflections on the selected low-frequency IMFs through a

curvelet based blockcoordinate relaxation method (Liu et al.,

2021). However, the limitations of the mathematical dictionary

remain unchanged. Dictionary learning (DL) is a new

representative of interdisciplinary research field, which

integrates the theoretical ideas of sparse representation,

machine learning, image application and compressed sensing,

and is mainly used to solve the problem of dictionary design of

sparse representation model. Dictionary learning trains the

dictionary according to the characteristics of the processed

data, and can get the most adequate dictionary (Wang et al.,

2021). K-means algorithm, also known as the clustering
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algorithm, is considered the simplest dictionary learning method,

and detects clusters in the sense of least square error by

continuously classifying and updating center points. The

K-SVD algorithm (SVD: Singluar Value Decomposition) is an

extension of the K-means algorithm, which is also carried out by

continuously updating the base and classification (Aharon,

2006). Compared with fixed basis functions, dictionary

learning is self-adaptive and can achieve better reconstruction

and denoising quality, but its application demands huge time cost

and hardware requirements. Yu et al. has made important

contributions to the development of dictionary learning, and

has successively proposed learning by tight frame, Monte Carlo

data driven tight frame, fast rank reduction algorithm, etc., which

has improved the efficiency and effect of dictionary learning (Yu

et al., 2015; Jia et al., 2016; Yu et al., 2016; Yu et al., 2018). In

addition to compressed sensing, machine learning has also been

well applied to seismic data reconstruction. SegNet network

enables first-arrival picking at the same time as seismic data

reconstruction, and forges a solid foundation for the

development of data reconstruction and first-arrival picking

(Yuan et al., 2022). Liu et al. propose propose a wavelet-based

residual DL (WRDL) network to reconstruct the incomplete

seismic data. It considers not only features in the time

domain but also frequency features of seismic data, which

obtains good reconstruction results in real data (Liu et al., 2022).

Compressive sensing usually transforms seismic data into

sparse domain by some mathematical transformation

method, and then designs a filter in the sparse domain for

threshold processing, and then performs mathematical

inverse transformation, and finally achieves the purpose of

effectively removing noise in seismic data. In the case of the

denoising method of seismic data, various theoretical

methods have been academically proposed to filter out

different types of noise. For regular noise, multiple waves

can be removed by Radon transform (Shan et al., 2009), side

waves by K-L filtering, and surface waves by least square

filtering (Vaidyanathan, 1987). The theoretical basis of these

methods is the difference between the effective signal and the

regular noise in the characteristics such as frequency and

propagation direction. Meanwhile, commonly used

algorithms for random noise include frequency domain

filtering based on Fourier transform, f-x domain

prediction denoising (Spitz, 2012), wavelet transform (Jin

et al., 2005), etc. Filtering based on Fourier transform can

only filter out the random noise of the lowest and the highest

frequency band at both ends; the noise will also be enhanced

when the effective signal is enhanced in f-x domain

prediction denoising (Spitz, 2012); the wavelet transform

performs poorly in expressing the edge information of the

curve, and is subject to certain limitations in expressing the

hyperbolic features. Liu et al. proposed an EWT-based

denoising method in 2020 and effectively suppressed

noise. Synthetic data and 3D feld data examples also prove

the validity and efectiveness of the TFPF-EWT for both

attenuating random noise and preserving valid seismic

amplitude (Liu et al., 2020). In this case, as with

reconstruction, MCA and dictionary learning are also well

applied to the field of denoising. Olshausenp et al. proposed

the concept of learned dictionary in 1997, and applied

overcomplete dictionary to image denoising. As an

advanced and effective signal decomposition method,

VMD is also well applied to seismic data denoising. Zhang

et al. proposed a multi-channel scheme which is referred as

the multi-channel variational mode decomposition (MVMD)

based on multi-channel singular spectrum analysis (MSSA),

to efficiently and effectively separate and attenuate seismic

random noises. This method leverage the MSSA for each

decomposed IMF to separate and attenuate random noises

(Zhang et al., 2021). Lian et al. took the matching pursuit

method as a continuation technique of sparse representation

method, and obtained good progress (Lian et al., 2015).

Subsequently, Chen proposed the basis tracing method to

solve the sparse optimization problem (Chen et al.,. 2001),

and Olshausen et al. proposed the self-adaptive learning

complete dictionary (Olshausen et al., 2000). Tang et al.

first applied the learning complete dictionary to the

seismic data denoising. After many times of learning and

training of the input signal, the dictionary was updated and

the sparse representation coefficient was obtained, which

achieved better denoising effect than the traditional

method. However, the complexity of the seismic data led

to long operation time (Tang et al., 2012). Xu proposed to

FIGURE 1
Schematic diagram of DFT and DCT. (A)DCT; (B) DCT.
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FIGURE 2
Training Set. (A) A seismic image; (B) Examples of non-flat patches.

FIGURE 3
Partial dictionary images in different iterations. (A) Partial dictionary images in 5th iterations (E � 17.57); (B) Partial dictionary images in 10th
iterations (E � 15.85); (C) Partial dictionary image in 15th iterations (E � 14.16); (D) Partial dictionary images in 20th iterations (E � 10.23); (E) Partial
dictionary images in 25th iterations (E � 6.89); (F) Partial dictionary images in 30th iterations (E � 3.82); (G) Partial dictionary images in 35th iterations
(E � 1.22); (H) Partial dictionary images in 40th iterations (E � 0.53).
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replace MOD algorithm in K-SVD algorithm with StOMP

(Stagewise Orthogonal Matching Pursuit) algorithm, which

not only overcomes the over-matching phenomenon caused

by orthogonal matching pursuit (OMP) algorithm, but also

significantly improves the convergence speed (Xu et al.,

2016). With the development of learning methods,

Artificial Intelligence (AI) has been gradually applied to

seismic data denoising. Zhang et al. proposed a full

convolution denoising network based on residual learning,

which can remove various noises at the same time (Zhang

et al., 2017). Mao et al. proposed a full convolution network,

which uses convolution layer to encode to extract features,

and deconvolution layer to decode to recover clean data. In

recent years, DCNNs has also achieved good results in

suppressing random noise (Sang, 2021).

Aiming at the limitations of dictionary combination and the

inefficiency of dictionary learning, this paper comes up with a

new dictionary library (K-SVD+DCT) and realizes the self-

adaptive reconstruction and denoising of seismic data under

the MCA framework. In addition, we can also simultaneously

reconstruct and denoise to process missing noisy data. Tests of

real data have proved the effectiveness and applicability of the

proposed method.

FIGURE 4
Workflow of the proposed method.

FIGURE 5
Original image and sampled image. (A) Original image; (B) 50% missing data (SNR=3.03 dB PSNR=19.38 dB).
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FIGURE 6
Result via DCT+K-SVD. (A) Result via DCT+K-SVD (SNR=12.1 dB PSNR=28.45 dB); (B) Absolute error via DCT+K-SVD; (C) Reconstruction
component via K-SVD; (D) Reconstruction component via DCT.
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2 Theory

2.1 Morphological component
analysis (MCA)

Morphological Component Analysis (MCA) uses the

individual matching of sparse dictionaries to signal features to

achieve signal decomposition. A signal Y consists of K

morphological components xn:

Y � ∑K
k�1

Xn � ∑K
k�1

Dkαk (1)

where, αk is the sparse coefficient; Dk represents the sparse

dictionary. Due to the incoherence between the various

morphological components, the solution can be solved by Eq. 2:

αk � argmin
α

α‖ ‖0 s. t Xk � Dkα (2)

Feature selection on data using multiple dictionaries:

α1, ..., αk{ } � argmin
α1 ,L,αk{ }

∑K
k�1

α‖ ‖1 s. t Y � ∑K
k�1

Dkαk. (3)

To facilitate the solution, we convert Eq. 3 as Eq. 4:

α1, ..., αk{ } � argmin
α1 ,L,αk{ }

∑K
k�1

αk‖ ‖1 + λ Y −∑K
k�1

Dkαk

���������
���������
2

2

. (4)

Considering the purpose of decomposing the signal, the

vector α1, ..., αk{ } is transformed into X1, ..., Xk{ }, representing
that the signal contains K morphological components, and each

component of the signal is obtained by solving Eq. 5:

X1, ..., Xk{ } � argmin
X1 ,L,Xk{ }

∑K
k�1

D−1
k Xk

���� ����1 + λ Y −∑K
k�1

Xk

���������
���������
2

2

(5)

2.2 The theory of reconstruction based
on MCA

MCA believes that a combined dictionary has the sum of the

sparse representation capabilities of its combined components.

For example, the combined dictionary of Fourier and Wavelet

can well describe signals that contain both stationary and

localized features. This is more conducive to the full

expression of the data and the improvement of the

reconstruction quality. The compressed sensing reconstruction

process based on MCA is as follows:

A 2D signal X contains K components of different shapes,

which is as Eq. 1. The reconstruction of seismic data can be

expressed as follows:

Y � RX (6)

FIGURE 7
Result via K-SVD. (A) Result via K-SVD (SNR=15.88 dB PSNR=33.23 dB); (B) Absolute error via K-SVD.
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FIGURE 8
Result via Curvelet+DCT. (A) Result via Curvelet+DCT (SNR=11.45 dB PSNR=27.79 dB); (B) Absolute error via Curvelet+DCT; (C)
Reconstruction component via Curvelet; (D) Reconstruction component via DCT.
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where,X stands for ideal complete seismic data; Y represents the

collected data with missing traces; R represents the sampling

matrix. In the MCA framework, Eq. 1 can be expressed as:

Y � RX � R∑K
k�1

Xk � R∑K
k�1

Dkαk (7)

Above is reformulated as an unconstrained optimization

problem:

αk � arg min αk‖ ‖1 + λ Y − R∑K
k�1

Dkαk

���������
���������
2

, (8)

Where, λ is the Lagrange multiplier is used to measure the

proportion of ℓ1 norm and ℓ2 norm.

The reconstruction algorithm’s solution, combined with the

BCR (Block Coordinate Relaxation, BCR) algorithm, offered the

following solution method based on the morphological

component. The solution process is:

Input: sample matrix R, the dictionary combination

D � [D1,/, Dk], missing seismic data Y, the total number of

iterations N; Output: reconstructed seismic data X′; Initialize:
each morphological component X(0)

i � 0, i � 1,/, K.

1) for: n � 1: N;

2) residual r(n) � Y − R · sum(X1, . . . , Xk);
3) for: k � 1: K;

4) αk(n) � Dk(Xk
(n), . . . , r(n));

5) Xk
(n) � Dk

−1Tλ(αk(n));
6) the threshold model is applied to reduce λ;

7) X′ � sum(X1,/, XK).

where, D−1 represents the inverse transformation of the

dictionary D; Tλ is the threshold function proposed, which

formula is:

T x, λ( ) � X · exp − λ/ x| |( )2−p( ) (9)

Besides the threshold λ, we have another independent

parameter p, which can be flexibly chosen to achieve better

performance. Based on the Taylor series, it is valuable to point

out that the exponential shrinkage can be considered a smooth ℓ0
constraint. For |x|≥ λ, it is a good approximation of the

p-thresholding operator and does not suffer the bias when

p ≠ 1. It reduces to Stein thresholding operator for p � 0 and

soft thresholding for p � 1. In solving the algorithm, it is

necessary to adjust the Lagrange multiplier to get the optimal

solution. The steps are as follows: First, a larger transform

domain coefficient is selected as the threshold value to obtain

the sparse approximate solution. Second, the value is

continuously reduced to include more transform domain

coefficients, and the optimal solution is approximated by

continuous iteration. The threshold selection strategy is called

FIGURE 9
Result via Shearlet. (A) Result via Shearlet (SNR=7.59 dB PSNR=23.94 dB). (B) Absolute error via Shearlet.
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a threshold model, which impacts the algorithm’s speed and

accuracy. Standard threshold models include linear models,

exponential models, and data-driven models. In this paper,

the exponential model is used, which has the form as:

λn � λ min/λ max( ) n−1
N−1 · λ max, n � 1, 2, . . . , N

λ max � q max ·max
i

D*Y| |i{ }
λ min � q min ·max

i
D*Y| |i{ }

(10)

where, λmax and λmin stand for the chosen maximum and

minimum regularization parameters, respectively. qmax and

qmin are user-defined percentages.N is the number of iterations.

2.3 The theory of denoising based on MCA

CS uses the structural differences between the useful signal

and random noise in the sparse domain to denoising. A noisy

seismic record y and its sparse representation can be

expressed as:

y � x + ε � Dα + ε (11)

where, ε represents random noise; D is a sparse dictionary; α is a

sparse coefficient; x is the original signal. Equation 11 can be

expressed in the form of MCA as:

y � ∑K
k�1

xk + ε � ∑K
k�1

Dkαk + ε (12)

To obtain sparse α, the following optimization problem is

solved using the same method as in 2.2:

min αk‖ ‖1 s. t y −∑K
k�1

Dkαk

���������
���������≤ σε (13)

3 Dictionary selection

The selection of D is the core problem of the MCA

Method. Different dictionaries have a significant influence

on the effect of sparse representation. We mainly focus on

the overall and local characteristics of seismic data. DFT

(Direct Fourier Transformer) and DCT (Discrete Cosine

Transform) can be used to transform the overall trend of

FIGURE 10
Result via DCT. (A) Result via DCT (SNR=3.03 dB PSNR=23.56 dB). (B) Absolute error via DCT.
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the data. We take x [n] and y [n] in Figure 1 as an example to

illustrate the advantages of DCT. We start by considering the

sequence y [n]=x [n]+x [2N-1-n] and this just consists of

adding a mirrored version of x [n] to itself. When transform is

DFT, we work with extension of x [n], when transform is DCT,

we work with extension of y [n]. From Figure 1, it can be seen

DFT case the extension introduces discontinuities but this

does not happen for the DCT, due to the symmetry of y [n].

The elimination of this artificial discontinuity, which contains

a lot of high frequencies, which is the reason why the DCT is

much more efficient.

A single mathematical dictionary cannot adequately sparse

the representation of seismic data, resulting in loss of

information and bad reconstruction data, dictionary learning

has been well applied to this problem. Therefor, for the local

characteristics of the data, we consider the K-SVD dictionary

learning algorithm. We divide the seismic data into two distinct

components, soK � 2. Shearlet transform getsD1 for k � 1, DCT

transform gets D2 for k � 2. The specific steps for training the

dictionary are as follows:

Assuming that there is a training database yi{ }Mi�1, which can

determine the generated model dictionary A. Suppose the

training error is ∈, and the goal is to find A. Create the

following training model:

min
A, xi{ }Mi�1

∑M
i�1

xi‖ ‖0 s. t yi − Axi

���� ����2 ≤∈ (14)

where, each signal yi can be expressed as the sparsest

representation A on the dictionary xi to be obtained.

If a dictionary A is obtained whose coefficients are sparse

when representing the data, a usable model R can be obtained.

Predecessors have proved that when ∈ � 0 and all elements in the

training database can be represented by k0 (k0 <spark (A0)/2)

atoms, there is a unique sparse dictionary A0. Therefore, sparsity

can also be used as a constraint, and the goal is to obtain the best

fit of the signal, as shown in Eq. 15:

min
A, xi{ }Mi�1

∑M
i�1

yi − Axi
���� ����22 s. t xi‖ ‖0 ≤ k0 (15)

The vectors in the database are combined into a matrix Y

by column, and the corresponding sparse representation forms

the matrix X. The problem of obtaining a dictionary is

equivalent to the problem of decomposing matrix Y into

AX, where the sizes of A and X are fixed and X has sparse

columns. The inner layer of Eq. 15 is the sparse problem of

representing vector xi when A is known, and the outer layer is

the minimization problem. In the kth iteration, each element yi

in the database is solved with the dictionary A(k−1) (the

dictionary obtained by the k-1st iteration) to obtain the

matrix X(k), and finally, the Least-Squares is used to

solve A(k−1):

FIGURE 11
Reconstructed single trace result (Red: Original data 221th
trace; Blue: Reconstructed data 221th trace). (A) Single trace result
via DCT+K-SVD; (B) Single trace result via Curvelet+DCT; (C)
Single trace result via K-SVD; (D) Single trace result via
Shearlet; (E) Single trace result via DCT.

Frontiers in Earth Science frontiersin.org11

Wang et al. 10.3389/feart.2022.1037877

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1037877


A k( ) � argmin
A

Y − AX k( )
���� ����2F � YXT

k( ) X k( )XT
k( )( )−1 � YX k( )−1

(16)

Y − AX k( )
���� ����2F � Y −∑m

j−1
ajx

T
j

����������
����������
2

F

� Y − ∑m
j ≠ j0

ajx
T
j

����������
����������
2

F

(17)

Where, xT
j represents the jth row of X. The items in parentheses

are used as the known error matrix, which is recorded as Eq. 18:

Ej0 � Y −∑
j≠j0

ajx
T
j (18)

The optimal aj0 and xT
j are approximations of Ej0 and their

rank must be 1. Solving with the SVD algorithm will generate a

dense vector xT
j , which increases the number of non-zero items in

the X representation. To minimize the known error matrix while

keeping all expressed potentials unchanged. We take a subset of the

columns in Ej0 (the columns in this subset correspond to the signal

using the j0
th atom in the sample set), and the items in the row xT

j of

these columns are non-zero. In this way, only the non-zero

coefficient in xT
j changes, and the potential remains unchanged.

The detailed K-SVD dictionary learning algorithm is as follows:

Goal: Obtain the sparse dictionary A by solving the

approximate solution of Eq. 15;

Initialize: k � 0 and:

1) Initialize the dictionary: form A(0) ∈ Rn×m (random elements

or m randomly selected samples).

2) Normalization: Normalize the columns of A(0)

Main iteration: k � k + 1, and perform the following steps:

3) Approximate solution using tracking algorithm, get

sparse representation x′i(1≤ i≤M), they form the

matrix x(k).

x′i � argmin
x

yi − A k−1( )x
���� ����22 s.t. x‖ ‖0 ≤ k0

4) K-SVD dictionary update stage: use the following steps to

update the columns of the dictionary and obtain A(k)
(repeat j0 � 1, 2, . . . , m).

1) Define the sample set Ωj0 � i|1≤ i≤M,X(K)[j0, j] ≠ 0{ }
that using the atom aj0;

2) Calculate the error Ej0 � Y −∑
j≠j0

ajxTj , where xi is the j-th

row of the matrix x(k);
3) Limit Ej0 by selecting only the column corresponding to

Ωj0 to get ER
j0
;

4) Apply SVD to decompose ER
j0
� UΔVT, update the

dictionary atom aj0 � u1 and the representation xRj0 �
Δ[1, 1] · V1.

FIGURE 12
DCT+K-SVD results via missing in different proportions. (A) 20% missing image. (B) Reconstructed result via 20% missing (SNR=18.37 dB
PSNR=34.72 dB). (C) Absolute error via 20% missing; (D) 40% missing image. (E) Reconstructed result via 40% missing (SNR=14.25 dB
PSNR=30.59 dB). (F) Absolute error via 40% missing. (G) 60% missing image. (H) Reconstructed result via 60% missing (SNR=9.83 dB
PSNR=26.17 dB). (I) Absolute error via 60% missing; (J) 80% missing image. (K) Reconstructed result via 80% missing (SNR=0.5 dB
PSNR=21.29 dB). (L) Absolute error via 80% missing.
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5) Stop condition: If the change of ‖Y − AX(k)‖2F is small

enough, stop the iteration; otherwise, continue the

iteration.

Output: get the result A(K).
Figures 2,3 show the update process of the K-SVD

dictionary. We select a piece of seismic image for the test.

We observe that out of a seismic data, less than half were

‘active’ (i.e., non-flat). We randomly choose 100 “active”

patches for the dictionary training. The image and

examples of ‘active’ patches extracted from it are shown in

Figure 2. Figure 3 shows the change of the dictionary after

every 5 iterations (from 5th to 40th). As the iterations proceed,

the dictionary contains more and more basic features. At the

5th iteration, the dictionary A(5) contains only some point

features, which are insufficient to express the events. At the

40th iteration, the dictionary A(40) contains many linear

features, and the linear basis functions of various forms are

sufficient to achieve the best sparse representation of the

seismic data. E is the error of each dictionary and the value

is found by Eq. 18. Figure 4 shows the workflow of the method.

4 Test

4.1 Evaluation parameters

To quantitatively describe the reconstruction results, this

paper introduces two evaluation parameters, which are

defined as follows:

1) Signal Noise Ratio RS/N

FIGURE 13
Curvelat+DCT results via missing in different proportions. (A) Reconstructed result via 20% missing (SNR=15.32dBdB PSNR=31.67 dB). (B)
Reconstructed result via 40% missing (SNR=8.87 dB PSNR=25.21 dB). (C) Reconstructed result via 60% missing (SNR=4.52 dB PSNR=20.87 dB). (D)
Reconstructed result via 80% missing (SNR=0.36 dB PSNR=16.71 dB). (E) Absolute error via 20% missing; (F) Absolute error via 40% missing. (G)
Absolute error via 60% missing; (H) Absolute error via 80% missing.
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FIGURE 14
Regularized reconstruction of real data. (A) Original data (SNR=2.16 dB PSNR=11.2 dB). (B) Reconstructed data (SNR=23.89 dB
PSNR=32.92 dB).

FIGURE 15
Original image and noisy image. (A) Original image. (B) Noisy image (SNR=−2.55 dB PSNR=13.79 dB).

Frontiers in Earth Science frontiersin.org14

Wang et al. 10.3389/feart.2022.1037877

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1037877


FIGURE 16
Denoising result via DCT+K-SVD. (A) Denoised data (SNR=3.67 dB PSNR=20.02 dB). (B) Removed noise.

FIGURE 17
Denoising result via DCT. (A) Denoised data (SNR=−1.19 dB PSNR=15.15 dB). (B) Removed noise.

FIGURE 18
Denoising result via Shearlet. (A) Denoised data (SNR=3.93 dB PSNR=20.28 dB). (B) Removed noise.
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FIGURE 19
DCT+K-SVD denoising results via different levels of noise. (A) Image with 20 Hz noise (SNR=6.99 dB PSNR=23.34 dB). (B) Denoised data via
20 Hz noise (SNR=9.65 dB PSNR=25.99 dB). (C) Removed noise via 20 Hz noise. (D) Image with 35 Hz noise (SNR=0.96 dB PSNR=17.31 dB). (E)
Denoised data via 35 Hz noise (SNR=5.9 dB PSNR=22.24 dB). (F) Removed noise via 35 Hz noise. (G) Image with 50 Hz noise (SNR=−3.88 dB
PSNR=12.46 dB). (H) Denoised data via 50 Hz noise (SNR=1.94 dB PSNR=18.29 dB). (I)Removed noise via 50 Hz noise. (J) Image with 65 Hz
noise (SNR=−6.98 dB PSNR=9.36 dB). (K) Denoised data via 65 Hz noise (SNR=−0.25 dB PSNR=16.09 dB). (L) Removed noise via 65 Hz noise.
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RS/N � lg
X‖ ‖22

X′ − X
���� ����22⎛⎝ ⎞⎠10

(19)

Where, X represents complete seismic data; X′ represents a

seismic data reconstruction.

2) Peak Signal Noise Ratio RP
S/N

RP
S/N � log 10

max X( )2
MSE

( )10

(20)

Among them, MSE represents mean square error, and its

calculation formula is as follows.

MSE � 1
mn

∑m
i�0
∑n
j�0

x i, j( ) − x′ i, j( )���� ����22 (21)

FIGURE 20
Real data denoising. (A) Original data (SNR=1.69 dB PSNR=26.79 dB). (B) Denoised data (SNR=5.93 dB PSNR=31.02 dB). (C) Removed noise.
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4.2 Reconstruction of real data

This paper first verifies the effectiveness of the proposed

method for the reconstruction of randomly sampled seismic data

by comparing four sets of experimental data. Figure 5A shows a

partial image of an offset profile, and Figure 5B depicts the image

obtained by randomly sampling 50% of the traces.

The proposed method can effectively reconstruct the

underground medium image in the case of a low sampling

rate. It can be seen from Figure 6 that the proposed method

can not only reconstruct the shallow reflection images, but the

deep weak reflection images are also well reconstructed.

Figure 6A presents the reconstruction result of DCT+K-SVD;

Figure 6B describes the reconstructed error, which represents

reconstructed quality without noise. Figures 6C,D show the

reconstruction components of K-SVD and DCT. It can be

seen that the reconstruction amount of K-SVD for small

structures is rich, and most structures that cannot be

accurately reconstructed by fixed dictionaries are well restored

by K-SVD. The simple structures, such as smooth events and

FIGURE 21
Real data processing. (A) Original data (SNR=13.61B PSNR=37.91 dB). (B) Reconstruct the denoised data (SNR=22.19 dB PSNR=46.49 dB).

TABLE 1 Evaluation values for different methods.

Before reconstruction Methods Evaluation values After reconstruction Values of change Time (s)

SNR=3.03 dB PSNR=19.38 dB K-SVD SNR 15.88 +12.85 400

PSNR 3.23

DCT+K-SVD SNR 15.93 dB +12.9 dB 280

PSNR 32.32 dB

Curvelet+DCT SNR 11.45 dB +8.42 dB 156

PSNR 27.79 dB

Shearlet SNR 7.59 dB +4.56 dB 128

PSNR 23.94 dB

DCT SNR 7.22 dB +4.19 dB 2

PSNR 23.56 dB
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strong low-frequency signal, can be easily reconstructed by DCT,

which greatly reduces the calculation amount of dictionary

learning and improves the efficiency. Figure 7 shows the

reconstruction results of K-SVD. Due to the optimal

expression of dictionary learning algorithm, K-SVD can

reconstruct seismic data with very high accuracy. However, it

will take a lot of time, which is particularly obvious when

processing huge real data. Figure 8 shows the reconstruction

result of Curvelet+DCT. Figure 8A reveals that although this

method can recover all the missing information, the

reconstructed data have insufficient energy, the details are

clearly depicted, and the microstructure cannot be

distinguished, while Figure 8B suggests the existence of errors

at various locations in the reconstructed data. It can be seen from

Figures 8C,D that the two dictionaries (Curvelet and DCT) have

limited recovery ability for small structures. Curvelet transform is

applicable to signals with curve characteristics, but DCT cannot

perfectly reconstruct the remaining signals. In contrast, the

Shearlet method is provided with a stronger reconstruction

ability, which combines multi-scale geometric analysis through

synthetic wavelet theory and affine system, and generates the

basis function by stretching, translating, and rotating a base

function. However, its lack of global sparse representation

ability gives rise to reconstruction noise caused by

undersampling in the reconstruction data, as shown in

Figure 9A. Figure 10 indicates that the DCT method can

TABLE 2 Evaluation values for different missing.

Before
reconstruction

Proportion of
missing (%)

Evaluation
values

Method After
reconstruction (dB)

Values of
change

Time
(s)

SNR=3.03 dB
PSNR=19.38 dB

20 SNR DCT+K-SVD 18.37 +15.34 dB 250

PSNR 34.72

40 SNR 14.25 +11.22 dB

PSNR 30.59

60 SNR 9.83 +6.8 dB

PSNR 26.17

80 SNR 5.56 +2.53 dB

PSNR 21.29

20 SNR Curvelet+DCT 15.32 +12.29 dB 160

PSNR 31.67

40 SNR 8.87 +5.84 dB

PSNR 25.21

60 SNR 4.52 +1.49 dB

PSNR 20.87

80 SNR 0.36 -2.67 dB

PSNR 16.71

TABLE 3 Evaluation values for different methods.

Before denoising Methods Evaluation values After denoising Values of change Time (s)

SNR=-2.55 dB PSNR=13.79 dB DCT+K-SVD SNR 3.67 dB +6.22 dB 176

PSNR 20.02 dB

DCT SNR −1.19 dB +1.36 dB 16

PSNR 15.15 dB

Shearlet SNR 3.93 dB +6.48 dB 98

PSNR 23.56 dB
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completely supplement the missing data, but its detail-describing

ability is poor, and the image cannot be reconstructed with a high

resolution. To further compare the reconstruction effects of the

four methods, the 221th trace is taken for a separate comparison,

and the results are shown in Figure 11. It can be seen from the

curves that the results obtained by the proposed method have the

best fit with the original signal. The Shearlet+DCT and Shearlet

method is seriously inconsistent in some areas (For example,

0.6 s–0.7 s and 1.4 s–1.5 s). The curve of the signal obtained by

the DCT and shearlet method poorly fits the original signal.

Table 1 shows the quantitative evaluation parameters of the five

methods, of which the proposed method has the highest

improvement in SNR and takes less time than K-SVD.

The following conclusions can thus be drawn from numerical

experiments: 1) DCT+K-SVD, Shearlet and DCT reconstruction

methods based on CS can complement the missing data at lower

sampling rates, while it is difficult for the Curvelet+DCTmethod to

complete the reconstruction. This is because the Curvelet will

recognize it as a boundary in the large vacancy position, and the

Curvelet is equipped with good boundary protection properties,

making it impossible to reconstruct the large missing location; 2)

Sparse transformation is the key to the reconstruction algorithm,

with sparser coefficients obtained after transformation indicating a

better reconstruction effect. This group of experiments shows that

Shearlet presents better reconstruction results than DCT because of

the multi-directional and multi-scale characteristics of Shearlet

transform, representing the signal more sparsely; 3. The hereby

proposed reconstruction method based on the DCT+K-SVD sparse

transformation can well reconstruct the underground medium.

Overall, the difference from original images is the smallest, while

that from SNR and PSNR are the biggest. The weak reflection image

at the bottom is also endowed with a better reconstruction effect in

terms of local details.

In order to explore the reconstruction ability of the proposed

method, data are reconstructed with different degrees of random

missing, including 20%, 40%, 60%, and 80%. The missing data

with four missing levels, the reconstruction results and the errors

are presented in Figure 12, where it can be noticed that the

reconstruction effect gradually decreases with the increase of the

number of deletions. However, it can be guaranteed that the

proposed method can maintain satisfactory results in the case of

less than 60% missing. When 80% of the data are missing,

although some small features cannot be perfectly

reconstructed, the information of the reconstructed data is

complete, the event axis is continuous, and the SNR is

improved. However, it can be seen from Figures 13D,H that

other dictionary combination methods (Curvelet+DCT) are

difficult to completely reconstruct a large number of missing

data, and their reconstructed data have discontinuous events and

low SNR ratio. Table 2 shows the parameters of K-SVD+DCT

before and after reconstruction of data with different missing

degrees.

The real seismic data of a certain work area are used to test

the applicability of the method. The humid climate caused

water accumulation in the ground, and multiple receivers on

the survey line are damaged, resulting in incomplete

acquisition data. Figure 14 is a partial display of the

original data. Multiple breaks can be observed in the

events, which will be further reconstructed to get complete

data and smooth events. Figure 14B shows the reconstruction

result, and all the missing data are found to have been

recovered. In addition, the events of the reconstructed data

are smooth and continuous, and the SNR of the data is also

improved.

4.3 Denoising of real data

The proposed method is hereby applied to Compressed

Sensing denoising that uses the differences between useful

signal and random noise in sparse domain for denoising. In

order to verify the effectiveness of the method, a part of the offset

profile is selected for the experiment. The data have a total of

350 traces and 800 sampling points, as shown in Figure 15.

TABLE 4 Evaluation values for different noise.

Proportion of noise (Hz) Evaluation values Before denoising After denoising Values of change

20 SNR 6.99 dB 9.65 dB +2.66 dB

PSNR 23.34 dB 25.99 dB

35 SNR 0.96 dB 5.9 dB +4.94 dB

PSNR 17.31 dB 22.24 dB

50 SNR −3.88 dB 1.94 dB +5.82 dB

PSNR 12.46 dB 18.29 dB

65 SNR −6.98 dB -0.25 dB +6.73 dB

PSNR 9.36 dB 16.09 dB
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Figure 15B describes the data with noise, the main frequency of

which is 40 Hz. DCT+K-SVD is hereby compared with DCT and

Shearlet+DCT to prove its superiority. Figures 16–18 are the

denoising result and the removed noise of the three methods.

Figure 16 depicts the denoising result of the proposed method,

and suggests that the method can efficiently extract useful signals

of the deep and shallow layers. Additionally, this method does

not cause any information loss and better retains the original data

characteristics. Figure 17 shows that the denoising ability of the

DCT method is weak and fails to effectively suppress random

noise. In contrast, the Shearlet method has a stronger denoising

ability and can basically suppress all the noise. However, due to

the lack of self-adaptation, this method is still subject to the

problem that the useful signals are suppressed, and the removed

useful signals can be seen from Figure 18. Table 3 shows the noise

reduction evaluation parameters of the three methods. The

denoising ability of the proposed method is tested under

different degrees of random noise, including 20Hz, 35Hz,

50Hz, and 65 Hz. Figure 19 shows the noisy data with four

levels, the denoising results and the removed noise, and it can be

observed from Figure 19J that even under the interference of

strong noise, the effective signal is covered by a large area, making

it still possible to extract useful signals and obtain satisfactory

denoising results. Table 4 shows the relevant parameters.

To verify the applicability of this denoising method, the real

data, a single shot record of a work area in western China, with a

total of 800 traces and a sampling time of 2.5s, are further

processed. Figure 19A reveals that the data contain a lot of

noise. The existence of random noise and linear line noise makes

the SNR of the shot set data low, and the continuity of the event is

poor. Figure 20B shows the denoising result of DCT+K-SVD,

indicating that most of the random noise is effectively

suppressed, and that the event between 1.25 m and 1.5 m is

clearer. The SNR of the data has been significantly improved, and

forged a good foundation for subsequent processing. Figure 19C

depicts the removed noise, and reveals that not only random

noise is removed, but some linear noise and surface waves are

also suppressed to a certain extent. The reason is that the

dictionary learning algorithm self-adaptively learns the

characteristics of the useful signal that can effectively

distinguish the useful signal from other signals.

4.4 Process of real missing noisy data

This section presents the comprehensive application of the

proposed method, based on which, the reconstruction and

denoising of missing noisy data are implemented. Original

data and processed data are shown in Figure 21. Figure 21A

describes the original data, where partial missing and random

noise can be observed. Figure 21B reveals that all the missing

information is accurately recovered, and that the SNR is also

significantly improved.

5 Conclusion

Problems such as missing tracks and bad tracks generally give

rise to the incompletion of the seismic data. From the inversion

perspective, incomplete image reconstruction is an ill-posed

inverse problem, and seismic signals are inevitably affected by

noise during the propagation process, which reduces the quality

of seismic data and brings difficulties to subsequent

interpretation work. However, compressed sensing

reconstructs the data using the sparsity of the signal, and is

well applied in the fields of regular reconstruction and denoising.

A new dictionary combination, i.e., K-SVD+DCT, is hereby

proposed under the MCA framework, which overcomes the

limitation of fixed base functions by training dictionaries fully

suitable for processed data. DCT is a global type transformation

used to reconstruct a smooth event. Therefore, the coefficients of

the signal obtained using K-SVD+DCT are sparser, and have a

good reconstruction and denoising effect on both pre-stack and

post-stack data. Considerable experiments show that the hereby

proposed method can reconstruct the image well, that the relative

error of the reconstruction result is limited, and that the local

details and the deep weak reflection signal can also be well

reconstructed. Besides, even under the interference of strong

noise, the effective signal is covered by a large area, and it is still

possible to extract useful signals and obtain satisfactory denoising

results. Indeed, this method retains both the fast operation of

mathematical transformations and the high precision of

dictionary learning. However, only the training time of

dictionary learning is reduced by reducing the training data.

To this end, the focus of future work will be placed on improving

the dictionary learning time and developing efficient dictionary

learning algorithms.
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