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The accuracy of data-driven landslide susceptibility mapping (LSM) is closely

affected by the quality of non-landslide samples. This research proposes a

method combining a self-organizing-map (SOM) and a one-class SVM (SOM-

OCSVM) to generatemore reasonable non-landslide samples.We designed two

steps: first, a random selection, a SOM network, a one class SVM model, and a

SOM-OCSVM model were used to generate non-landslide sample datasets.

Second, four machine learning models (MLs)—namely logistic regression (LRG),

multilayer perceptron (MLP), support vector machine (SVM), and random forest

(RF)—were used to verify the effects of four non-landslide sample datasets on

LSM. From the region along the Sichuan-Tibet Highway, we selected

11 conditioning factors and 1186 investigated landslides to perform the

aforementioned experiments. The results show that the SOM-OCSVM

method achieves the highest AUC (>0.94) and minimum standard deviation

(<0.081) compared with other methods. Moreover, RF achieves the best

performance in different datasets compared with other ML models. The

aforementioned results prove that the proposed method can enhance the

performance of ML models to produce more reliable LSM.
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1 Introduction

The fragile geological environment of the Sichuan-Tibet highway, with its complex

geotechnical and climatic conditions, has created suitable conditions for mountain

disasters such as landslides, debris flows, and flash floods (Chen et al., 2019; Wang

et al., 2020a; Liu et al., 2022; Wang et al., 2022). The area is frequently exposed to the risk

of slope instability and landslides, which seriously affect sustainable socio-economic

development and pose amajor security risk for national defense construction and national
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communication. It is therefore of great practical significance to

complete landslide susceptibility mapping (LSM) along the

highway, and hence improve decision-making aimed at

reducing highway disasters.

LSM has developed rapidly over the past two decades and is

considered an effective measure for mitigating landslide effects

(Wang et al., 2020b). LSM focuses on the quantitative analysis of

landslide spatial distribution, using a set of region-specific

conditioning factors (Hess et al., 2017). Recently, machine

learning (ML) algorithms have shown promising and effective

ways of solving non-linear real-world problems with high

accuracy and are widely used in LSM, including random

forest (RF), support vector machine (SVM), multilayer

perceptron (MLP), logistic regression (LGR), decision tree,

and artificial neural network (ANN) models (Aditian et al.,

2018; Ye et al., 2022). These methods have essential

similarities in the way they select critical condition factors,

which reduce the impact of highly correlated factors on the

generalization ability of the model. However, when assessing

landslide susceptibility based on machine learning—which is

data-driven—accuracy depends on the selection of landslide

(positive) and non-landslide (negative) samples.

Landslide samples can be produced by field surveys,

remote sensing interpretation of landslides, and historical

landslide cataloging data. By contrast, non-landslide

samples are less certain. In the past, researchers mainly

used the following methods to obtain non-landslide

samples: 1) random selection (Felicísimo et al., 2013); 2)

the creation of landslide buffers (Pham et al., 2016); and 3)

collection from low-slope streams and topographic areas

(Kavzoglu et al., 2014). These methods depend on

subjective speculation or random selection, however, and

cannot make good use of existing landslide contributing

factors. The spatial distribution relationship between

landslides and contributing factors is ignored, yet this

needs to be rationally considered when designing a method

to optimize the samples.

To solve the aforementioned problems, we propose a method

based on the spatial distribution relationship between landslides

and contributing factors to obtain the frequency ratio of non-

landslide samples. This is achieved, first, by randomly selecting

non-landslide samples beyond a certain distance from the

landslides; second, by combining the frequency ratio

information on the factors and the landslides and using the

SOM unsupervised learning method to obtain the low frequency

ratio partition; third, by combining the contributing factors and

landslide data to train the OC-SVM and screen out the non-

landslide samples with low similarity; and finally, by combining

the two methods to screen out the non-landslide samples with

low similarity by the trained OC-SVM in the low frequency ratio

partition, using the SOM. To assess its effectiveness, we applied

our SOM-OCSVM method to the area along the Sichuan-Tibet

Highway.

2 Materials

2.1 Study area

The Sichuan-Tibet Highway starts at Chengdu in the east and

ends at Lhasa in the west, includes the G318 and G317 national

roads, and is 2142 km in length (Figure 1). The highway is located

in the collision zone between the Indian and Eurasian plates,

which is a zone of strong geological and tectonic activity (Ma

et al., 2020). The Sichuan-Tibet Highway crosses a large area

from the basin to the plateau, spanning three major

geomorphological types: the Chengdu Plain, the Hengduan

Mountains, and the Tibetan Plateau. The stratigraphy along

the highway is geologically complex, ranging from the Upper

Paleozoic Aurignacian to the Cenozoic Quaternary. The

G318 passes through a region with terrain that is high in the

west and low in the east and that crosses three major mountain

systems: the Hengduan, the Nyingchi Tanggula, and the

Himalayas; and four major water systems: the Yangtze,

Lancang, Nujiang, and Yarlung Tsangpo rivers.

2.2 Data

2.2.1 Landslide inventory
In this study, we collected data from 1186 landslides. The

spatial distribution of the landslide inventory within the study

area is shown in Figure 1. The landslide inventory was obtained

from remote sensing interpretations, field surveys, and historical

records.

2.2.2 Landslide conditioning factors
Landslide occurrence is controlled by a variety of

conditioning factors, and therefore, reasonable selection of

such factors is essential for improving LSM reliability.

Drawing on extensive research in the study area (Ma et al.,

2020; Wei et al., 2022; Ye et al., 2022), 11 factors were chosen for

LSM (Figure 2), i.e., slope, aspect, plan curvature, profile

curvature, relief amplitude, annual rainfall, distance to fault,

land use, geomorphology, lithology, and distance to river. We

divided the original ongoing factors into several subclasses

according to their variable impact on landslide occurrence, as

shown in Figure 5.

Slope is considered a key topographical factor directly

affecting slope body stability (Keles and Nefeslioglu, 2021).

Generally, slopes between 20° and 40° are considered prone to

causing landslides. Aspect was chosen because it affects erosion.

The non-continuous direction of wind and sunlight, which

regulates soil moisture and vegetation growth, in turn affects

the stability of soil (Bordoni et al., 2020). Relief amplitude

describes the variation in terrain associated with landslide

occurrence (Qiu et al., 2022), with landslides more likely in

areas with greater relief amplitude.
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Landslide occurrence is also closely related to

geomorphology. Land-use type is one of the most sensitive

factors, with slope body stability vulnerable to a constantly

changing environment due to human activities. Lithology is

often considered one of the more important factors in LSM

because it directly affects rock strength and the soil permeability

(Kavzoglu et al., 2014). In this study, the geomorphology, land

use, and lithology are classified into seven, eight, and five

categories, respectively, and the detailed information is shown

in Figure 5.

There is a strong correlation between distance to a river and

landslide susceptibility, as rivers are associated with slope toe

erosion (Erener andDüzgün, 2010). The area near the fault is also

more favorable to landslide occurrence (Yalcin et al., 2011);

hence, the distance to fault was taken into account in this

study. The buffer map along faults and rivers was constructed

and reclassified into five groups.

Plan curvature describes the terrain’s horizontal

characteristics and expresses the change rate. Profile curvature

reflects the slope change rate and the flatness of the flow line

slope. Rainfall is one of the key contributing factors here.

Landslides induced by heavy and extreme rainfall in steep

mountainous regions occur frequently (Zhou et al., 2022).

3 Methods

A detailed flowchart of the present study is given in Figure 3,

and the process contains the following specific steps. First, we

prepared a positive sample dataset of 1186 landslides with a label

value of 1. Next, four non-landslide sample datasets, as negative

samples with a label value of 0, were constructed using four

methods. The number of samples in each negative sample dataset

was consistent with the positive samples (Petschko et al., 2014).

Third, we combined the positive samples, negative samples, and

the 11 conditioning factors to generate four sample datasets,

which were divided for training and validation at 70% and 30%,

respectively. Finally, the performance of the ML models was

assessed and the final LSM obtained by comparison.

3.1 Non-landslide data generation

Traditionally, non-landslide samples are randomly selected

from areas outside the area of recorded landslides. However,

these areas usually include a large number of unstable slopes and

many unidentified landslides, and hence cannot be used as

negative samples. To overcome these drawbacks, this study

presents a negative sample generation method based on a self-

organizing-map and a one-class SVM model. The flowchart is

given in Figure 4.

3.1.1 Self-organizing map
A self-organizing map (SOM) (Ritter and Kohonen,

1989) is an unsupervised learning algorithm and a special

artificial neural network (ANN). The SOM can map high

dimensional data with complex and nonlinear relationships

onto a low-dimensional space with simple geometrical

structures and relationships. It can perform cluster

analysis and divide the entire input space into several

disjointed regions. The SOM network has an input layer

and a competitive layer.

If we assume thatX � [x1, x2, ..., xn]T is the input variable, and

Wj � [wj1,wj2, ...,wjn]T, j � 1, 2, ...,M is the weight coefficient of

neurons, where M is the number of neurons in the competitive

layer. In the competitive layer, neighboring neurons are connected to

each other through certain relationships. The SOM employs a

competitive learning algorithm in training (Huang et al., 2017).

The learning rule is to calculate the distance between theW and X,

and the neuron with the smallest distance is considered the winner.

In this study, the distance is calculated using the Euclidean distance

formula:

dist(X,Wj) � �������������
(∑N
i�1

(xi − wji)2).

√√
(1)

3.1.2 One-class SVM
The one-class SVM (OC-SVM) (Schölkopf et al., 1999) is

the more classical single classification algorithm and

FIGURE 1
Historical landslide inventory and the Sichuan-Tibet Highway location.
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FIGURE 2
(Continued).
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unsupervised classification method. Assuming that Φ is the

nonlinear mapping kernel function defined in the

n-dimensional data space, the samples are

{xi, i � 1, 2, . . . , M}, xi ∈ Rn. The OC-SVM maps the samples

from low-dimensional to high-dimensional space through the

Φ, establishing an optimal hyperplane between the zero point

and the high-dimensional space (Chen et al., 2021).

This hyperplane can be described by the n-dimensional

vector W � [w1, w2, . . . , wn] and a constant b. The

determination function is defined as the following:

f(x) � {+1, Wx + b> 1
−1, Wx + b< −1 (2)

To ensure that the hyperplane clusters the samples with the

optimal bounds, the quadratic programming problem needs to be

optimized:

FIGURE 3
Flowchart of this study.

FIGURE 2
(Continued). Landslide conditioning factor along the Sichuan-Tibet Highway: (A) slope, (B) aspect, (C) plan curvature, (D) profile curvature, (E)
relief amplitude, (F) annual rainfall, (G) distance to fault, (H) land use, (I) geomorphology, (G) lithology, (K) distance to river.
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FIGURE 5
Statistical distribution and frequency ratio (FR) values of conditioning factors.

FIGURE 6
Landslide susceptibility map generated by SOM.

FIGURE 4
Flowchart of non-landslide dataset generation.
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min ω,ξi ,ρ
1
2
‖ω‖2 + 1

vN
∑N
i�1
ξi − ρ, (3)

s.t.(ω,Φ(xi))> ρ − ξ i, i � 1, 2, . . . , n, ξ i ≥ 0, (4)

where ω, ρ is the weight and threshold of the support vector,

ρ, ξi is the relaxation variable, Φ(xi) is the mapping function

that maps xi to a higher dimensional space, and v ∈ (0, 1). This
method creates a hyperplane with parameters w, ρ

that maximizes the hyperplane distance from the zero

point in the feature space and separates the zero point

from all data.

3.2 Machine learning

In this study, four machine learning (ML) models, which are

currently widely used, were selected to verify the effects of non-

landslide samples on LSM, i.e., the logistic regression (LGR)

(Aslam et al., 2022), multilayer perceptron (MLP) (Li et al., 2019),

support vector machine (SVM) (Cortes and Vapnik, 1995), and

random forest (RF) models (Breiman, 2001).

3.3 Model evaluation

The standard deviation (Std) effectively reflects the stability

of the model. The smaller the value of the Std, the more stable the

model. Receiver operating characteristics (ROCs) are important

tools for model evaluation (Swets, 1988). Formula 5 calculates the

true positive rate (TPR) and the false positive rate (FPR) and

plots a curve with both the TPR and FPR. The area under the

curve (AUC) is used to reflect the model performance and is

usually between 0.5 and 1.

TPR � TP

TP + FN
, FPR � FP

FP + TN
. (5)

4 Experimental results

4.1 Factor analysis

Frequency ratios (FRs) are often used to reflect the effects of

factors on landslide occurrence. Figure 5 shows the FR value of all

FIGURE 7
OC-SVM generated distribution map of non-landslide samples.

FIGURE 8
SOM-OCSVM generated distribution map of non-landslide samples.

TABLE 1 Frequency ratios of the four susceptibility levels of SOM network.

Classification Pixels Percentage of
pixels (%)

Number of
landslides

Percentage of
landslides (%)

Frequency ratio

SOM Very low 23863 3.64 4 0.34 0.09

Low 84268 12.84 25 2.11 0.16

Moderate 325473 49.60 485 40.89 0.82

High 222531 33.92 672 56.66 1.67
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factors and their subclass percentages. It reveals that the probability

of a landslide increases as the slope, the profile curvature, and the

annual rainfall rise, and decreases as the distance to fault and to river

rise. For aspect, the flat class had a lower FR value, indicating less

probability of landslide in flat areas. Themajority of landslides occur

on built-up and agricultural land. In terms of geomorphology, there

are small landslides in the glaciers, low-relief mountains, and

moderate-relief mountains. Concerning relief amplitude, the

range of 25–79 m is generally prone to landslides, while in terms

of lithology, second-hand rocks and soft-hard interphase rocks are

more prone to landslides.

4.2 Non-landslide sample generation

4.2.1 Non-landslide sample generation based on
the SOM network

The SOM network was used to generate reasonable non-

landslide samples. We used the normalized frequency ratios

of the factors as the input variables, which consider about the

distribution relationship between landslides and factors. The

output variables are the four levels of landslide susceptibility.

Therefore, the input layer has eleven neurons representing

the frequency ratio of the conditioning factors, and the

output layer has four neurons representing four different

susceptibility levels. For the training process, the learning

FIGURE 10
ROC curves of four non-landslide data generation strategies.

FIGURE 9
Landslide susceptibility map based on the RF with different negative data: (A) random, (B) SOM, (C) OC-SVM, and (D) SOM-OCSVM.
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rate is initialized to a value of 0.5 and reduced linearly to

0.01 during the training process. The maximum number of

iterations is set at 1000. When it is reached, the training

process is finished.

As shown in Figure 6, the landslide susceptibility map

produced using the SOM network is classified into four

levels: very low (3.64%), low (12.84%), medium (49.60%),

and high (33.92%). Table 1 shows the frequency ratio of each

level. The levels of very low, low, and medium susceptibility

have low frequency ratios. It is therefore reasonable

that non-landslide samples were randomly selected

from them.

4.2.2 Non-landslide sample generation based on
a one-class SVM method

The OC-SVM only needs to input landslide samples to the

network for training since it only focuses on learning the

features of the landslides. The specific process is as follows:

TABLE 2 Landslide susceptibility levels and percentage of landslides in the study area.

Susceptibility level Pixels Percentage
of pixels (%)

Number of landslides Percentage
of landslides (%)

Random

Very low 112787 17.20 23 1.94

Low 204504 31.18 141 11.89

Moderate 199040 30.35 288 24.28

High 89736 13.68 378 31.87

Very high 49787 7.60 356 30.02

SOM

Very low 172593 26.32 74 6.24

Low 158675 24.19 161 13.58

Moderate 111092 16.93 182 15.35

High 110798 16.89 317 26.73

Very high 102696 15.66 452 38.11

OC-SVM

Very low 79357 12.10 25 2.11

Low 96733 14.75 51 4.30

Moderate 116826 17.81 100 8.43

High 150057 22.88 272 22.93

Very high 212881 32.46 738 62.23

SOM-OCSVM

Very low 76198 11.62 19 1.60

Low 93700 14.29 49 4.13

Moderate 113573 17.32 111 9.36

High 155069 23.64 250 21.08

Very high 217314 33.13 757 63.83

TABLE 3 AUC and Std of four machine learning models with different non-landslide datasets.

Sample method LGR MLP SVM RF

AUC Std AUC Std AUC Std AUC Std

Random 0.7194 0.1947 0.7048 0.1754 0.7206 0.1963 0.8328 0.1703

SOM 0.8420 0.1160 0.7810 0.1576 0.8467 0.1207 0.9180 0.1025

OC-SVM 0.9073 0.0856 0.9360 0.0864 0.9485 0.0601 0.9765 0.0519

SOM-OCSVM 0.9480 0.0517 0.9562 0.0803 0.9689 0.0445 0.9877 0.0354

Frontiers in Earth Science frontiersin.org09

Ye et al. 10.3389/feart.2022.1054027

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1054027


First, we inputted the landslide samples to train the OC-SVM

model. Second, we randomly selected five times the number of

landslides as the prediction data in the areas outside the

landslides, and inputted them into the model. These were

assigned a value of 1 or −1, according to their similarity with

the features of the landslides learned by the model. The value

of low similarity was −1. We selected the data with low

similarity as the non-landslide samples, and the spatial

distribution is shown in Figure 7.

4.2.3 Non-landslide sample generation based on
the SOM-OCSVM method

In order to further optimize the selection of non-landslide

samples and enhance the performance of data-driven models,

this study combined the SOM network with the OC-SVM

network to determine the non-landslide samples

participating in ML-based LSM. The specific process was

as follows: First, we randomly selected the prediction data

in the susceptible area with the low frequency ratios

generated by the SOM network. Next, we inputted the

prediction data into the OC-SVM model trained by the

landslides and screened out the data with low similarity.

The spatial distribution is shown in Figure 8. The final

non-landslide samples were all outside the landslide and

high susceptibility area generated by the SOM, which can

better ensure the separation of the positive and negative

samples inputted to the ML model and generate more

accurate LSM.

4.3 Effects of non-landslide sample
selection

Figure 9 shows the LSMs generated by the RF model based

on different non-landslide sample datasets. The natural break

classification was applied to divide landslide susceptibility

into five levels: very high, high, moderate, low, and very

low. The LSMs show significant differences in the spatial

distribution of the susceptibility area. As the ML algorithm

and the landslide samples are consistent, this difference comes

from the different non-landslide sample datasets. This result

suggests a close relationship between the quality of non-

landslide samples and the performance of LSM. To

quantitatively evaluate the performance of the model,

Figure 10 shows the ROC curves for the four non-landslide

sample datasets. The AUC values are 0.8328, 0.9180, 0.9765,

and 0.9877, respectively. Among the four datasets, the RF

based on the SOM-OCSVM reached the highest AUC value

(0.9877). The AUC value of the SOM-OCSVM had the most

significant improvement (0.1549), confirming that the non-

landslide sample generation method proposed in this study

results in a remarkable improvement in the performance of

RF-based LSM.

In order to quantitatively describe the differences brought by

different non-landslide sample datasets to LSM, we computed the

proportion of areas from each susceptibility level and the

proportion of the landslides by overlaying the landslide

distribution, as shown in Table 2. The evaluation results

reflect a great difference. The levels of moderate, high, and

very high are the landslide hazard areas. From the randomly

generated non-landslide sample dataset, 86.17% of the landslides

exist in 51.63% of the hazard area of LSM. For SOM, 80.19% of

the landslides exist in 49.66% of the hazard area. For OC-SVM,

93.59% of the landslides exist in 73.15% of the hazard area. For

SOM-OCSVM, however, 94.27% of landslides exist in 74.09% of

the hazard area, with only 5.73% of landslides in the very low and

low susceptibility areas. This confirms that the SOM-OCSVM

can effectively obtain the areas with a small probability of

landslide occurrence in the study area and hence better

eliminate the influence of unstable slopes and unidentified

landslides on LSM.

To further validate the impact of non-landslide samples on

ML-based landslide susceptibility evaluation (LSE), we compared

four MLmodels: MLP, SVM, LGR, and RF. Table 3 shows in detail

the AUC and Std of the four ML models for different non-

landslide sample datasets. It can be seen that for the randomly

generated non-landslide sample dataset, the AUC values are the

lowest and the Std values are the highest. The non-landslide

sample dataset, generated based on the SOM-OCSVM model,

has the most elevated AUC values and the most reduced Std values

of the four machine learning models. That is, the accuracy and

stability of all four models increased sequentially as the non-

landslide sample dataset changed. The result confirms that the

non-landslide samples can affect the accuracy of the models driven

by data, and that the non-landslide samples generated by the

SOM-OCSVM method proposed in this study are reasonable and

accurate.

5 Discussion

As stated in the introduction, most data-driven methods

for predicting the distribution of areas of landslide

susceptibility depend on data sets with both positive

(landslide) and negative (non-landslide) data. However, the

list of landslides obtained by remote sensing interpretations,

field surveys, and historical records is incomplete. Therefore,

unidentified landslides and unstable slopes may be mistakenly

selected as non-landslides when the non-landslide samples are

considered, which can affect the reliability of LSM. Based on

results, the method proposed in this study can improve the

reliability of the data-driven model-based LSM by providing

reliable non-landslide samples.

There are differences in the performance of the four machine-

learning algorithms (MLP, SVM, LGR, and RF) utilized in this work

to estimate landslide susceptibility in the same study area. The RF
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outperformed the other models. It is impossible to find a general

approach that applies to all regions. It is therefore necessary to

evaluate and comparemultiplemethods andmodels in an integrated

manner (Lv et al., 2022), or to integrate different algorithmic models

(Dou et al., 2020). This will ensure the most suitable method for

obtaining reliable LSMs and predicting the location of future

landslides more accurately is found, thereby mitigating the

damage and loss caused by such disasters.

6 Conclusion

In this study, we proposed a method combining SOM and OC-

SVM (SOM-OCSVM) models to generate more reasonable non-

landslide samples. Based on four MLmodels (LGR,MLP, SVM, and

RF) established by the generated negative datasets (random, SOM,

OC-SVM, and SOM-OCSVM), we performed LSM for the

landslides of the Sichuan-Tibet Highway (G318). Model

performance was compared using the ROC curve, AUC, and Std.

The results show that the selection of non-landslide samples has

great influence on the ML model performance in LSM studies, and

the method presented in this study can effectively reduce the

uncertainty surrounding negative data and significantly improve

the performance of the landslide susceptibility model. This method

of landslide susceptibility mapping may also be extended to regions

with different geological conditions, whichmay in turn be helpful for

further landslide prevention and mitigation.
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