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Improving the robustness and efficiency of flash calculations in phase

equilibrium is crucial for reservoir simulation. DL-KF (Deep Learning for

K-values and Fugacity Calculation) modeling is proposed to accelerate

phase equilibrium calculation using deep learning methods, in which the

three-steps neural networks are included: ANN-STAB (Artificial Neural

Network for Stability Test) model, ANN-KV (Artificial Neural Network for

K-values Calculation) model and ANN-FUG (Artificial Neural Network for

Fugacity Calculation) model respectively. The ANN-STAB model is generated

to test phase stability. When temperature, pressure and feed composition are

given, the phase classification is obtained directly with very low computation

cost. In the ANN-KV model, initial K-values are determined by trained networks

instead of employing Wilson equation employed in traditional flash calculation.

Its initial estimations of K-values significantly reduce the number of iterations

and avoid converging to incorrect or unphysical solutions. The ANN-FUG

model is built to replace the fugacity coefficient calculation in traditional

flash calculation algorithms, and simplifies the nonlinear calculation of

internal iterative calculation. These three artificial neural network models are

embedded into the traditional algorithms to accelerate flash calculations. The

framework considers the complete physical process of the algorithms of flash

calculations in phase equilibrium calculations using deep learningmethods, and

it can also guarantee the conservation of component mass, which is crucial for

phase equilibrium calculations and reservoir simulation. The proposed DL-KF

modeling is validated and compared with the original equation of state

modeling and three other deep learning methods using two typical

hydrocarbon fluid cases. A sample of C3H8-CO2-heavy oil systems from

Huabei oilfield and a PVT experiment in Tahe oilfield are used to examine

the DL-KF modeling. The physical properties of oil sample of Bakken reservoir

with CO2 injection are also investigated. These results reveal that the DL-KF

methoding is accurate and efficient for accelerating phase equilibrium

calculations of reservoir fluids.
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1 Introduction

Compositional simulation is widely applied for designing and

optimizing enhanced oil recovery (EOR) processes (Xiong, 2015;

Nojabaei et al., 2016). Flash calculation based on equation of state

(EOS) is employed in compositional model, which is essential for

a better understanding of the mechanics of fluids flow in

reservoirs (Wang and Erling, 1994). However, because of its

inherent nonlinearity, it usually turns out to be unstable and high

time-consuming in the determination of phase classification and

composition concentrations at each grid-block and each time

step (Zhu and Li, 2020). The efficiency and robustness of phase

equilibrium calculation is crucial for reservoir simulation (Yang

et al., 2016; Zhang et al., 2017; Liu et al., 2018a; Liu et al., 2018b).

To accelerate the computing speed and improve the stability

of flash calculation, several methods have been adopted. A simple

and direct acceleration strategy is to reduce the number of

equations or variables. Therefore, it is evident to take

advantage of the rank of the BIP matrix using only the most

significant eigenvalues. Michelsen (Michelsen, 1986) first

proposed a reduction method to decrease the number of

nonlinear equations by taking advantage of the low-rank

binary interaction parameters (BIP) matrix using only the

most significant eigenvalues. Firoozabadi and Pan

(Firoozabadi and Pan, 2000; Pan and Firoozabadi, 2001)

developed another reduction method based on the spectral

theory of linear algebra to speed up the phase stability tests

and composition concentrations calculations. A smoother

tangent plane distance (TPD) function can be obtained in the

reduced space and robustness and efficiency of their reduction

model is verified through numerical tests. Hendriks and Van

Bergen (Hendriks and Van Bergen, 1992) approximated the BIP

matrix based on spectral expansion and then reduce the number

of eigenvectors which makes the error and the number of

parameters of the BIP matrix smaller. Nichita (Nichita and

Minescu, 2004; Nichita et al., 2006; Nichita and Graciaa,

2011) reduced the number of equations to be solved in flash

calculations by selecting independent variables or using

truncated expectral expantion of the attraction parameter of

the EOS. Li and Johns (Li and Johns, 2006) implemented a

reduction method by decomposing the BIP matrix into two parts

using a quadratic expression. Gaganis and Varotsis (Gaganis and

Varotsis, 2014) approximated the BIP matrix through the

minimization of an energy function, which decomposes the

BIP matrix to a set of basis vectors. These results show that

the method saves computational time without losing high degree

of accuracy. Another strategy is to solve the non-linear phase

equilibrium equations for each gridlock separately from the

reservoir simulation in order to reduce the computational

costs. Belkadi et al. (Belkadi et al., 2011) proposed a Tie-line

method to obtain approximate flash calculation results in a two-

phase region. The method aims to use the distance to a previous

Tie-line in the same grid block to decide whether an

approximation should be made. Voskov and Tchelepi (Voskov

and Tchelepi, 2007) proposed a compositional space

parametrization approach for simulation of gas flooding

processes. Flash calculations are performed and results are

stored as a preprocessing stage for reservoir simulation.

During the simulation, if the concentration lies on the

compositional tie line, a tie-line table is used to look up the

flash results. The performance of tie-line method is improved by

using information from the previous time step to determine the

phase state of the current step. Despite many efforts have been

employed to accelerate flash calculations, they only marginally

improve single aspects of the calculation by some kinds of

mathematical manipulation or ignoring some complex

thermodynamic procedures such as phase stability tests. Wu

et al. (Wu et al., 2015) decoupled the flash calculations from the

composition simulation using a sparse grid method, which shifts

flash calculation from the composition simulation (online) to a

pre-simulation (offline) phase. This treatment significantly

reduces the computational costs. However, the detection of

single-phase region is not always accurate and reliable, while

the saturation can even exceed the physically meaningful

boundaries. In addition, the generation of the surrogate model

in sparse grid method is still time-consuming.

During the last two decades, numerous speeding up methods

for flash calculation are presented, but the wide recognition, high

accuracy and general application are still the focus of attention.

With the rapid development of artificial intelligence (AI), deep

learning methods has been widely used in the oil and gas industry

(Jin et al., 2020; Sun, 2020; Mohamed et al., 2021; Wang et al.,

2021; Xiao et al., 2021), flash calculation in phase equilibrium

calculation included. Wang (Wang et al., 2019a) constructed a

two-step neural network to proxy flash calculation. The first step

neural network is to test phase stability of the system and the

second step neural network is to predict the composition

concentration among the determined phases. Zhang (Zhang

et al., 2020) also designed two network structures, in which

“Ghost components” are defined and introduced to process the

data padding work in order to modify the dimension of input

flash calculation data to meet the training and testing

requirements of the target fluid mixture. This makes the deep

learning algorithms to be self-adaptive to the change of input

components and dimensions. Li (Yu et al., 2019) designed and

tuned a fully connected deep neural network, in which the critical

thermodynamic properties are selected as input features to

represent each component implicitly. Although above

mentioned methods which is a nonlinear fitting called

“surrogate modeling” can accelerate flash calculation, they

simply implement nonlinear fitting of input and output

variables, lack rigorous thermodynamic theory basis and do

not consider the constraints of mass conservation in flash

calculations. In some cases, the calculation accuracy is difficult

to guarantee. Moreover, the surrogate modeling could not

guarantee the conservation of mass, which is crucial for
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reservoir simulation. Initial guesses of K-values and vapor mole

fraction with good quality can speed up the convergence of two-

phase flash calculation and avoid trivial solution (Vatandoost

et al., 2016). If no additional data is available,Wilson’s equation is

usually used to estimate K-values (Wilson, 1968). However,

estimation based on this correlation is not accurate at high

pressure conditions and leads to trivial solution (Wang et al.,

2019b). Gaganis (Gaganis et al., 2021) proposed a new soft

computing pressure-explicit, adaptive k-values interpolation

technique, which can be thought as a method that generates

fluid-specific regression models of the k-values as functions of

pressure, temperature and the original fluid composition. During

the simulation process, the so beforehand calculated equilibrium

coefficients are used with the Rachford-Rice equation to

determine rapidly the composition concentrations and

properties of phases present, hence greatly reducing the CPU

time. Wang (Wang et al., 2019b; Wang et al., 2020) developed

two ANN models: an ANN-STAB model and an ANN-SPLIT

model. The ANN-STAB model is built to fit a saturation pressure

diagram and the ANN-SPLIT model is generated to regress

K-values and mole fractions, which are to be used as initial

guesses in the following phase splitting calculations. Good initial

guesses of K-values and vapor mole fraction can reduce iteration

numbers obviously. This approach implements “internal

substitution” for deep learning methods and considers

physically meanings. However, compared with the surrogate

modeling, this method still solves the nonlinear equations for

compressibility factors calculation and uses Gibbs free energy

minimization principle to calculate fugacity coefficients in the

internal iterative processes.

Therefore, A DL-KF modeling based on three-steps neural

networks is designed which includes ANN-STAB model, ANN-

KV model and ANN-FUG model respectively. The ANN-STAB

model is generated for phase stability test. The ANN-KV model is

used for initial K-values determination. The ANN-FUG model is

designed for fugacity coefficient calculation. These three ANNmodels

are embedded into the traditional algorithms to accelerate flash

calculations. Compared with the surrogate modeling which simply

implements nonlinear fitting of input and output variables and lacks

rigorous thermodynamic theory basis, The proposed model can

guarantee the conservation of compositional mass, which is crucial

for phase equilibrium calculations and reservoir simulation. Besides,

the DL-KFmodeling can further improve the calculation efficiency in

comparison to the proxy model proposed by Wang (Wang et al.,

2019b; Wang et al., 2020) which still solves the nonlinear equations

and calculate fugacity coefficients in the internal iterative processes.

To the best of our knowledge, this is thefirst framework that considers

the complete physical process of the algorithms of flash calculations in

phase equilibrium calculations using deep learning methods, and it

can guarantee the conservation of compositional mass.

The rest of the paper is organized as follows. In Section 2, the

two-phase isothermal flash calculation algorithm is present to

generate the training data set and testing data set. In Section 3, A

DL-KF modeling based on three-steps neural networks is

designed. In Section 4, the proposed DL-KF modeling is

validated and compared with the original EOS modeling and

three other deep learning methods on two typical fluid cases. In

Section 5, the proposedmodel is applied in three oil samples from

Huabei oilfield, Tahe oilfield and Bakken reservoir. At the end,

summary and conclusions are provided in Section 6, and some

suggestions for future researches are given.

2 Two-phase isothermal flash
calculation algorithms

Oil and gas two-phase isothermal flash calculation

algorithms incudes phase stability test and phase splitting

calculations. Phase stability test is the premise of the phase

splitting calculations, and it also provide a better initial guess

for phase splitting calculations (Michelsen, 1982a). Phase

splitting calculations determine composition concentrations in

oil and gas phases (Michelsen, 1982b). The flash calculation

algorithms are used to generate the training data set and testing

data set for the deep learning model.

2.1 Phase stability test

The tangent plane distance (TPD) method is used to

determine the phase stability. A Nc-component mixture of

feed composition z at specified temperature and pressure is

considered. The necessary and sufficient condition for stability

of this mixture is the Gibbs TPD function which can be

expressed by

TPD(w) � ∑
i

wi(μi(w) − μi(z)) (1)

where w is the compositions for any trial phases. μi is the

chemical potential of composition i.

It is normally more convenient to rewrite the condition in

terms of fugacity coefficients. The reduced TPD is defined by

TPD(w) � ∑
i

wi(ln wi + lnφi(w) − ln zi − lnφi(z)) (2)

where φi is the fugacity coefficient of component i.

In order to verify phase stability, the reduced TPD must be

guaranteed to be non-negative for all valid phase compositions and

for all phase models in consideration. A detailed description of the

numerical scheme can be found in reference (Nichita et al., 2007).

2.2 Phase splitting calculations

According to the thermodynamic theory, for a system

containing Nc components, the thermodynamic condition for
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phase equilibrium state is that when the temperature and

pressure of each phase are equal, the chemical potential or

fugacity of each component is equal.

fL
i (T, P, xi) � fV

i (T, P, yi) i � 1, 2,/, Nc (3)
fL
i � xiφ

L

i P (4)
fV
i � yiφ

V

i P (5)

where fL
i and fV

i are fugacity of component i in the liquid and

vapor phase, respectively. xi and yi are mole fraction of

component i in the liquid and vapor phase, respectively. T is

the system temperature. P is the system pressure. φL
i and φV

i are

fugacity coefficient of component i in the liquid and vapor phase.

Nc is the number of components.

According to mass balance equation, Rachford and Rice

(Rachford and Rice, 1952) proposed an equation to determine

the equilibrium phase composition and mole fraction of

component in liquid and gas phase. The mass balance

equation and Rachford-Rice equation are presented in Eqs 6–8.

∑Nc

i�1
xi � ∑Nc

i�1
yi � 1 i � 1, 2,/, Nc (6)

zi � (1 − nV)xi + nVyi (7)

∑Nc

i�1

(Ki − 1)zi
1 + nV(Ki − 1) � 0 i � 1, 2,/, Nc (8)

where zi is overall mole fraction of component i. nV is overall

number of moles in vapor phase. Ki is phase equilibrium ratio of

component i.

The initial guess of the phase equilibrium ratio of component

i is calculated by Wilson’s equation (Wilson, 1964).

K0
i �

Pci

P
exp(5.37(1 + ωi)(1 − Tci

T
)) (9)

where K0
i is the initial guess of the equilibrium ratio. P is system

pressure. T is system temperature. Pci and Tci represent the

critical pressure and critical temperature of component i. ωi is

acentric factor.

The PR-EOS is adopted to calculate the fugacity coefficients

(Peng and Robinson, 1972). The details of algorithms refer to

Appendix.

Successive substitution and Newton-Raphson method are

applied for solving nonlinear equations. Figure 1 demonstrates

the flow chart for the flash calculation algorithms in phase

equilibrium. The details of two-phase flash calculation

algorithms are as follows:

Step 1: Assume an initial K-value for each component in the

fluid mixture at the specified system pressure and

temperature using Wilson’s equation.

Step 2: Test phase stability using Michelsen’s method

(Michelsen, 1986). If only one phase exists in the

mixture, the calculation results are output directly. If

both gas and liquid phases are present, the flash

calculations are performed.

Step 3: Using the overall feed compositions zi and the assumed

K-values, perform flash calculations to determine liquid

mole fraction nL, vapor mole fraction nV, each

component fraction in liquid phase xi and each

component fraction in liquid phase yi.

Step 4: Using the calculated composition concentrations xi and

yi respectively, determine the fugacity coefficient for each

component in the liquid phase φL
i and vapor phase φ

V
i by

applying Eq. A.15 and Eq. A.16.

Step 5: According to the convergence criterion, judge whether

the two phases of liquid and vapor reach the state of phase

equilibrium. If the phase equilibrium state is reached, the

calculation results are output, otherwise the iterative loop

is entered until convergence. Here the convergence

tolerance ε sets 10−8.

∑Nc

i�1
(1 − fL

i

fV
i

)< ε (10)

fL
i � φL

i xiP (11)
fv
i � φV

i yiP (12)

where fL
i and fV

i are fugacity for each component in the liquid

phase and vapor phase, respectively.

FIGURE 1
Flow char for two-phase flash calculations with PR-EOS.
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Step 6: Determine the new set of K-values from

Knew
i � fL

i

fV
i

Ki (13)

3 The DL-KF modeling for
accelerating flash calculations

A data-driven flash calculation algorithm named DL-KF

modeling based on deep learning methods is proposed to

improve the speed and convergence performance of the flash

calculations in the phase equilibrium calculation.

3.1 Algorithms for the DL-KF modeling

Three important parts including phase stability test, K-values

estimation and fugacity coefficients calculation affect the

computational efficiency of flash calculation. In the traditional

flash calculations, the phase stability test is considered as the

most time-consuming part (Wang et al., 2019b). Successive

Substitution Method (SSM) adopted for phase stability test

may increase the iteration numbers, and the divergence may

occur in the vicinity of the phase stability test limit locus (STLL)

(Nichita et al., 2007). Besides, Wilson’s equation usually used to

estimate K-values is not accurate at high pressure and high

temperature conditions and leads to trivial solution.

Furthermore, the fugacity coefficients calculation involves

complex nonlinear calculations where bisection method or

newton iterative algorithm is usually used. Motivated by these

points, a DL-KF modeling is proposed which includes ANN-

STAB model, ANN-KV model and ANN-FUG model

respectively. The ANN-STAB model is developed to test phase

stability instead of SSM. The ANN-KV model is constructed

instead of Wilson’s equation to give an accurate initial K-values,

and then improve the efficiency of the algorithm. The ANN-FUG

model is generated instead of bisection method or newton

iterative algorithm to determine the fugacity coefficients of

fluid components. These three ANN models are embedded

into the traditional algorithms to accelerate flash calculations.

The schematic diagram of the DL-KF modeling for accelerating

flash calculations based on deep learning methods and traditional

flash calculation algorithms is shown in Figure 2.

3.2 Deep learning algorithms

Each artificial neural network (ANN) model has an input

layer, an output layer, and several hidden layers. Within each

layer, there are several neurons. All neurons belonged to two

neighboring layers are fully connected, as shown in Figure 3A.

The conceptual model for the simulation process in each node is

shown in Figure 3B.

FIGURE 2
The schematic diagram of the DL-KF modeling and traditional flash calculation algorithms.
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Formally, for the ith hidden layer, let ai denote the input of

the layer, and ci denote the output of the layer. Then:

ci � fi(Wi*ai + bi) (14)

where Wi is the weight; bi is the bias; and fi is the activation

functions of the ith layer. For a network with multiple layers, the

output of one hidden layer is the input of the next layer. If the

deep learning model with two hidden layers, then the output can

be expressed as follow. A detailed theories for the neural

networks can be found in (Bishop, 2006; LeCun et al., 2015).

c � f3(W3*f2(W2*f1(W2*a1) + b2) + b3) (15)

3.3 Data preparation for deep learning
models

To construct the configuration with the best performance

with independent data, big data sets must be prepared before

neural network training. Taking the data which will be described

in Section 4.1 as data sets. The data sets including training data

set, validation data set and testing data set are generated by

solving the two-phase isothermal flash calculation. The training

data set is used to adjust the weights that conform to the network

architecture to produce the desired output. The validation data

set is applied to tune hyperparameters which include the number

of layers in the deep learning models and the number of neurons

in each layer. The testing data set is used to evaluate the

performance of trained model. In this paper, the data sets are

divided into 80% training data, 10% verification data and 10%

test data.

3.4 Training details for deep learning
models

In the fully connected neural networks generated in this

work, the activation function for the hidden layer and output

layer is ReLU function as follows. The stochastic gradient descent

(SGD) algorithm is used to train the networks. The algorithm of

SGD can be briefly described in literature (Bottou, 2010).

ReLU(x) � { 0 for x< 0
x for x≥ 0 (16)

In order to determine the configurations of the ANN-STAB

model, ANN-KV model and ANN-FUG model, different

numbers of hidden layers for the neural networks and the

numbers of nodes in hidden layers are compared. Because the

configuration of these three neural network models adopted in

this work is the same, taking ANN-STAB model as an example

for convenient description, the performance comparison of the

deep learning neural networks using different number of hidden

layers with the corresponding CPU time is shown in Figure 4.

The results show that the CPU time increase as the number of

hidden layers increases. An interesting finding is that more layers

cannot ensure a lower mean squared relative error (MSRE) of

liquid and vapor phase mole fractions in the model trained for

phase equilibrium prediction. As shown in Figure 4, there is an

obvious decreasing trend in the MSRE when the number of

hidden layers increase from 1 to 2. However, it is surprising to see

that the MSRE will increase slightly with the raising of layer

numbers for more than 2. To achieve a better balance between

accuracy and efficiency, the number of hidden layers is

determined to be 2.

FIGURE 3
Conceptual model for the fully connected neural network (A) and the simulation process in each node (B).
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The performance comparison of the deep learning neural

networks using different number of nodes in the hidden layers is

shown in Figure 5. The results show that the MSRE decreases

obviously when the number of nodes increases from 10 to 30, For

40 to 60 nodes, only a very slight difference can be seen in theMSRE.

An interesting finding can also be seen that when the number of

nodes increases from 30 to 40, the MSRE increases slightly. To

achieve a better balance between accuracy and efficiency, the

number of nodes in hidden layers is determined to be 30.

The variation of the loss function in the process of training is

presented in Figure 6. As illustrated in Figure 6, the loss function

of the model during the training process decreases sharply at first

and then levels off as the epoch increases. Therefore, 20 epoches

are adopted to train the neural networks.

3.5 Summary for the three ANN models

The network of these three ANNmodels consists of four layers,

the input layer, two hidden layers and the output layer included. The

dimension of two hidden layers is 30. The input parameters of three

ANN model are all the system pressure and the feed composition.

The output parameters are the vapor phase mole fraction, the

K-values, and the fugacity coefficients of components respectively

corresponding with the ANN-STAB model, ANN-KV model and

ANN-FUG model. The system is considered “unstable” when the

vapor phasemole fraction is between 0 and 1, otherwise it is “stable”.

In order to minimize the bias of the neural network towards one

feature or another, data normalization is necessary during the

construction of ANN models. The system pressure is normalized

to [0,1] scale usingMin-Max normalizationmethod (Vapnik, 2000).

4 Model validation and comparation

To validate the DL-KF modeling, it is compared with other

four models, namely original EOS modeling, surrogate modeling,

DL-FUG (Deep Learning for Fugacity Calculation) modeling and

DL-KV (Deep Learning for K-values Calculation) modeling. The

flow charts of the last three models are shown in Figure 7 to 9.

TensorFlow and Keras (Chollet, 2015) are used to train the

artificial neural network models in this work. The numerical

FIGURE 4
The performance comparison of the deep learning neural
networks using different number of hidden layers with the
corresponding CPU time.

FIGURE 5
The performance comparison of the deep learning neural
networks using different number of nodes in the hidden layers.

FIGURE 6
The variation of the loss function of the deep learning models
during the training process.
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examples in this work are performed on PC Thinkpad E480 with

Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz.

4.1 Case 1: C1/C6/C10

The first case is to validate a three-component fluid mixture

that includes C1, C6 and C10. Physical parameters of the

components are listed in Table 1, and the binary interaction

parameters are zero. To generate the big data for the DL-KF

modeling based on deep learning methods, the range of the input

parameters is present in Table 2. For each component in the fluid

mixture, the pressure is range from 0 to 200 bar, and the feed

composition space is range from 0 to 1. The pressure intervals in

case 1 are set to be 0.5 bar, and the feed composition intervals 0.1.

Finally, 1960 data are generated, and the data sets are divided into

80% training data, 10% verification data and 10% test data.

To validate the proposed DL-KF modeling, original EOS

modeling, surrogate modeling, DL-FUG modeling and DL-KV

modeling put forward in literatures (Wang et al., 2019b; Yu et al.,

2019; Wang et al., 2020) are compared. It is worth noting that the

training big data of four deep learningmodels are all generated by

the original EOS modeling, and the calculation results of the

original EOS modeling are assumed to be accurate. The results

calculated by deep learning models are compared with original

EOS modeling to obtain the accuracy and efficiency. The

comparison of calculation results for different models are

summarized in Table 3. The accuracy calculated by the Mean

Percentage Error (MPE):

MPE � 1
n
∑∣∣∣∣∣∣∣o − ô

ô

∣∣∣∣∣∣∣ × 100% (17)

where n is the total number of the predicting data. o is the

calculated results from deep learning models. ô is the accurate

results from the original EOS modeling.

As illustrated in Table 3, the surrogate model performs the

worst with the accuracy of 97.32%. The DL-KF modeling

performs relatively poorly compared with other two deep

learning models. This maybe the DL-KF modeling increases

the fitting process of the K-values used deep learning methods

compared with DL-FUG modeling, and DL-KF modeling

increases the fitting process of the fugacity coefficients

compared with DL-KV modeling. However, in terms of the

overall calculation accuracy, the three deep learning models

including DL-FUG modeling, DL-KV modeling and DL-KF

modeling have relatively high calculation accuracy.

The efficiency of these models is also investigated. The CPU

time of five models is 35.28s, 0.51s, 3.35s, 1.62s and 0.82s

respectively. The acceleration times of four deep learning

models is 69.18, 10.53, 21.78 and 43.02 compared with the

original EOS modeling. The original EOS modeling cost the

most and the surrogate modeling takes the least time. This is

because the deep learning methods improve computational

FIGURE 7
Flow char of the surrogate modeling for two-phase flash
calculations.

FIGURE 8
Flow char of the DL-FUG modeling for two-phase flash
calculations.
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efficiency. Among the four proposed deep learning algorithms,

the surrogate modeling is the fastest due to it is just a fitting of

input data and output data, without considering any physical

calculation process. In addition, DL-KF modeling performs

relatively better compared with other two deep learning

models. This is because DL-KF modeling obtained more

accurate K-values using deep learning methods which

decreases the iteration numbers compared with DL-FUG

modeling, and DL-KF modeling reduces the nonlinear

calculation process of the fugacity coefficients determined

compared with DL-KV modeling. From what has been

discussed above, The DL-KF modeling guarantees the

calculation accuracy, meanwhile it has high calculation

efficiency. Therefore, the DL-KF modeling is better than other

four models.

To verify the conservation of component mass during phase

equilibrium calculation by the DK-KF modeling, five samples are

randomly selected in case 1. As shown in Figure 10, the DL-KF

modeling can guarantee the conservation of component mass in

liquid and vapor phase, which is crucial for phase equilibrium

calculations and reservoir simulation. However, the mass

conservation cannot be observed during the phase equilibrium

calculations for the surrogate model. In some cases, such as the

compositional mole fraction in vapor phase in sample 4, the mass

conservation deviation is even greater than 10%.

4.2 Case 2: C1/C2-3/C4-6/C7-15/C16-27/C28+

A typical 6-component fluid mixture is also investigated. The

Physical parameters of the 6-component are listed in Table 4, and

the binary interaction parameters are zero. To generate the big

data for the DL-KF modeling based on deep learning methods,

the range of the input parameters is present in Table 2. Similar to

Section 4.1, 65,990 data are generated, and the data sets are also

divided into 80% training data, 10% verification data and 10%

test data. The structure of neural networks here is the same with

that in case 1.

The comparison of calculation results for different models

are shown in Table 5. The accuracy calculated by the MPE. As

shown in Table 5, the accuracy of original EOS modeling,

surrogate modeling, DL-FUG modeling, DL-KV modeling and

DL-KF modeling is 100%, 97.23%, 99.84%, 99.58% and 99.29%

respectively. The efficiency is 1250.34s, 6.38s, 29.87s, 26.55s and

7.80s respectively. The acceleration times of four deep learning

models is 195.98, 41.86, 47.08 and 160.30 compared with the

TABLE 1 Physical parameters of components for case 1.

Composition Pc/atm Tc/K ω Mw/g·mol−1

C1 45.40 190.6 0.008 16.04

C6 29.30 507.4 0.296 86.18

C10 20.80 617.6 0.490 142.29

TABLE 2 The range of the input parameters of the training samples.

Case Parameters Unit Min Max Interval

1 Pressure Bar 0 200 0.5

Feed composition Dimensionless 0 1 0.1

2 Pressure Bar 0 27.89 0.5

Feed composition Dimensionless 0 1 0.1

TABLE 3 Comparison of calculation results for different models
(196 samples prediction).

Models Accuracy/% CPU time/s Acceleration

Original EOS Model 100.00 35.28 1

Surrogate Model 97.32 0.51 69.18

DL-FUG Model 99.50 3.35 10.53

DL-KV Model 99.45 1.62 21.78

DL-KF Model 99.18 0.82 43.02

FIGURE 9
Flow char of the DL-KV modeling for two-phase flash
calculations.
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original EOS modeling. The reasons for these are similar to the

analysis for the above case 1 and will not be repeated here.

However, it is noted that the efficiency of the deep learning

models is improved faster with the increase of fluid components.

The more components, the more complex of the traditional flash

calculations, and the deep learning models perform better.

Furthermore, the DL-KF modeling can also guarantee the

conservation of component mass during phase equilibrium

calculations. Similar to case 1, it is not stated here for space

reasons.

5 Model applications in the oil
samples from actual reservoirs

5.1 Model application in an oil sample of
C3H8-CO2-heavy oil systems from Huabei
oilfield

The DL-KF modeling is applied to calculate the composition

concentrations of an oil sample with the C3H8-CO2-heavy oil

systems from Huabei oilfield at 1.02MPa and 323.15 K. The

physical property parameters and the binary interaction

parameters of the oil sample are listed in Tables 6, 7. To

generate the big data for the DL-KF modeling, for each

component in the fluid mixture, the pressure is range from

0 to 5 MPa, and the feed composition space is range from

0 to 1. The pressure intervals are set to be 0.1 MPa, and the

feed composition intervals 0.1. Then the generated model is used

to calculate the composition concentrations of Huabei oilfield,

and the results are compared with the Peng-Robinson equation

of state modeling (PR EOS) proposed in literature (Li et al.,

2017). What needs illustration is that the PR EOS modeling is

verified with PVT experiments in literature (Li et al., 2017), and it

can predict the phase behavior of C3H8-CO2-heavy oil systems

with a general good accuracy. As shown in Table 8, the deviation

between the DL-KF modeling and the PR EOS modeling is

within 5%.

5.2 Model application in CO2/N2/
hydrocarbons systems of the oil sample in
Tahe oilfield

The DL-KF modeling is verified by the PVT experiment of

the oil sample in Tahe oilfield. The physical property parameters

of CO2/N2/hydrocarbons systems and the binary interaction

FIGURE 10
Stacked bar chart for compositional mole fraction in liquid phase (A) and vapor phase (B).

TABLE 4 Physical parameters of components for case 2.

Composition Pc/atm Tc/K ω Mw/g·mol−1

C1 45.40 190.6 0.008 16.04

C2-3 44.99 344.2 0.131 37.20

C4-6 34.00 463.2 0.240 69.50

C7-15 21.75 605.8 0.618 140.96

C16-27 16.54 751.0 0.957 280.99

C28+ 16.42 942.5 1.268 519.62

TABLE 5 Comparison of calculation results for different models
(6599 samples prediction).

Models Accuracy/% CPU time/s Acceleration

Original EOS Model 100.00 1250.34 1

Surrogate Model 97.23 6.38 195.98

DL-FUG Model 99.84 29.87 41.86

DL-KV Model 99.58 26.55 47.08

DL-KF Model 99.29 7.80 160.30
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parameters for fluid components are shown in Tables 9, 10,

respectively. The temperature of the reservoir fluid of the oil

sample in Tahe oilfield is 126.07°C.

The DL-KF modeling is applied in the oil sample from Tahe

oilfield. To validate the accuracy of the model, it is used to

calculate the physical properties of the crude oil injected with

70% (mole fraction ratio) nitrogen and compared with the

experimental results. The viscosity and density of liquid phase

and the solution gas-oil ratio of the oil-nitrogen system changes

with the system pressure, as shown in Figure 11. The details of

TABLE 6 The physical property parameters of an oil sample of C3H8-
CO2-heavy oil systems from Huabei oilfield.

Components Pc/atm Tc/K ω Mw/g·mol−1 zi/mol

CO2 72.80 304.2 0.225 44.01 0.25000

C3H8 41.90 369.8 0.0080 44.10 0.25000

C9-13 19.90 614.99 0.4998 140.70 0.09370

C14-18 14.10 719.85 0.7550 224.30 0.09325

C19-24 11.50 785.66 0.9311 295.50 0.08575

C25-31 9.60 850.55 1.0909 386.80 0.08010

C32-48 8.10 929.86 1.2464 546.1 0.07880

C49-113+ 7.80 1090.76 1.3581 1277.8 0.06840

TABLE 7 Binary interaction parameters for fluid components.

Components CO2 C3H8 C9-13 C14-18 C19-24 C25-31 C32-48 C49-113+

CO2 0 0.1350 0.0698 0.0694 0.0832 0.0943 0.1026 0.1033

C3H8 0.1350 0 0.0163 0.0315 0.0415 0.0500 0.0564 0.0570

C9-13 0.0698 0.0163 0 0 0 0 0 0

C14-18 0.0694 0.0315 0 0 0 0 0 0

C19-24 0.0832 0.0415 0 0 0 0 0 0

C25-31 0.0943 0.0500 0 0 0 0 0 0

C32-48 0.1026 0.0564 0 0 0 0 0 0

C49-113+ 0.1033 0.0570 0 0 0 0 0 0

TABLE 8 The comparison results of components concentrations between the DL-KF modeling and PR EOS modeling.

Components xi, mol%
DL-KF

xi, mol%
PR EOS
(LeCun et al., 2015)

Deviation yi, mol%
DL-KF

yi, mol%
PR EOS
(LeCun et al., 2015)

Deviation

CO2 6.98 6.95 0.43% 70.46 71.11 0.91%

C3H8 14.12 13.68 3.22% 29.54 28.89 2.25%

C9-13 14.07 14.59 3.56% 0 0 0

C14-18 15.94 15.91 0.19% 0 0 0

C19-24 14.92 14.77 1.02% 0 0 0

C25-31 13.08 13.75 4.87% 0 0 0

C32-113+ 20.89 20.35 2.65% 0 0 0

TABLE 9 The physical property parameters of CO2/N2/hydrocarbons
systems of the oil sample in Tahe oilfield.

Components Pc/atm Tc/K ω Mw/g·mol−1 zi/mol

C1 45.40 190.6 0.008 16.04 0.2782

C2-4 42.54 363.3 0.143 42.82 0.1140

C5-7 33.80 511.6 0.247 83.74 0.0685

C8-10 30.91 579.3 0.286 105.91 0.0695

C11+ 16.78 986.7 0.687 392.57 0.4425

CO2 72.80 304.2 0.225 44.01 0.0119

N2 33.50 126.2 0.040 28.01 0.0154
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calculations of viscosity, density and solution gas-oil ratio can be

referred in literature (Zheng et al., 2021). As shown in Figure 11,

the deviations between the experimental value and the calculated

value are all within 5%.

5.3 Model application in the oil sample
from Bakken reservoir with CO2 injection

The DL-KF modeling is applied in the Bakken reservoir with

CO2 injection. Once the composition concentrations are

obtained by the DL-KF modeling, the fluid physical properties

can be further calculated including phase density, oil volume

factor, phase viscosity and solution gas-oil ratio and so on. The

fluid physical properties calculations can be referred to reference

(Zheng et al., 2021). The composition and physical property

parameters of CO2/hydrocarbons system are taken from Zheng

(Zheng et al., 2021). The temperature of the reservoir fluid of the

oil sample from Bakken reservoir is 115.56°C.

The fluid phase behavior of Bakken reservoir under 50%

(mole fraction ratio) CO2 injection with corresponding to gas

saturation is 0.127 is calculated. The phase mole fraction and

composition concentrations are calculated by the DL-KF

modeling. In order to validate the accuracy of the model, the

results of liquid and vapor mole fraction, mole fraction of

components in liquid and vapor phase present in Figure 12

are compared between the DL-KF modeling and original EOS

modeling. As can be seen that the results of DL-KF modeling

agree well with that of the original EOS modeling.

Figure 13A shows the comparison results of iteration

numbers needed to reach the solution between the DL-KF

modeling and original EOS modeling. Figure 13B presents

the convergence behavior comparison between the DL-KF

modeling and original EOS modeling. As can be seen in

Figure 13A, the DL-KF modeling’s iteration numbers are

reduced by 50.60% with respect to that of the original EOS

modeling. The number of iterations decreases more as the

pressure increases. As illustrated in Figure 13B, DL-KF

modeling converges faster in the convergence behavior. It

can be seen from Figure 13, the DL-KF modeling provide a

better tool for accelerating phase equilibrium calculation in

reservoirs.

TABLE 10 Binary interaction parameters for fluid components.

Components C1 C2-4 C5-7 C8-10 C11+ CO2 N2

C1 0 0.0078 0.0242 0.0324 0.0979 0.103 0.013

C2-4 0.0078 0 0.0046 0.0087 0.0384 0.1327 0.0784

C5-7 0.0242 0.0046 0 0.0006 0.0169 0.1413 0.1113

C8-10 0.0324 0.0087 0.0006 0 0.0111 0.15 0.12

C11+ 0.0979 0.0384 0.0169 0.0111 0 0.15 0.19

CO2 0.103 0.1327 0.1413 0.15 0.15 0 −0.2

N2 0.013 0.0784 0.1113 0.12 0.19 −0.2 0

FIGURE 11
Calculation results of the viscosity of liquid phase (A), the density of liquid phase (B) and the solution gas-oil ratio (C) compared between the DL-
KF modeling and experiments.
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FIGURE 12
Calculation results of the mole fraction compared between the DL-KF modeling and original EOS modeling. (A) The liquid and vapor phase
mole fraction. (B) The mole fraction of components in liquid phase. (C) The mole fraction of components in vapor phase.

FIGURE 13
Comparison of iteration numbers needed to reach the solution (A) and the convergence behavior (B) between the DL-KFmodeling and original
EOS modeling.
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The oil density of Bakken reservoir under 30%, 50%, 100%

(mole fraction ratio) CO2 injection and no CO2 injection versus

pressure is calculated. As can be seen in Figure 14A, the oil density

increases slightly with the increase of gas injection. When the CO2

injection ratio is 100%, the oil formation volume factor increased by

3.8% compared with that without CO2 injection at pressure 300 bar.

The oil volume factor of Bakken versus pressure is calculated. As

shown in Figure 14B, It is obvious that the formation volume factor

increases with the increase of gas injection. When the CO2 injection

ratio is 100%, the oil formation volume factor increased by 46.8%

compared with that without CO2 injection at pressure 300 bar. The

oil viscosity of Bakken reservoir is also calculated. As shown in

Figure 14C, It is obvious that the viscosity decreases with the increase

of gas injection. When the CO2 injection ratio is 100%, the oil

viscosity decreased by 62.4% compared with that without CO2

injection at pressure 300 bar. Hence, CO2 has obvious viscosity

reduction effect. This can be explained by the variation trend of CO2

solution gas-oil ratio. Gas-oil ratio (GOR) is an important factor in

evaluating the degree of gas dissolution. The solution gas-oil ratio of

Bakken reservoir versus pressure is shown in Figure 14D. It is

obvious that the CO2 solution gas-oil ratio increases with the

increase of gas injection. When the gas injection ratio is 100%,

the CO2 solution gas-oil ratio is about 3 times that of the gas

injection ratio is 30%.

6 Conclusion

1) An efficient DL-KF modeling is proposed to accelerate flash

calculations. DL-KF modeling constructs based on ANN-

FIGURE 14
Liquid density (A), oil volume factor (B), liquid viscosity (C) and solution gas-oil ratio (D) of Bakken reservoir versus pressure.
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STAB model, ANN-KV model and ANN-FUG model. The

ANN-STAB model is generated for phase stability test. The

ANN-KV model is used for initial K-values determination.

The ANN-FUG model is designed for fugacity coefficient

calculation. By comparing the performance of deep learning

models with different structures, the configuration of each

ANN is determined with two hidden layers corresponding to

30 nodes. These three ANN models are embedded into the

traditional algorithms to accelerate flash calculations.

2) The proposed DL-KF modeling has been validated and

compared with the original EOS modeling, surrogate

modeling, DL-FUG modeling and DL-KV modeling on

two typical fluid cases. The results indicate that the DL-KF

modeling performs best combining computational

efficiency and computational precision. In addition, for

the fluid with more complex components, the DL-KF

modeling based on deep learning methods in

accelerating flash calculations in phase equilibrium

calculations behaves more obvious. Furthermore,

compared with the surrogate modeling, the proposed

DL-KF modeling can guarantee the conservation of

component mass which is crucial for phase equilibrium

calculations and reservoir simulation.

3) The proposed DL-KF modeling is applied in a sample of

C3H8-CO2-heavy oil systems from Huabei oilfield, and the

deviation of compositions concentrations between the DL-KF

modeling and the PR EOS modeling is within 5%. The

proposed DL-KF modeling is verified by PVT experiment

of an oil sample in Tahe oilfield. The deviations between the

experimental value and the calculated value for physical

properties are all within 5%. Therefore, the DL-KF

modeling is applicable for calculating phase behavior. The

model is also applied in an oil sample from Bakken reservoir.

The phase mole fraction and composition concentrations are

calculated by the DL-KF modeling, and the results of it agree

well with that of the original EOS modeling. In addition, the

computational performance of the DL-KF modeling is also

investigated. The results show that the DL-KF modeling’s

iteration numbers are reduced by 50.60% with respect to the

original EOS modeling. Meanwhile, the DL-KF modeling

converges faster. As can be seen that the DL-KF modeling

provides a better tool for accelerating phase equilibrium

calculation in reservoirs.

4) The DL-KF modeling is used to investigate the physical

properties of Bakken reservoir. Physical properties of

Bakken reservoir with 30%, 50%, 100% (mole fraction

ratio) CO2 injection and no CO2 injection versus pressure

is calculated. The oil density increases slightly with the

increase of gas injection. When the CO2 injection ratio is

100%, the oil formation volume factor increased by 3.8%

compared with that without CO2 injection at pressure

300 bar. The formation volume factor increases with the

increase of gas injection. When the CO2 injection ratio is

100%, the oil formation volume factor increased by 46.8%

compared with that without CO2 injection at pressure 300 bar

The viscosity decreases with the increase of gas injection.

When the CO2 injection ratio is 100%, the oil viscosity

decreased by 62.4% compared with that without CO2

injection at pressure 300 bar. The CO2 solution gas-oil

ratio increases with the increase of gas injection. When the

gas injection ratio is 100%, the CO2 solution gas-oil ratio is

about 3 times that of the gas injection ratio is 30%.

5) In the present work, the fully connected neural network is

used for accelerating flash calculations. It needs to be

retrained given a new fluid sample. In the future, a self-

adaptive deep learning algorithm may also be tried which can

make the structure of neural networks to be self-adaptive to

the change of different fluid components.
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Appendix

The PR-EOS is adopted to calculate the fugacity coefficients

as follows:

P � RT

Vm − b
− a

Vm(Vm + b) + b(Vm − b) (A.1)

where R is gas constant Vm is molar volume. a represents

“attraction” parameter. b is van der Waals co-volume, which

represent “repulsion” parameter.

The relationship between compressibility factor Z and

pressure P is presented as follows:

Z � PVm

RT
(A.2)

where Z is the compressibility factor.

Hence, Rearranging Eq. A.1 into the compressibility factor

form rewrites,

Z3 − (1 − B)Z2 + (A − 3B2 − 2B)Z − (AB − B2 − B3) � 0

(A.3)
where,

A � (aα)mP
(RT)2 (A.4)

B � bmP

RT
(A.5)

For the liquid phase,

(aα)m � ∑
i

∑
j

[xixj
�������
aiajαiαj

√ (1 − kij)] (A.6)

bm � ∑
i

[xibi] (A.7)

For the gas phase,

(aα)m � ∑
i

∑
j

[yiyj
�������
aiajαiαj

√ (1 − kij)] (A.8)

bm � ∑
i

[yibi] (A.9)

The terms ai, bi and αi are defined as follows as

ai � 0.45724
R2T2

ci

Pci

(A.10)

bi � 0.07780
RTci

Pci
(A.11)

αi � [1 +m(1 − ���
Tci

T

√ )]2

(A.12)

where m � 0.3796 + 1.54226ω − 0.2699ω2.

Eq. A.3 can be separately rewritten for liquid phase with the

following Eq. A.13.

Z3
L − (1 − BL)Z2

L + (AL − 3B2
L − 2BL)ZL − (ALBL − B2

L − B3
L) � 0

(A.13)
where ZL is the compressibility factor of liquid phase.

Similarly, for vapor phase as follows:

Z3
V − (1 − BV)Z2

V + (AV − 3B2
V − 2BV)ZV − (AVBV − B2

V − B3
V) � 0 (A.14)

where ZV is the compressibility factor of vapor phase.

The fugacity coefficients for liquid and vapor phase are

defined by the following expression:

lnφL
i � −ln[ZL − BL] + biL

bL
(ZL − 1) + AL

2
�
2

√
BL

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣2∑
Nc
i�1xjL(1 − kij) �����

aiLajL
√

aL
− biL
bL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ln[ZL + BL(1 + �
2

√ )
ZL + BL(1 − �

2
√ )]
(A.15)

lnφV
i � −ln[ZV − BV] + biV

bV
(ZV − 1) + AV

2
�
2

√
BV

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣2∑
Nc
i�1xjV(1 − kij) ������

aiVajV
√

aV
− biV
bV

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ln[ZV + BV(1 + �
2

√ )
ZV + BV(1 − �

2
√ )]
(A.16)
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