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The simulation of seismic wave propagation in marine areas, which belongs to
seismoacoustic scattering problem, is complicated due to the fluid-solid interaction
between seawater and seabed, especially when the seabed is saturated with fluid.
Meanwhile, huge computation resources are required for large-scale marine seismic
wave simulation. In the paper, an efficient parallel simulation code is developed to
solve the near-field seismoacoustic scattering problem. The method and
technologies used in this code includes: 1) Unified framework for acoustic-solid-
poroelastic interaction analysis, in which seawater and dry bedrock are considered as
generalized saturated porous media with porosity equals to one and zero,
respectively, and the coupling between seawater, saturated seabed and dry
bedrock can be analyzed in the unified framework of generalized saturated
porous media and avoid interaction between solvers of different differential
equation; 2) Element-by-element strategy and voxel finite-element method
(VFEM), with these strategies, it only needs to calculate several classes of element
matrix and avoid assembling and storing the global system matrices, which
significantly reduces the amount of memory required; 3) Domain-partitioning
procedure and parallel computation technology, it performs 3D and 2D model
partitioning for the 3D and 2D codes respectively, sets up the velocity structure
model for the partitioned domain on each CPU or CPU core, and calculates the
seismic wave propagation in the domain using Message Passing Interface data
communication at each time step; 4) Local transmitting boundary condition, we
adopt multi-transmitting formula, which is independent of specific wave equations,
to minimize reflections from the boundaries of the computational model. A
horizontal layered model with the plane P-wave incident vertically from bottom
is used to demonstrate the computational efficiency and accuracy of our code. Then,
the code is used to simulate the wave propagation in Tokyo Bay. All codes were
written following to the standards of Fortran 95.
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1 Introduction

With the increasing exploitation and utilization of marine resources, a large number of
marine engineering structures and infrastructures, such as oil platforms, cross-sea bridges,
submarine tunnels, and artificial islands, have been constructed. In order to ensure the safety of
these offshore structures under the action of earthquake, it is necessary to accurately predict the
ground motion of the sea area. Currently, there are mainly three categories of ground motion
predictions, which are known as prediction based on the attenuation relationship of ground
motion, theoretical analysis prediction and numerical simulation prediction. For the prediction
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based on the attenuation relationship of ground motion, fewer
offshore strong-motion records are gathered than the onshore
strong-motion records, coupled with the lack of material
parameters and spatial distribution of marine soil layers, which
makes it difficult to determine the attenuation relationship of
marine ground motions. Consequently, onshore strong-motion
records are commonly selected for the seismic design of offshore
structures. However, Nakamura et al. (2014) investigated the seismic
wave amplification in and around the Kii peninsula using observation
data analyses and numerical simulations from land (K-net) and
seafloor stations (DONET), and the results indicate that the
amplifications at the marine sites with low-velocity sediment layers
partially contribute to an overestimation of magnitude, if the same
empirical equations as those used for data observed at land stations are
applied without any correction allowed for seismic amplification
caused by ocean-specific structures. Similarly, Hu et al. (2020)
pointed out that the seismic attenuation relationship of offshore
site is significantly different from that of onshore site due to the
deep soft sediment layer. For the theoretical analysis prediction, many
researchers have simplified the sea area terrain into a regular model,
and solved themarine groundmotion response by theoretical methods
(Brekhovskikh, 1980; Zhu, 1988; Okamoto and Takenaka, 1999; Li
et al., 2017; Ke et al., 2019). However, this kind of method can only be
applied to sites with regular terrain (such as horizontally layered sites),
and cannot be directly used for ground motion simulation of offshore
sites with complex terrain.

With the development of computer technology and the maturity
of numerical calculation methods, some researchers have begun to use
numerical simulation methods to solve the ground motion response of
complex sea areas in the last few decades. Morency and Tromp (2008)
based upon domain decomposition, described wave propagation in
different media and discussed the interfacial continuity conditions
used to deal with the discontinuities between different media. Link
et al. (2009) deduced the 2D finite element format of fluid-solid-
acoustic field interaction. Nakamura et al. (2012) simulated ground
motions in the Suruga Bay, and the results showed that the seawater
layer and the irregular topography of the sea area have a significant
impact on the amplitude and duration to the coda part of S-wave. Liu
et al. (2019) simulated the wave radiation effect of infinite fluid and
solid domains on the reef-seawater system through the corresponding
artificial boundary conditions. In the above numerical methods, fluid,
solid, and poroelastic medium are analyzed by independent solvers,
and then mutual interfacial coupling is performed through data
exchange, which is very inconvenient. Chen et al. (2019a) and
Chen et al. (2019b) proposed a decoupling simulation technique to
model seismoacoustic scattering in marine areas when a seismic wave
is incident. Different media (fluid, saturated porous medium, solid)
are successfully unified into the generalized saturated porous media
framework by extending Biot’s saturated porous media theory and
continuous conditions between different media. In the unified
framework, different media can be simulated simultaneously in a
single solver by assigning the corresponding parameters (porosity,
wave velocity, density, etc.) to generalized saturated porous media.

Although researchers have proposed many methods to simulate
the seismoacoustic scattering of marine sites, the ground motion
simulation of 3D large-scale sea areas is still limited by computer
hardware and computing time. In the exiting research, only the long
period (T > 2 s) synthetic waveforms fit well with the observed
waveforms (Nakamura et al., 2015; Okamoto et al., 2017;

Takemura et al., 2019; Oba et al., 2020; Takemura et al., 2021).
Therefore, it is necessary to build high-resolution models for
broadband marine wave propagation simulation. In addition,
previous studies have shown that 3D oceanographic models can
simulate seafloor ground motion more accurately than 1D/2D
models, especially in areas with drastic topographic changes
(Takemura et al., 2020; Wang and Zhan, 2020; Bao et al., 2022).
Compared with the 1D/2D model, if the 3D model is used to simulate
the seismoacoustic scattering in marine areas with high spatial
resolution, the demand of computational resources increases
rapidly, and the traditional calculation can no longer meet the
calculation requirements. In order to improve computing efficiency
and make full use of computer performance, Okamoto et al. (2010),
Liu et al. (2017), and Maeda et al. (2017) used GPU parallelism, CPU
master-slave communication parallelism, and CPU cache
communication parallelism to accelerate the simulation of ground
motions for 3D sites, respectively.

Compared with numerical methods that use a structured grid,
FEM with an unstructured grid has a greater capability of analyzing a
body with complicated configuration. However, using FEM to
simulating wave propagation in models constructed by irregular
computational grids requires vast amounts of computational
resources for computing stiffness matrix. In addition, the model
discretization by 3D unstructured elements is often laborious (Ho-
Le 1988). A so-called voxel finite-element method (VFEM) has been
proposed to resolve these difficulties of FEMwith an unstructured grid
(Koketsu et al., 2004), which avoids generating distorted elements. In
addition, the combination of VFEM and EBEmethod can significantly
reduce the demand for computational memory and improves the
robustness of computing.

In this study, a new VFEM simulation code based on unified
framework and parallel computational strategy is developed to realize
high performance computing for marine acoustics and submarine
earthquake in the 2D/3D marine field. The unified framework of
generalized porous media is applied to simulate the fluid-solid
interaction in marine areas (Chen et al., 2019a; Chen et al., 2019b),
which avoid exchanging the interfacial response between different
solvers. In addition, parallel technology is also used to improve the
computing efficiency. The large-scale site is divided into several small
models, and the wave propagation simulation of each small model is
assigned to each CPUs. The coupling between different CPUs is
realized by Message Passing Interface (MPI) data communication
at each time step.

In the following, we briefly review the strategy of the generalized
saturated porous media framework in Section 2. In Section 3, the
numerical techniques adopted in the present code are described, and a
3D horizontal layered field with the plane P-wave input vertically from
bottom is used for the benchmark test of our code. Finally, in Section 4,
the seismoacoustic scattering simulation in the Tokyo Bay with the
vertically incident plane P/SV wave is performed by our code.

2 Methods

In this section, we briefly introduce the FEM based on unified
computational framework for simulating wave motion in water-
saturated seabed-bedrock system and the algorithms adopted in
our code. The details of theories can be found in Chen et al. (2003,
2019a, 2019b).
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2.1 Mathematical model of generalized
saturated porous media dynamics

Theoretically, solid and fluid media are special cases of saturated
porous media with porosity of 0 and 1, respectively, and the coupling
between different media can all be described in the generalized
saturated porous media system.

2.1.1 Basic differential equation
According to Biot porous medium theory, the vector

representation of the basic differential equations of the model are
given as follows (Biot 1956; 1962):

Solid-phase equilibrium equation for saturated porous media

LT
s σ − 1 − β( )LT

wP + b _U − _u( ) � 1 − β( )ρs€u (1)

Liquid-phase equilibrium equation for saturated porous media

−βLT
wP + b _u − _U( ) � βρw €U (2)

Compatibility equation (considering initial pore pressure and
initial body strain as zero)

τ � −βP � Ew βew + 1 − β( )es[ ] (3)
Where Ls and Lw are differential operator matrices, σ is the solid

effective stress vector, τ is the average pore pressure, which is positive
under tension. P is the pore water pressure, which is positive under
compression. U and u respectively represent the displacement vectors
of the liquid and solid phase, _U, _u are the velocity vectors, and €U, €u are
acceleration vectors. ρs and ρw are the density of the solid and liquid
phase, respectively. β is the porosity, b � β2μ0/k0, k0 is fluid
permeability coefficient, μ0 is the kinematic viscosity coefficient, Ew

is the bulk modulus of the fluid, es and ew respectively represent the
volume strain of the solid and liquid phase.

Ls �

z/zx1 0 0
0 z/zx2 0
0 0 z/zx3

z/zx2 z/zx1 0
0 z/zx3 z/zx2

z/zx3 0 z/zx1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4)

Lw � z/zx1, z/zx2, z/zx3( ) (5)
Assuming β � 1, ρs � 0, μ0 � 0 and G � 0, which means no solid

phase in the media. At this time, σ and b in Eqs 1, 2 are both zero. Eq. 1
is automatically satisfied, Eqs 2, 3 respectively degenerates into
equilibrium equation and constitutive equation of ideal fluid
i.e., −LTwP � ρw €U and τ � Ewew. Similarly, assuming β � 0, ρw � 0,
μ0 � 0 and Ew � 0, which means no fluid phase in the media, b � 0,
Eq. 2 comes into LTwP � 0, and Eq. 1 degenerates into solid equilibrium
equation, i.e., LTs σ � ρs€u. Therefore, the ideal fluid and elastic medium
can be described by the generalized saturated porous model, which
extend the porosity 0< β< 1 for the saturated porous media to
0≤ β≤ 1.

2.1.2 Continuity conditions of the interface
The relationship between two kinds of saturated porous media

(0< β< 1) is determined by the following continuity conditions of
interface (Deresiewicz and Rice, 1964a; Deresiewicz, 1964b).

σN + τ � �σN + �τ (6)
σT � �σT (7)
P − �P � 0 (8)

uN � �uN, uT � �uT (9)
β UN − uN( ) � �β �UN − �uN( ) (10)

Hereafter, the term containing subscript N represents the
normal component of the vector, and the term containing
subscript T represents the tangential component of the vector.
The terms with and without the dash at the top represent the
physical quantities corresponding to the material on one side of
the interface and the material on the other side, respectively.
Assuming β> �β we rewrite Eq. 8 ~ Eq. 10 as:

�β P − �P( ) � 0 (11)
1 − β( )uN � 1 − β( )�uN, 1 − β( )uT � 1 − β( )�uT (12)

βUN � �β �UN − �uN( ) + β�uN (13)
and extend the continuity conditions for saturated porous media-
saturated porous media interface to that for generalized saturated

FIGURE 1
Schematic diagram of interfacial force.
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porous media-generalized saturated porous media interface, which
can be described by Eqs 6, 7, 11 ~ Eq. 13.

By assigning the corresponding values of saturated porous
media as parameters of solid or fluid, the continuity conditions of
four special interfaces (i.e., fluid-saturated porous medium,
saturated porous medium-solid, fluid-solid, saturated porous
medium-saturated porous medium), can be unified into the
continuity conditions between two generalized saturated
porous media.

2.1.3 Boundary conditions
The boundary conditions consist of Dirichlet boundary

condition, Neumann boundary condition and artificial
boundary condition. As above, we extend the boundary
conditions of saturated porous media to that of the generalized
saturated porous media, Dirichlet boundary condition and
Neumann boundary condition may be expressed as:

Dirichlet boundary condition

ΓDs: 1 − β( )u � 1 − β( )~u (14)
ΓDw: βU � β ~U (15)

Neumann boundary condition

ΓNs: 1 − β( )n̂σ � 1 − β( )~σ (16)
ΓNw: βnP � βn~P (17)

where ΓDs and ΓDw respectively represent the Dirichlet boundary
of solid and liquid, ΓNs and ΓNw respectively represent the
Neumann boundary of solid and liquid, ~u and ~U respectively
represent the solid and liquid phase displacement vectors given
on the boundary, ~σ and ~P respectively represent the given values
of average solid phase stress and true pore pressure on the
boundary, €uiMsi + Fs

i + Ts
i − Ssi � 0 is the direction vector along

the outer normal on the border, €uiMsi + Fs
i + Ts

i − Ssi � 0 is a matrix
composed of directional derivative.

For the fluid, β � 1, Eqs 14, 16 automatically satisficed, and the
boundary conditions comes into Eqs 15, 17. For the solid, β � 0, Eqs
15, 17 automatically satisficed, and the boundary conditions
degenerates into Eqs 14, 16.

2.2 Discretization and solution of motion
equations

Take a random node as an example, using the Galerkin method to
discretize Eqs 1, 2, and considering the boundary conditions, the
decoupling motion equilibrium equation of any node i can be obtained
as [Chen et al. (2019)]:

€uiMsi + Fs
i + Ts

i − Ssi � f si (18)
€U iMwi + Fw

i + Tw
i − Swi � f wi (19)

whereMsi andMwi respectively represent the mass matrix of the solid
phase and the mass matrix of the liquid phase concentrated at the
node. A purely diagonal mass matrix can be achieved by simply
summing up all the columns of the consistent mass matrix along each
row into the respective diagonal [Hughes (2000); Drolia et al. (2020)].
The off-diagonal terms are then set to zero. Fs

i and Fwi respectively
represent the vectors of solid and liquid constitutive forces

concentrated at the node, Ts
i and Tw

i respectively represent the
vectors of solid and liquid viscosity resistances concentrated at the
node, Ssi and Swi respectively represent the vectors of solid and liquid
interfacial forces acting on the node. Since the seismic response is
input through the free field displacement of the boundary node, f si and
fwi here represent the vectors of solid and liquid external forces other
than the seismic load.

2.2.1 Internal node
For the internal nodes, Ssi and Swi are both zero (Figure 1). If the

constitutive relationship is given, the Eqs 18, 19 can be solved by time-
step integration, which can be written as follows:

u
p+1( )

i � 2up
i − u

p−1( )
i − Δt( )2

ms
i

Fs
i + Ts

i − f si( ) (20)

U
p+1( )

i � 2Up
i − U

p−1( )
i − Δt( )2

mw
i

Fw
i + Tw

i − f wi( ) (21)

wherems
i andm

w
i represent the mass of the solid phase and themass of

the liquid phase concentrated at the node, the term containing
superscript �Fsk � ∑

e

∫
Ωe(LsNk)T�σdV represents the state of the

corresponding physical quantity at �Fsk � ∑
e

∫
Ωe(LsNk)T�σdV.

2.2.2 Interfacial node
Here we discuss the situation where node i k) is the interfacial

point between two different media, which is shown in Figure 1. Using
the concept of isolator, and performing time-step integration on Eqs
18, 19 at time u(p+1)i � û(p+1)i + Δu(p+1)Ni + Δu(p+1)Ti , we can obtain the
following equation:

u
p+1( )

i � û
p+1( )

i + +Δu p+1( )
Ni + Δu p+1( )

Ti (22)
U

p+1( )
i � Û

p+1( )
i + ΔU p+1( )

Ni + ΔU p+1( )
Ti (23)

where û(p+1)i and Û
(p+1)
i denote the displacement vectors when no

interfacial force is applied in solid and fluid, respectively. Δu(p+1)Ni is the
solid phase displacement vector caused by the normal interfacial force
SspNi, and Δu(p+1)Ti is the solid phase displacement vector caused by the
tangential interfacial force SspTi . ΔU(p+1)

Ni is the liquid phase
displacement vector caused by the normal interfacial force SwpNi , and
ΔU(p+1)

Ti is the liquid phase displacement vector caused by the
tangential interfacial force SwpTi . According to Eqs 22, 23, combine
with the interfacial continuity conditions, the interfacial force of node i
can be solved as:

SspNi � A22B1 − A12B2

A22A11 − A12A21
(24)

SwpNi � A21B1 − A11B2

A21A12 − A11A22
(25)

where

A11 � Δt( )2 ms
i +ms

k( ) (26)

A12 � 1 −
�β

β
( ) Δt( )2ms

i (27)

B1 � ni ni · �̂u
p+1( )

k − û
p+1( )

i ))ms
im

s
k(( (28)

A21 � Δt( )2 β − �β( )mw
i (29)

A22 � Δt( )2 βms
k +

�β
2

βmw
k

mw
i m

s
k +

�β − β( )2mw
i

β
⎡⎣ ⎤⎦ (30)
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B2 � ni(ni · (�β( �̂U
(p+1)
k − �̂u

p+1( )
k ) − β(Û(p+1)

i − �̂u
(p+1)
k )))mw

i m
s
k

(31)
After obtaining SspNi and Swp

Ni from the Eqs 24, 25, we can solve
�SspNk and �SwpNk from the interfacial continuous conditions. Similarly,
using the condition that the solid phase displacement at the
interface is continuous, the interfacial force SspTi have the
following solution:

SspTi �
( �̂u p+1( )

k + Δ�u p+1( )
Nk − û

p+1( )
i − Δu p+1( )

Ni )ms
im

s
k

Δt( )2 ms
i +ms

k( ) (32)

With the interfacial force, the displacement response of the interfacial
node can be solved by Eqs 22, 23.

2.2.3 Boundary node
In order to effectively simulate the motion of the outgoing wave

across the artificial boundary, we use the Multi-Transmitting Formula
(MTF) proposed by Liao et al. (1984):

1 − β( )u p+1( )
os � ∑N

j�1
−1( ) j+1( )CN

j 1 − β( )u p+1−j( )
js

βU
p+1( )

os � ∑N
j�1

−1( ) j+1( )CN
j βU

p+1−j( )
js

(33)

where U(p+1)
os and u(p+1)os respectively represent the liquid and solid

displacement of the scattered wave at the boundary node o at
t � (P + 1)Δt, N is the transmitting order, CN

j here can be
expressed as:

CN
j � N!

N − j( )!j! (34)

This local artificial boundary condition is universal and has
nothing to do with specific wave equations, which can be directly
used for wave problems in saturated porous media (Liao et al., 1984;
Chen and Liao, 2003). The total displacements W (W � U, u) can be
separated as:

W � Ws +Wf (35)

In which Ws represent scattering displacements, and Wf

represent the free field displacements. At first, scattering field at
time P is obtained by Eq. 35, where the total displacements at time
P can be solved by the method mentioned in Section 2.2.1 and Section
2.2.2, and the free-field displacement can be obtained by the transfer
matrix method (Ke et al., 2019). Then, applying Eq. 33 to scattering
field of the solid-phase and liquid-phase, respectively, the scattering
displacements of the boundary node at time P+1 can be obtained.
Finally, adding the free field displacement at time P+1 of the boundary
node to the scattering displacements, we can obtain the total
displacements of the boundary node.

3 Software implementations

Based on the unified framework and the algorithms mentioned
before, we developed a new code for simulating wave propagation in
large-scale marine site. This code is especially designed to improve
usability for non-expert users who are not familiar with numerical
simulation techniques. Thus, this code also adds pre-processing and

FIGURE 2
A schematic illustration of the flow of the wave propagation simulation using the code presented in this paper [Reproduced from Figure 1 of Takuto et al.
(2017) with modification].
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partial post-processing functions, and integrates codes between different
modules through Linux script files. Users do not need tomodify the code to
apply it to individual simulation targets, but only needs to input the
corresponding control parameters and soil layer elevation, and then the
process offinite elementmodel establishment—freefield calculation—finite
element simulation can be realized automatically (Figure 2).

3.1 Establishment and discretization of finite
element model

Based on the comprehensive overview of geological data and borehole
data, the marine site is assumed as a layered model consisting of basements
and sedimentary layers. The P-wave velocities to the basements and
sedimentary layers are measured by refraction and reflection surveys,
the S-wave velocities are obtained by borehole logging, microtremor
surveys or the empirical relationships between P- and S-wave velocities,

and the density of layers is obtained by borehole logging. After that, convert
time sections from seismic reflection surveys and borehole logging into
depth sections using the P- and S-wave velocities. Depth sections are
spatially combined with borehole data to produce the 3D model via
interpolation, such as Bicubic spline interpolation and Kriging
interpolation. Then the depth and material parameters of each soil layer
can be input into our code for finite element mesh generation and
subsequent marine seismoacoustic scattering simulation.

FEM can handle very complex structures with high accuracy using
elements with various shapes. However, the pre-processing of FEM,
i.e., grid generation, can be very time-consuming. In order to
overcome the limitation of FEM, we use voxel FEM (VFEM).
“Voxel” is a term in computer graphics derived from an
abbreviation of “volume pixel.” It is actually a hexahedron or
rectangular prism in three dimensions and its cross section forms a
pixel in two dimensions (Koketsu et al., 2004). In our code, by reading
the site information (such as material parameters of soil layer,

FIGURE 3
Flow chart for simulating wave propagation in 3D model with irregular boundary (Reproduced from figure 4.2 of Lokke (2019) with modification).

FIGURE 4
The computational model and the input pulse wave (A) Schematic diagram of horizontal layered computational model; (B) Displacement time history of
the input wave; (C) Displacement Fourier amplitude spectrum of the input wave.
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elevation, etc.) and element size input by the user, the model is
discretized into regular hexahedral elements, and the corresponding
material parameters are assigned. The directional derivatives at the
interface of different media (fluid, saturated porous medium, solid) are
also calculated and stored for subsequent finite element calculations. It
is noted that the approximate treatment of a smooth boundary using
voxels can lead to errors in computing displacement, and the errors
become larger as the shape of the boundary becomes more irregular,
but the computational accuracy requirements can generally be met by
refining the mesh. VFEM mesh generation is simple and fast, and
avoids generating distorted elements. Moreover, VFEM reduces the
requirements of computational resources and memory.

3.2 Element-by-element and parallel
computing strategy

The simulation of wave propagation in large-scale sea fields
usually requires a large amount of memory and has a heavy

computational load. The key to large-scale marine seismoacoustic
scattering simulation is to realize the high-performance computing
and save computational memory. In conventional finite element
calculations, the global system matrices (including mass matrix,
damping matrix, stiffness matrix etc.) usually needs to be
assembled, which leads to a considerable increase in the memory
usage for large-scale simulation. Therefore, the element-by-element
(EBE) method is adopted in our code. It is only necessary to classify
elements based on their material and size, and then calculate the mass
matrix, damping matrix, and stiffness matrix for each class of elements
before the solution begins, avoid assembling and storing the global system
matrices. The combination of VFEM and EBE method can significantly
reduce the demand for computational memory, which is suitable for large-
scale marine seismoacoustic scattering simulation. When calculating the
response of each node, it is only necessary to obtain the constitutive force of
the node through the stiffness matrix and damping matrix of the elements
around the node, and obtain the response of the node through the lumped
mass and explicit integration scheme, which can avoid solving large system
of equations and have high computational efficiency.

Our code also adopts a domain-partitioning procedure for the
parallel computing using MPI. It performs 3D and 2D model
partitioning for the 3D and 2D codes. The finite element model of
each partitioned domain is set up on each CPU or CPU core, and the
seismic wave propagation is calculated using MPI data
communication at each time step. To ensure the continuity of the
waveform across the partitioned model, the displacement and force
defined at the outermost node are exchanged with those of the
neighboring partitioned models at each time step using MPI.

3.3 Seismic source and input

Depending on the relative location of the model and the seismic
source, the wave propagation problem can be divided into two
categories: inner-source problem and scattering problem. For the
inner-source problem, the seismic source is contained within the
computational region. The finite fault source can be represented by

FIGURE 5
Displacement time history calculated by our code using different numbers of CPUs: (A) Point A; (B) Point B.

FIGURE 6
Calculation efficiency curve.
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FIGURE 7
(A) Topography of the area around Tokyo Bay; (B) The first interface depth determined by Koketsu et al. (2009).

TABLE 1 Parameters of materials used in Tokyo Bay (Koketsu et al., 2009).

Material Porosity/β μ0 ρs (kg·m−3) ρw (kg·m−3) ] G (GPa) Ew (GPa) M (GPa) α k0 (μm2)

Seawater 1 0 0 1,000 .020 0 2.25 2.25 1 1

Bedrock1 0 0 1,850 0 .437 .666 0 1.91 0 0

Bedrock2 0 0 2,080 0 .395 2.080 0 5.80 0 0

FIGURE 8
Input pulse wave: (A) Acceleration time history; (B) Acceleration Fourier amplitude spectrum; (C) Displacement time history; (D) Displacement Fourier
amplitude spectrum.
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multiple point sources, and the seismic input can be imposed at the
corresponding nodes of the model. For scattering problem, that is the
case for the plane wave incidence, the seismic input is realized
through free-field response (see Section 2.2.3). When the
boundary of the computational model can be simplified to a
horizontally layered region, the free field response can be
obtained directly by the transfer matrix method (Ke et al., 2019).
However, when the topography at the boundary of the model is
irregular, as shown in Figure 3, we need to first develop a finite
element model for the 1D column that has the same mesh density as
the corner of 3D model, then obtain the response of the 1D corner
column model by the transfer matrix method. After that, establish a
2D finite element model with the same mesh density as the 3D model
at the cut-off boundaries, input the 1D response into the 2Dmodel as
the free field and simulate the wave propagation in 2D model, then
take the 2D FEM synthetic wave field as “free fleid” and input it into
the 3D model through the artificial boundary condition, as
mentioned in Section 2.2.3.

In order to provide free field response for the 3D model with
irregular boundaries, a code for the 2D-VFEM simulation with the
incident P/SV wave is also included in our code. The 2D-VFEM
simulations use the same input parameter file, except they perform the

wave propagation simulations in the x–z plane, users can switch
between 2D-VFEM and 3D-VFEM simulation or choose the wave
motion input mode applicable to individual targets by simply setting
corresponding input parameters without modifying the code, which is
user friendly.

3.4 Computation performance

The computational efficiency and accuracy of the parallel
simulation was examined using the following numerical test. The
model used in the test is a 36-m bedrock covered with 30-m seawater
(Figure 4A), and a plane P-wave with a pulse duration of .15 s (Figures
4B, C) is input from the bottom of the bedrock. The expression of the
incident P-wave is:

s t( ) �
0, for t| |>W/2
16 0.5 − t| |/W( )3, for W/4≤ t| |≤W/2
1 − 48 0.5 − t| |/W( ) 0.5 − t| |/W( )2, for 0≤ t| |<W/4

⎧⎪⎨⎪⎩
(36)

where W is the pulse duration. The time increment Δt = .0001 s, the
number of steps n = 16,384, and the element size is 1 m × 1 m × 1 m,

FIGURE 9
Displacement, acceleration time history curve and acceleration Fourier spectrum of observation points with P-wave input.
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which is less than one-eighth of the minimum wavelength of the input
wave and meet the requirement of accuracy (Moczo et al., 2000). The
free field response is obtained by the transfer matrix method (Ke et al.,
2019), and input from the artificial boundary throughMTF. To test the
computational efficiency of our code, the computation time of the
numerical model is measured for parallel computing using different
process numbers.

To illustrate the calculation accuracy of our code, the displacement
time history of two monitoring points (point A, B, as shown in
Figure 4A) in the above case simulated by our code, together with
analytical solution obtained by the transfer matrix method, are plotted
in Figure 5. The responses obtained by our code agree well with those
obtained by the transfer matrix method.

Figure 6 shows the curve for calculating efficiency of our code. For
the element-by-element parallel VFEM, at least two processes are
required for parallel computation, assuming that the total
computational time spent with 2 processes is t2, and the
theoretical computational time with m processes is defined as
tm=2 × t2/m. The curve demonstrates that as the number of
processes increases, the computational time spent on the 3D
simulation code decreases. However, when the number of
processes reaches 14 or more, the computation time
consumption almost does not decrease, and the gap between
the theoretical computing time consumption and the actual
computation time consumption increases gradually. This is due
to the large number of processes used for small model simulation,

the data traffic between different regions increase dramatically
and resulting in over parallelization.

4 Simulation case

To demonstrate the effectiveness of our code in seismic wave
propagation simulations, here we choose Tokyo Bay as the site
model, and the scope of the study area is shown in Figure 7A (black
frame line). The horizontal dimension of the model is 50 km ×
50 km and the depth is .8 km, and artificial boundaries are applied
at the boundaries of the model for absorbing the outgoing waves. It
can be seen from Figure 7A that the topographic changes rapidly in
the southeast of Tokyo Bay, and the rest of the area is relatively flat
(the topography of the land surface and the seabed was obtained
from Google Earth).

Koketsu et al. (2009) divided the soil layers in the vicinity of Tokyo
Bay into four categories according to the wave speed and density, and
gave the parameters of each soil layer and the depth of each interface
within a range of 120 km × 120 km. According to Koketsu et al. (2009),
the depth range of the first interface is 0–0.4 km (Figure 7B), and the
depth of the second interface is greater than 1 km. Thus, two categories
of soil layers and one interface are contained in the computational
model here. Since the detailed interface depth is difficult to obtain, it
can be seen from Figure 7B that the depth of the first interface is about
.2–.4 km in the simulation region (red frame line), and gradually

FIGURE 10
(A) Displacement waveforms in z-direction of section 1-1; (B) Displacement waveforms in z-direction of section 2-2; (C) Displacement waveforms in z-
direction of section 3-3.
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becomes deeper from south to north. Here we simplify the depth of the
interface from south to north as a linear increase from 260 to 400 m.

Assuming that the model is only composed of seawater and elastic
bedrock, and the material parameters are given in Table 1.

A plane P/SV wave with a rise time of 20 s is input from the bottom
of the bedrock, and its expression is consistent with the incident wave
in Section 3.4 (Eq. 36) but setting the pulse duration W = 1 s. The
displacement time history, acceleration time history and
corresponding Fourier spectrum of the incident wave are shown in
Figure 8.

The simulation model has a grid spacing of 20 m and a time
step of .0025 s with the minimum wave speed of 0.6 km/s for the
shallow-most bedrock layer, which meets the requirements of
numerical stability and accuracy. The model is divided into
144 domains, each domain has about 1.7 million elements,
and the number of elements of the whole model is about
250 million.

Three cases are performed by our code: Case1, the seismoacoustic
scattering simulation of Tokyo Bay with plane P-wave incidence;
Case2, similar to case 1 but without seawater layer; Case 3, the
seismoacoustic scattering simulation of Tokyo Bay with plane SV-
wave incidence. In all three cases, 64 CPUs are used to simulate wave
propagation in the field, and take an average of 38 h to complete the

calculation. Three points shown in Figure 7A are selected as
observation points, which are located on the bottom of the sea
(point 1), the plain (point 2), and the top of the mountain (point
3), respectively. At the same time, three cross sections shown in
Figure 7A are selected to monitor the displacement wave field at
the top of the bedrock.

4.1 Plane P-wave input

The displacement time history, acceleration time history and
acceleration Fourier spectrum of each observation point are shown
in Figure 9. When the P-wave is vertically incident from the bottom of
the model, the displacement of the three observation points in the
z-direction is much larger than that in the other two directions. The
reflection of the incident wave between different media can be clearly
observed, and the arrival time of the first displacement peak is also
delayed with increasing altitude. In addition, affected by the
surrounding complex terrain, the response of point 3 in the
horizontal direction is more intense than that of other two points.
While points 1 and 2 are in regions with slow elevation changes, and
these two points are similar in terms of displacement time history,
acceleration time history, and Fourier spectrum.

FIGURE 11
The snapshots of the displacement wavefield with P-wave input.
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Figure 10 illustrates the displacement time response along the top
of bedrock1 of different cross sections. When the P-wave is vertically
incident, the ground motions are mainly controlled by the vertical
component. Section 1-1 contains bothmarine area andmountain area.
For the marine area, the terrain is relatively flat, which makes the
vertical displacements in this area stable rapidly after the end of the
major response. However, in the mountainous area with drastic
elevation changes, the incident wave scattered when it reaches the
free surface, and the scattering waves propagate back and forth in the
irregular region, triggering the complex subsequent waveforms
(Figure 10A). Since the topography changes slowly in both sections
2-2 and 3-3, the peak vertical displacements as well as their arrival
times are relatively coincident, and the scattering of the waves is only
observed near regions with topographic change.

The snapshots of the displacement wavefield at the top of the
bedrock layer are shown in Figure 11. As time going on, the incident
wave first reaches the seafloor where the bedrock is the thinnest, then
gradually spreads over the land, and finally reaches the mountainous
area with high altitude. Furthermore, as mentioned earlier, the depth
of the interface between bedrock 1 and bedrock 2 is simplified to
south-to-north increasing, which means that the thickness of bedrock
2 gradually increases from north to south. Since the wave speed of
bedrock 2 is greater than that of bedrock 1, the arrival time of incident
wave is gradually advanced from north to south in areas with similar
elevations.

The synthetic results without seawater layer are plotted in
Figure 12 together with the results with seawater layer. Owing to
the shallow depth of the seawater, the difference between the two cases
is small, especially in the regions far from the marine area. Even so, in
the offshore area, slight differences can be observed in areas where the
terrain changes rapidly (Figure 12A). The displacement time history of
point 1 is shown in Figure 12B for further comparison of the two cases.

Since P waves can propagate in the seawater layer, the arrival time of
incident wave with the seawater layer (red line in Figure 12B) is slightly
later than that without the seawater layer (green line in Figure 12B). In
addition, seawater acts as a “filler” on the seabed and weakens the
influence of irregular terrain on the waveform, which makes the coda
relatively stable.

It is worth mentioned that when our code is applied to simulating
the wave propagation in the example without seawater, only need to
set the material parameters of seawater such as compressive modulus
and density to zero without modifying the model, which is very
convenient.

4.2 Plane SV-wave input

The displacement time history, acceleration time history and
acceleration Fourier spectrum of each observation point are shown in
Figure 13. Similar to the case of P-wave incidence, the arrival time of the
incident wave is also delayed with increasing altitude, and the ground
motions are mainly controlled by the motion direction of the incident
wave, here is the x-direction. The displacement time history of point 1 is
relatively stable after 10 s, but the acceleration of point A in the z-direction
has obvious oscillations (Figure 13D), which does not appear in the case of
P-wave incidence. Since the material is assumed to be linear elastic here,
the spectral characteristics of the output acceleration Fourier spectrum
remain consistent with the input regardless of the terrain.

The displacement waveforms along the top of bedrock layer of
different cross sections with SV-wave input are plotted in Figure 14.
According to the analysis in the preceding part, in the mountainous area
of section 1-1, the complexity of waveforms is triggered by the incident
wave scattering in the irregular area. The effect of undulating terrain near
the coast on the wave scattering is amplified due to shear waves cannot

FIGURE 12
Comparison of the cases with and without sea water layer: (A) Displacement waveforms along the top of bedrock layer of cross section 2-2; (B)
Displacement time history of point 1
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FIGURE 13
Displacement, acceleration time history curve and acceleration Fourier spectrum of observation points with SV-wave input.

FIGURE 14
(A) Displacement waveforms in x-direction of section 1-1; (B) Displacement waveforms in x-direction of section 2-2; (C) Displacement waveforms in x-
direction of section 3-3; (D) Displacement waveforms in z-direction of section 2-2.

Frontiers in Earth Science frontiersin.org13

Jirong et al. 10.3389/feart.2022.1056485

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1056485


propagate in seawater layer. Although the SV-wave vertically incident
from the bottom of the model, they creep along the bedrock surface and
bring about the vertical component displacement (Figure 14D), the
vertical vibration with small amplitude gradually spread to the
surrounding region over time, and causing an acceleration response in
the z-direction (Figure 13D). The displacement waveform of section 3-3 is
relatively regular, which is similar to the case of P-wave incidence.

In summary, our code can efficiently simulate marine
seismoacoustic scattering in large-scale marine site.

5 Conclusion

We have developed a new FEM simulation code for efficient
modeling of seismoacoustic scattering in 2D/3D large-scale marine
areas. This code improves the calculation efficiency of marine seismic
simulation from two aspects: calculation method and computational
strategy. In terms of calculation method, different media (fluid,
saturated porous medium, solid) are successfully unified into the
generalized saturated porous media framework by extending Biot’s
saturated porous media theory and continuous conditions between
different media, which means that different media can be simulated
simultaneously in a single solver. The response is obtained by the lumped
mass and explicit integration scheme, which can avoid solving large
system of equations, and have high computational efficiency. In terms of
computational strategy, regular hexahedral elements are used to discretize
the computational model, and EBE parallel computing strategy is
adopted, which improves the robustness of computing and reduces
the demand for computational memory. The computational efficiency
and accuracy of our code was examined by a 3D horizontal layeredmodel
with the plane P-wave incidence, the applicability and the effectiveness
were demonstrated by simulating seismoacoustic scattering in Tokyo Bay.

In this paper, the model is discretized into cubit elements with
unified size. However, when the medium wave velocity in the model
varies greatly, or the surface terrain of the model changes drastically,
the element size needs to be reduced to meet the numerical stability
requirements, which increases the computational load. In the
subsequent study, the hybrid grid would be used to discretize the
model in our code, which can ensure the computational accuracy and
radically reduces the computational load (Ichimura et al., 2007).
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