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Multispecies pollutantmigration often occurs in polluted groundwater systems. Most
of the multispecies problems that have been dealt in the literature assume constant
transport parameters, primarily because analytical solutions for varying parameters
become a challenge. The present study analytically solves a two-species
convection-dispersion transport equation, considering spatially varying dispersion
coefficient and seepage velocity, which corresponds to the steady migration in a
steady flow domain. Indeed, the methodology can be adopted for other cases, such
as the transient migration in a steady flow domain and transient migration in an
unsteady flow domain, without any difficulty. Three kinds of homotopy-based
methods, namely the homotopy perturbation method (HPM), homotopy analysis
method (HAM), and optimal homotopy asymptotic method (OHAM), are used to
derive approximate analytical solutions in the form of truncated series. In homotopy
analysis method, the convergence-control parameter - plays a key role in the
convergence of the series solution. It is observed that for a specific case of this
parameter, namely -=−1, the HAM-based solution recovers the HPM-based solution.
For the verification of homotopy-based solutions, we utilize the MATLAB routine
pdepe, which efficiently solves a class of parabolic PDEs (single/system). An excellent
agreement is found between the derived analytical solutions and the numerical
solutions for all three methods. Further, a quantitative assessment is carried out for
the derived solutions. Also, convergence theorems are proposed for the series
solutions obtained using HAM and OHAM.
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1 Introduction

Pollution is caused by a number of sources, such as agricultural fertilizers, erosion,
industries, energy generation, waste disposal, hospital wastage, vehicular transport, nuclear
waste, and domestic waste. A significant portion of pollution generated by these sources
finds its way either directly or indirectly into ground water (Sposito et al., 1979; Domenico
1987; Bear 1988; Clement et al., 1998; Batu 2005). Often pollutants are different species, and
their chemical characteristics are different. In general, pollutant transport in groundwater
is modeled using the conservation of mass of water, flux law for flow of water, conservation
of mass of pollutant, and flux law for pollutant transport. Depending on the type, a
pollutant can be physical, chemical, or biological. A chemical pollutant can be conservative
or non-conservative for which production and decay functions need to be specified. When
these equations are combined, the resulting equation is the convection-dispersion

OPEN ACCESS

EDITED BY

Yingfang Zhou,
University of Aberdeen, United Kingdom

REVIEWED BY

Qingzhi Hou,
Tianjin University, China
Bing Bai,
Beijing Jiaotong University, China

*CORRESPONDENCE

Manotosh Kumbhakar,
manotosh.kumbhakar@gmail.com

†PRESENT ADDRESS

Department of Civil Engineering,
National Taiwan University, Taipei, Taiwan

SPECIALTY SECTION

This article was submitted to Hydrosphere,
a section of the journal
Frontiers in Earth Science

RECEIVED 07 October 2022
ACCEPTED 28 December 2022
PUBLISHED 01 February 2023

CITATION

Kumbhakar M and Singh VP (2023),
Approximate analytical solutions for
multispecies convection-dispersion
transport equation with
variable parameters.
Front. Earth Sci. 10:1064110.
doi: 10.3389/feart.2022.1064110

COPYRIGHT

© 2023 Kumbhakar and Singh. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Earth Science frontiersin.org01

TYPE Original Research
PUBLISHED 01 February 2023
DOI 10.3389/feart.2022.1064110

https://www.frontiersin.org/articles/10.3389/feart.2022.1064110/full
https://www.frontiersin.org/articles/10.3389/feart.2022.1064110/full
https://www.frontiersin.org/articles/10.3389/feart.2022.1064110/full
https://www.frontiersin.org/articles/10.3389/feart.2022.1064110/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2022.1064110&domain=pdf&date_stamp=2023-02-01
mailto:manotosh.kumbhakar@gmail.com
mailto:manotosh.kumbhakar@gmail.com
https://doi.org/10.3389/feart.2022.1064110
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2022.1064110


equation. This equation is for a specific species. This paper
discusses the case of two species pollutant transport.

There are several works done for the analysis of multispecies
pollutant transport problems. These works adopted either analytical or
numerical methods. The analytical solutions were obtained using
Fourier transforms, Laplace transform, general integral transforms,
decomposition methods, series solutions, etc. (Lunn et al., 1996; Van
Genuchten 1985; Fujikawa and Fukui 1990; Sun and Clement 1999;
Sun et al., 1999; Chamkha 2005; Slodička and Balážová, 2008; Slodička
and Balážová, 2010; Natarajan and Kumar 2010; Chen et al., 2012;
Simpson and Ellery 2014). Numerical methods basically adopted the
finite difference method (Arnold et al., 2017; Natarajan and Kumar
2018). However, the afore-mentioned works used constant transport
parameter—a consideration that makes it easier to deal it
mathematically. In reality, it is necessary to model the system using
variable parameters in order to fully understand the pollutant
dispersion behaviour. There are a few works available for the
variable transport parameters; however, some are for single species
or restricted formulation. Chaudhary and Singh (2020) used the
homotopy analysis method (HAM) for two-species convection-
dispersion transport equation, considering spatial-temporal varying
dispersion coefficient and seepage velocity. They used the standard
HAM to deal with the system of PDEs governing the phenomenon.
However, since the inception of HAM, there have been several
modifications done. The most popular variants of the method are
homotopy perturbation method (HPM) and optimal homotopy
asymptotic method (OHAM). On the other hand, it is worth
mentioning that the transport of heavy metals in groundwater and
the interactions between them and the soil medium are key concepts in
environmental engineering. Such transport processes are useful for
studying the damage to the environment caused by the smelting of
metallic materials, the seepage of landfill leachates, the use of
pesticides and chemical fertilizers, the treatment of municipal
wastewater, etc. Furthermore, the solid particles (bacteria, silicon
powders, etc.) present in the soil interact with the transport
mechanism of the heavy metals by accelerating the migration rate
of those. Thus, in order to choose a suspended matter of particular for
removing the heavy metals from soils, it is crucial to understand the
coupling mechanism. In fact, because of the suspended particles
adsorb the heavy metals, they show an influence on the migration
process of the metals in soil under seepage conditions. There are
several factors affecting the coupling mechanism of heavy metals and
suspended particles, such as the size and concentration of the particles,
seepage velocity, types of heavy metals, porous media, coupling
mechanism (solid-solid, solid-liquid, gas-liquid, etc.). The detail
discussion can be found in Bai et al. (2021a), Bai et al. (2021b).

The core idea of homotopy-based methods is based on the concept
of homotopy from topology. It creates a continuous mapping that
deforms continuously to obtain one function from another. Liao
(1992) used this concept to develop an analytical method for the
solution of non-linear problems in terms of a series solution. Since
then, it has been used extensively in different areas of science and
engineering (Liao, 2003; Liao, 2012). On the other hand, He (1999)
presented an analytical methodology named HPM. Recently, Marinca
and Herişanu (2008) extended the concept of HAM using an
approximation method to derive the so-called OHAM. These
methods have their own advantages/disadvantages in terms of their
applicability. Therefore, the present work presents three kinds of
approximate series solutions using HAM, HPM, and OHAM. This

paper considers the case of spatially varying transport parameters.
Indeed, the methodologies can be adopted for other cases such as the
ones provided in Chaudhary and Singh (2020).

2 Brief overview of homotopy-based
methods

Here, first we describe the homotopy-based methods in a general
framework considering a system of PDEs. Before doing so, it is
pertinent to mention that all these methods are based on the
mathematical concept called ‘homotopy’ from topology (Liao
1992). Two objects (mathematical) are homotopic if one can be
continuously deformed into the other. Mathematically, a homotopy
H(t; q) between two functions f(t); g(t), where t is a dimension
(space or time), is itself a continuous function, defined as
H: T × [0, 1] → U and satisfies H(t; q) � f(t) when q � 0 and
H(t; q) � g(t) when q � 1, where T and U are the topological
spaces. This shows that as q goes from 0 to 1, H(t; q) varies from
f(t) to g(t). The functions f(t) and g(t) are called homotopic. For
example, in 2D, a circle can be continuously deformed into an ellipse
or a square; similarly, in 3D, a doughnut and a coffee cup are
homotopic. Since algebraic or differential equations represent
curves (or functions), the concept of homotopy can be employed
for solving non-linear differential or algebraic equations. Using this
concept, Liao (1992) proposed the so-called homotopy analysis
method (HAM). Two other popular variants of this method are
homotopy perturbation method (HPM) and optimal homotopy
asymptotic method (OHAM). These three methods are employed
in this paper.

2.1 Homotopy analysis method

Let a system of PDEs be written as:

N i yi x, t( )( ) � 0 (1)
whereN i are the non-linear operators or the original operators of the
system of equations; yi are the unknown variables for say
i � 1, 2, . . . , n; x and t are the independent variables. Now, the
zeroth-order deformation equation can be constructed as follows
(Liao 2003):

1 − q( )Li Φi x, t; q( ) − yi,0 x, t( )[ ] � qħiHi x, t( )N i Φi x, t; q( )[ ],
i � 1, 2, . . . , n

(2)
subject to the initial and boundary conditions:

B Φi,
zΦi

zx
,
zΦi

zt
( ) � 0, Ι Φi,

zΦi

zx
,
zΦi

zt
( ) � 0 (3)

where q is the embedding parameter, Φi(x, t; q) are the
representations of solutions across q, yi,0(x, t) are the initial
approximations, ħi are the auxiliary parameters, Hi(x, t) are the
auxiliary functions, and Li and N i are the linear and non-linear
operators, respectively. Eq. 2 shows that as q � 0,
Φi(x, t; 0) � yi,0(x, t), and as q � 1, Φi(x, t; 1) � yi(x, t). This
means as q varies from 0 to 1, Φi(x, t; q) transforms from the
initial approximation to the final solution. The higher-order terms
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can be calculated from the higher-order deformation equation given as
follows (Liao 2003):

Li yi,m x, t( ) − χmyi,m−1 x, t( )[ ] � ħiHi x, t( )Ri,m �yi,m−1( ), m � 1, 2, 3, ...

(4)
where

χm � 0whenm � 1,
1 otherwise

{ (5)

and

Ri,m �yi,m−1( ) � 1
m − 1( )!

zm−1N i Φi x, t; q( )[ ]
zqm−1

∣∣∣∣∣∣∣∣q�0 (6)

where yi,m for m≥ 1 are the higher-order terms. Eq. 4 is
obtained by differentiating the zeroth-order deformation
Eq. 2 in succession. Also, it is interesting to note from Eq.
4 that the original governing equations are transformed into
an infinite system of linear equations, which are easier to
solve. This idea is a central concept for all perturbation-based
approaches. Now, the final solutions can be obtained as
follows:

yi x, t( ) � yi,0 x, t( ) + ∑∞
m�1

yi,m x, t( ) (7)

One can truncate the series Eq. 7 to obtain an approximate
solution to a non-linear system. It can be seen that the method
involves several operators and functions, which should be
adequately chosen in order to have a convergent series. For that
purpose, Liao (2003) proposed three generalized rules, namely rule of
solution expressions, rule of coefficient ergodicity, and rule of solution
existence. These rules will be discussed in a later section in relation to
the problem under consideration.

2.2 Homotopy perturbation method

Here, we rewrite a system of PDEs as follows:

N i yi x, t( )( ) � f x, t( ) (8)
Now, we can construct a homotopy that satisfies (He 1999):

1 − q( ) Li Φi x, t; q( )( ) − Li yi,0 x, t( )( )[ ]
+ q N i Φi x, t; q( )[ ] − f x, t( )[ ] � 0,

i � 1, 2, . . . , n

(9)

where the symbols denote the same variables as mentioned in the
previous section. Also, similar to HAM, Eq. 9 shows that at q � 0,
Φi(x, t; 0) � yi,0(x, t), and at q � 1, Φi(x, t; 1) � yi(x, t). Let us now
express Φi(x, t; q) as a series in terms of q as follows:

Φi x, t; q( ) � Φi,0 + qΦi,1 + q2Φi,2 + q3Φi,3 + q4Φi,4 + ... (10)
where Φi,m for m≥ 1 are the higher-order terms. As q → 1, Eq. 10
produces the final solutions as:

yi x, t( ) � lim
q ���→ 1

Φi x, t; q( ) � ∑∞
k�0

Φi,k (11)

In this method, similar to the classical perturbation
approach, one can substitute the series (10) in Eq. 9 and then

equate the like powers of q to obtain the terms of the series Φi,k.
The difference between HAM and HPM is evident from the
construction of the zeroth-order deformation equation. HAM
contains an additional auxiliary function and auxiliary
parameters, which help obtain a rapid convergence series
(Liao, 2003; Liao, 2012). Interestingly, subject to the same set
of linear and non-linear operators and unit auxiliary function,
HPM solution is a subcase of HAM for ħi � −1.

2.3 Optimal homotopy asymptotic method

In order to obtain an accurate approximate solution with just a
few terms of the series, Marinca and Herişanu (2008) proposed a
variant of homotopy-based method, known as the optimal
homotopy asymptotic method (OHAM), using asymptotic
expansions of the functions and operators. We consider a non-
linear system of PDEs as:

Li yi x, t( )[ ] +N i yi x, t( )[ ] + hi x, t( ) � 0, i � 1, 2, . . . , n (12)
subject to the initial and boundary conditions:

B yi,
zyi

zx
,
zyi

zt
( ) � 0, Ι yi,

zyi

zx
,
zyi

zt
( ) � 0 (13)

where symbols denote the same variables as discussed in the previous
section. Following HAM, one can construct a family of equations as
follows:

1 − q( ) Li Φi x, t, Ci,j; q( )( ) + hi x, t( )[ ] � Hi x, t, Ci,j; q( )
× Li Φi x, t, Ci,j; q( )( ) + hi x, t( ) +N i Φi x, t, Ci,j; q( )( )[ ]

(14)

where symbols have their usual meaning and Ci,j are the unknown
parameters. The auxiliary functions are defined as:

Hi x, t, Ci,j; q( ) � 0 for q � 0≠ 0 for q ∈ (0, 1] (15)

It is easy to verify that when q � 0, Φi(x, t, Ci,j; q) � yi,0(x, t)
and when q � 1, Φi(x, t, Ci,j; q) � yi(x, t), which is the same as
HAM and HPM, i.e., as q goes from 0 to 1, we have the
continuous deformation from the initial approximation to the
final solution. Now, the initial approximations yi,0(x, t) can be
found by solving the following set of equations, which is obtained
after substituting q � 0 in Eq. 14:

Li yi,0 x, t( )( ) + hi x, t( ) � 0 (16)
subject to the boundary conditions:

B yi,0,
zyi,0

zx
,
zyi,0

zt
( ) � 0, Ι yi,0,

zyi,0

zx
,
zyi,0

zt
( ) � 0 (17)

In OHAM, expanding the auxiliary function with respect to the
embedding parameter is the key step. The auxiliary function
Hi(x, t, Ci,j; q) can be expressed as follows:

Hi x, t, Ci,j; q( ) � qHi,1 x, t, Ci,j( ) + q2Hi,2 x, t, Ci,j( ) + q3Hi,3 x, t, Ci,j( )
+ ...

(18)
where Hi(x, t, Ci,j)’s are the auxiliary functions that depend on the
independent variables x and t and parameters Ci,j. It can be noted that
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the series Eq. 18 is in accordance with the property Eq. (15). Now, the
solution of Eq. 12 can be assumed to be of the form:

Φi x, t, Ci,j; q( ) � yi,0 x, t( ) +∑∞
j�1
yi,j x, t, Ci,j( )qj (19)

Substituting Eq. 19 into Eq. 14, and equating the like powers of
q, the following equations are obtained [q0 corresponds to Eqs.
16, 17:

Li yi,1 x, t, Ci,j( )( ) � Hi,1 x, t, Ci,j( )N i,0 yi,0 x, t( )( ) (20)

subject to the initial and boundary conditions:

B yi,1,
zyi,1

zx
,
zyi,1

zt
( ) � 0, Ι yi,1,

zyi,1

zx
,
zyi,1

zt
( ) � 0 (21)

For k � 2, 3, 4, ...,

Li yi,k x, t, Ci,j( ) − yi,k−1 x, t, Ci,j( )[ ] � Hi,k x, t, Ci,j( )N i,0 yi,0 x, t( )( )
+∑k−1

j�1
Hi,j x, t, Ci,j( )[Li yi,k−j x, t, Ci,j( )[ ]

+N i,k−j[yi,0 x, t( ), yi,1 x, t, Ci,j( ), . . . ,
yi,k−j x, t, Ci,j( )]] (22)

subject to the initial and boundary conditions:

B yi,k,
zyi,k

zx
,
zyi,k

zt
( ) � 0, Ι yi,k,

zyi,k

zx
,
zyi,k

zt
( ) � 0 (23)

where the term N i,k−j[yi,0(x, t), yi,1(x, t, Ci,j), . . . , yi,k−j(x, t, Ci,j)] is
the coefficient of qm, which is obtained by expanding
N i(Φi(x, t, Ci,j; q)) as follows:

N i Φi x, t, Ci,j; q( )( ) � N i,0 yi,0 x, t( )( )
+qN i,1 yi,0 x, t( ), yi,1 x, t, Ci,j( )( )
+q2N i,2 yi,0 x, t( ), yi,1 x, t, Ci,j( ), yi,2 x, t, Ci,j( )( ) + ...

(24)

It can be observed from Eq. 22 that like HAM and HPM, OHAM
also converts the original non-linear equation into an infinite set of
linear sub-equations. Further, the method does not depend on the
presence of a small parameter in the governing equation. The
convergence of the series Eq. 19 depends on the choice of
Hi,j(x, t, Ci,j), and there exist many ways to choose it. According
toMarinca and Herişanu (2015), one can chooseHi,j(x, t, Ci,j) in such
a way that the product Hi,j(x, t, Ci,j)[Li[yi,k−j(x, t, Ci,j)]+
N i,k−j[yi,0(x, t), yi,1(x, t, Ci,j), . . . , yi,k−j(x, t, Ci,j)]] of Eq. 22 is of
the same form as that of Hi,j(x, t, Ci,j). The considered functions
can be of any type, such as polynomial, exponential, trigonometric, etc.
Now, based on the choice of auxiliary function, if the series Eq. 19
converges at q � 1, then

yi x, t, Ci,j( ) � yi,0 x, t( ) +∑∞
j�1
yi,j x, t, Ci,j( ) (25)

Finally, the approximate solution can be obtained by considering a
finite number of terms of the series Eq. 25. The unknown parameters
Ci,j and the choice of auxiliary function will be discussed later in
relation to the problem under consideration.

3 Governing equation and solution
methodologies

In a one-dimensional flow field, the general form for a reactive
transport system which describes the phenomenon of multi-species
migration having spatially and temporally varying parameters can be
modelled as follows (Chaudhary and Singh 2020):

ri
zCi

zt
� z

zx
D x, t( ) zCi

zx
− v x, t( )Ci( ) + ki−1Ci−1 − kiCi, i � 1, 2, ..., n

(26)
Here, k0 � 0 and n represents the number of species; x and t denote the
spatial and temporal coordinates, respectively; ri is the retardation factor
for the i-th species; Ci is the concentration strength for the i-th species; ki
is the decay rate coefficient for the i-th species; andD(x, t) and v(x, t) are
the dispersion coefficient and seepage velocity, respectively.

The present work considers two-species system (i.e., i � 1, 2) and
includes the effect of spatially and temporally dependent transport
parameters on pollutant migration. To that end, the model becomes
(Chaudhary and Singh 2020):

r1
zC1

zt
� z

zx
D x, t( ) zC1

zx
− v x, t( )C1( ) − k1C1 (27)

r2
zC2

zt
� z

zx
D x, t( ) zC2

zx
− v x, t( )C2( ) − k2C2 + k1C1 (28)

where C1 andC2 represent the pollutant concentration level for parent
and daughter species, respectively.

The initial and boundary conditions for the model can be given as
follows:

C1 x, 0( ) � f1 x( ), C1 0, t( ) � f1 0( ), lim
x ����→∞

C1 x, t( ) � 0 (29)
C2 x, 0( ) � f2 x( ), C2 0, t( ) � f2 0( ), lim

x ����→∞
C2 x, t( ) � 0 (30)

where f1(x) and f2(x) are considered as (Simpson and Ellery 2014):

f1 x( ) � a1xexp −a2x( ), f2 x( ) � 0 (31)
Eqs 29, 30, 31 show that spatially dependent pollution exists

initially for the parent species. However, for the daughter species,
the initial concentration is zero.

Based on the forms of D(x, t) and v(x, t), several scenarios can be
considered. Here, we consider a specific case, specifically the steady
migration phenomenon in the case of steady groundwater flow. It may
be noted that the solutionmethodologies reported here can be adopted for
other cases such as the transient migration in steady and unsteady flows
(Chaudhary and Singh 2020). However, as our objective is to show the
applicability of different homotopy-based methods by extending the work
of Chaudhary and Singh (2020), we restrict our analysis for the case of
steady migration in steady flow. To that end, we assume:

D x, t( ) � D0 α1 + α2x( )2, v x, t( ) � v0 α1 + α2x( ) (32)
where D0 and v0 are the initial dispersion and velocity, respectively; α1
and α2 are the parameters, where α2 is knows as the heterogeneity
parameter. Eq. 32 shows that dispersion is directly proportional to the
square of velocity (Batu 2005). For α1 � 1 and α2 → 0, i.e., α2 is very
small, the system converts into a homogeneous one, where the effect of
space on dispersion and seepage velocity is absent. As α2 increases, the
system becomes heterogeneous. It may be noted that the dispersion can be
expressed differently but Eq. 32 is reasonable for purposes of this study.
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Further, seepage velocity given in Eq. 32 can also be expressed
exponentially or in power form. However, for purposes of this study,
Eq. 32 is reasonable, especially for homogeneous aquifers. Before applying
the homotopy-based methods, for convenience, let us rewrite the
governing Eqs 27, 28 in the following form:

r1
zC1

zt
� D

z2C1

zx2
+ zD

zx
− v( ) zC1

zx
− k1 + zv

zx
( )C1 (33)

r2
zC2

zt
� D

z2C2

zx2
+ zD

zx
− v( ) zC2

zx
− k2 + zv

zx
( )C2 + k1C1 (34)

3.1 HAM-based solution

As discussed in Section 2.1, one can apply the HAM to the
system of Eqs 33, 34 by constructing some operators and
functions that are given below. The non-linear operators for
the problem are selected as:

N 1 Φi x, t; q( )[ ] � r1
zΦ1 x, t; q( )

zt
−D

z2Φ1 x, t; q( )
zx2

− zD

zx
− v( ) zΦ1 x, t; q( )

zx
+ k1 + zv

zx
( )Φ1 x, t; q( )

(35)
N 2 Φi x, t; q( )[ ] � r2

zΦ2 x, t; q( )
zt

−D
z2Φ2 x, t; q( )

zx2

− zD

zx
− v( ) zΦ2 x, t; q( )

zx
+ k2 + zv

zx
( )Φ2 x, t; q( )

− k1Φ1 x, t; q( )
(36)

The above equations are the original operators of the
equations, which is always an easy and convenient
consideration for the non-linear operators in the framework
of HAM. Therefore, using Eqs 35, 36, terms Ri,m can be
calculated from Eq. 6 as follows:

R1,m
�Ci,m−1( ) � r1

zC1,m−1
zt

−D
z2C1,m−1
zx2

− zD

zx
− v( ) zC1,m−1

zx

+ k1 + zv

zx
( )C1,m−1 (37)

R2,m
�Ci,m−1( ) � r2

zC2,m−1
zt

−D
z2C2,m−1
zx2

− zD

zx
− v( ) zC2,m−1

zx

+ k2 + zv

zx
( )C2,m−1 − k1C1,m−1 (38)

Now, as discussed earlier, we need to follow three
fundamental rules provided by Liao (2003) to have a
convergent series solution. First, we consider the following set
of base functions to represent the solutions Ci(x, t) of the present
problem:

xmtp exp −nbx( ) ∣∣∣∣m, n, p � 0, 1, 2, 3, ...{ } (39)

so that

Ci x, t( ) � ∑∞
p�0

∑∞
m�0

∑∞
n�1

βm,n,px
mtp exp −nbx( ) (40)

where βm,n,p are the coefficients of the series. Eq. 40 provides the so-
called rule of solution expression. Following the rule of solution
expression, the linear operators and the initial approximations are
chosen, respectively, as follows:

FIGURE 1
Flowchart for the HAM solution (45).
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Li Φi x, t; q( )[ ] � ri
zΦi x, t; q( )

zt
with the property Li E2[ ] � 0

(41)
C1,0 x, t( ) � f1 x( ) � a1x exp −a2x( ), C2,0 x, t( ) � f2 x( ) � 0 (42)

where E2 is an integral constant. It may be noted that the choice for Eq.
41 is not unique. Using Eq. 41, the higher-order terms can be obtained
from Eq. 4 as follows:

Ci,m x, t( ) � χmCi,m−1 x, t( ) + Zi
ri

( )∫ t

0
Hi x, t( )Ri,m

�Ci,m−1( )dt + E2, m

� 1, 2, 3, ...

(43)
where Ri,m are given by Eqs 37, 38, and constant E2 can be
determined from the initial condition for the higher-
order deformation equations, which simply yields E2 � 0 for
all m≥ 1.

Now, the auxiliary functions Hi(x, t) can be
determined from the rule of coefficient ergodicity. Based on
the rule of solution expression, the general form of Hi(x, t)
should be:

Hi x, t( ) � xn1 tn3 exp −bn2x( ) (44)
where n1, n2, and n3 are the integers. However, for
simplicity, we can take Hi(x, t) � 1 (Vajravelu and Van
Gorder 2013). Finally, the approximate solutions can be
obtained as follows:

Ci x, t( ) ≈ Ci,0 x, t( ) + ∑M
m�1

Ci,m x, t( ) (45)

For the convenience of readers, a flowchart containing the steps of
the method is provided in Figure 1.

3.2 HPM-based solution

In relation to the discussion in Section 2.2, for simplicity, we
consider the linear operator as follows:

Li Φi x, t; q( )[ ] � ri
zΦi x, t; q( )

zt
, i � 1, 2 (46)

The non-linear operators are selected as Eqs 35, 36. In the
framework of HPM also, the selection of these operators is not
unique; indeed, one can choose any other forms to check for a
better solution. Using these expressions in Eq. 9 and then
substituting the series Eq. 10, we obtain the following systems of
differential equations after equating the like powers of q:

r1
zΦ1,0

zt
− zC1,0

zt
( ) � 0 subject to Φ1,0 x, 0( ) � f1 x( ), Φ1,0 0, t( )

� f1 0( ), lim
x ����→∞

Φ1,0 x, t( ) � 0 (47)

r2
zΦ2,0

zt
− zC2,0

zt
( ) � 0 subject to Φ2,0 x, 0( ) � f2 x( ), Φ2,0 0, t( )

� f2 0( ), lim
x ����→∞

Φ2,0 x, t( ) � 0 (48)

FIGURE 2
Flowchart for the HPM solution (55).
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r1
zΦ1,1

zt
− zΦ1,0

zt
− zC1,0

zt
( )( ) + r1

zΦ1,0

zt
−D

z2Φ1,0

zx2 − zD

zx
− v( ) zΦ1,0

zx

+ k1 + zv

zx
( )Φ1,0

� 0 subject to Φ1,1 x, 0( ) � 0, Φ1,1 0, t( ) � 0, lim
x ����→∞

Φ1,1 x, t( ) � 0

(49)

r2
zΦ2,1

zt
− zΦ2,0

zt
− zC2,0

zt
( )( ) + r2

zΦ2,0

zt
−D

z2Φ2,0

zx2 − zD

zx
− v( ) zΦ2,0

zx

+ k2 + zv

zx
( )Φ2,0 − k1Φ1,0

� 0 subject to Φ2,1 x, 0( ) � 0, Φ2,1 0, t( ) � 0, lim
x ����→∞

Φ2,1 x, t( ) � 0

(50)

FIGURE 3
Flowchart for the OHAM solution (65).

FIGURE 4
-− curves for Ci(1, 1) of the HAM solution: (A) 5th order approximation, and (B) 10th order approximation.
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r1
zΦ1,2

zt
− zΦ1,1

zt
( ) + r1

zΦ1,1

zt
−D

z2Φ1,1

zx2
− zD

zx
− v( ) zΦ1,1

zx
+ k1 + zv

zx
( )Φ1,1

� 0 subject to Φ1,2 x, 0( ) � 0, Φ1,2 0, t( ) � 0, lim
x ����→∞

Φ1,2 x, t( ) � 0

(51)

r2
zΦ2,2

zt
− zΦ2,1

zt
( ) + r2

zΦ2,1

zt
−D

z2Φ2,1

zx2 − zD

zx
− v( ) zΦ2,1

zx
+ k2 + zv

zx
( )Φ2,1

−k1Φ1,1

� 0 subject to Φ2,2 x, 0( ) � 0, Φ2,2 0, t( ) � 0, lim
x ����→∞Φ2,2 x, t( ) � 0

(52)

Proceeding in a like manner, one can arrive at the following
recurrence relation:

r1
zΦ1,m

zt
− zΦ1,m−1

zt
( ) + r1

zΦ1,m−1
zt

−D
z2Φ1,m−1
zx2 − zD

zx
− v( ) zΦ1,m−1

zx

+ k1 + zv

zx
( )Φ1,m−1

� 0 subject to Φ1,m x, 0( ) � 0, Φ1,m 0, t( ) � 0, lim
x ����→∞

Φ1,m x, t( )
� 0 for m≥ 2 (53)

r2
zΦ2,m

zt
− zΦ2,m−1

zt
( ) + r2

zΦ2,m−1
zt

−D
z2Φ2,m−1
zx2 − zD

zx
− v( ) zΦ2,m−1

zx

+ k2 + zv

zx
( )Φ2,m−1 − k1Φ1,m−1

� 0 subject to Φ2,m x, 0( ) � 0, Φ2,m 0, t( ) � 0, lim
x ����→∞

Φ2,m x, t( )
� 0 for m≥ 2 (54)
The initial approximation can be chosen as Φ1,0 � f1(x) �

a1xexp(−a2x) and Φ2,0 � f2(x) � 0. Using this initial approximation,
we can solve the equations iteratively using a symbolic software. Finally, the
HPM-based solutions can be approximated as follows:

Ci x, t( ) ≈ ∑M
k�0

Φi,k (55)

A flowchart containing the steps of the method is given in Figure 2.

3.3 OHAM-based solution

In relation to the discussion given in Section 2.3, we choose the
following operators:

FIGURE 5
HAM-based pollutant concentrations versus distance for both species at: (A) t � 0 h, (B) t � 20 h, and (C) t � 40 h.
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Li Ci x, t( )[ ] � ri
zCi x, t( )

zt
(56)

N 1 Ci x, t( )[ ] � −D z2C1 x, t( )
zx2

− zD

zx
− v( ) zC1 x, t( )

zx

+ k1 + zv

zx
( )C1 x, t( ) (57)

N 2 Ci x, t( )[ ] � −D z2C2 x, t( )
zx2

− zD

zx
− v( ) zC2 x, t( )

zx

+ k2 + zv

zx
( )C2 x, t( ) − k1C1 x, t( ) (58)

and

hi x, t( ) � 0 (59)

With these considerations, we can solve the zeroth-order Eq. 16 to
have the following solution:

Ci,0 x, t( ) � fi x( ) (60)

Now to have the higher-order equations, we need the expressions
N i,0, N i,1, N i,2, etc. as can be seen from Eq. 20. For that, one can use

Eq. 24 in relation with Eqs 57, 58. Using this we have the first-order
equations:

r1
zC1,1

zt
� H1,1 x, t, D1,i( ) −D z2C1,0

zx2
− zD

zx
− v( ) zC1,0

zx
+ k1 + zv

zx
( )C1,0[ ] subject to C1,1 x, 0( )

� 0, C1,1 0, t( ) � 0, lim
x ����→∞

C1,1 x, t( ) � 0

(61)

r2
zC2,1

zt
� H2,1 x, t, D2,i( )

× −D z2C2,0

zx2
− zD

zx
− v( ) zC2,0

zx
+ k2 + zv

zx
( )C2,0 − k1C1,0[ ] subject to C2,1 x, 0( )

� 0, C2,1 0, t( ) � 0, lim
x ����→∞

C2,1 x, t( ) � 0

(62)

The auxiliary functions can be chosen in many ways. Here, we
select H1,1(x, t, D1,i) � D1,1 and H2,1(x, t, D2,i) � D2,1. Putting k � 2
in Eq. 22 and then using the expansion of N , we have the following
second-order equation:

r1
zC1,2

zt
� r1

zC1,1

zt
+D1,2 −D z2C1,0

zx2 − zD

zx
− v( ) zC1,0

zx
+ k1 + zv

zx
( )C1,0[ ]

+D1,1 r1
zC1,1

zt
−D

z2C1,1

zx2 − zD

zx
− v( ) zC1,1

zx
+ k1 + zv

zx
( )C1,1[ ] subject to C1,2 x, 0( )

� 0, C1,2 0, t( ) � 0, lim
x ����→∞

C1,2 x, t( ) � 0 (63)

FIGURE 6
HPM-based pollutant concentrations versus distance for both species at: (A) t � 0 h, (B) t � 20 h, and (C) t � 40 h.
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r2
zC2,2

zt
� r2

zC2,1

zt
+D2,2 −D z2C2,0

zx2 − zD

zx
− v( ) zC2,0

zx
+ k2 + zv

zx
( )C2,0 − k1C1,0[ ]

+D2,1 r2
zC2,1

zt
−D

z2C2,1

zx2 − zD

zx
− v( ) zC2,1

zx
+ k2 + zv

zx
( )C2,1 − k1C1,1[ ]

subject to C1,2 x, 0( ) � 0, C1,2 0, t( ) � 0, lim
x ����→∞

C1,2 x, t( ) � 0 (64)

Here, we choose H1,2(x, t, D2,i) � D1,2 and H2,2(x, t, D2,i) � D2,2.
The terms of the series can be computed using the equations
developed here. One can compute these terms without any
difficulty using a symbolic computation software, such as
MATLAB. Further, following Eq. 22, the higher-order terms
can be computed in a similar manner. However, our aim is
to produce an accurate solution with just two-three terms of
OHAM-based series. Therefore, we restrict our calculation up to
k � 2. Finally, the approximate solution can be found as:

Ci x, t( ) ≈ Ci,0 x, t( ) + Ci,1 x, t, Di,i( ) + C1,2 x, t, Di,i( ) (65)

where the terms are given by Eqs. 60, 61, 62, 63, 64. A
flowchart containing the steps of the method is provided in
Figure 3.

In Section 2, we discussed the homotopy-based methods
from a general framework of system of PDEs. Indeed, the
methodologies are equally applicable to single equations, integral
equations, etc. Then, in Section 3, the methodologies were applied to
a system of equations describing two-species pollutant transport. It can
be seen from the application of these methods that they are different
from the construction of different functions, operators, and parameters,
and therefore may have advantages or disadvantages while dealing with
a particular problem. From a theoretical perspective, the convergence
theorems for HAM- and OHAM-based solutions are provided in
Appendix A.

4 Results and discussion

First, we discuss the expressions and the values of parameters needed
for the assessment of the developed solutions. Then, the numerical
convergence of the HAM-based analytical solution is established for a
specific test case, and then the solution is validated over a numerical
solution. Finally, the HPM- and OHAM-based analytical solutions are
validated by comparing them with the numerical solution.

FIGURE 7
OHAM-based pollutant concentrations versus distance for both species at: (A) t � 0 h, (B) t � 20 h, and (C) t � 40 h.
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4.1 Selection of expressions and parameters

For the assessment of solutions, it can be seen that the dispersion
coefficient D(x, t) and seepage velocity v0(x, t) are taken as given by
Eq. 2. Using these equations, we have:

zD

zx
� 2α2D0 α1 + α2x( ), zv

zx
� α2v0 (66)

For the validation of solutions, space and time domains are
considered as 0≤x(cm)≤ 3000 and 0≤ t(hr)≤ 40. The required
parameters are chosen as (Simpson and Ellery 2014; Chaudhary

and Singh 2020): a1 � 2, a2 � 0.0025, k1 � 0.05 (/hr),
k2 � 0.01 (/hr), v0 � 0.2 (cm/hr), and D0 � 0.5 (cm2/hr). Also, the
other parameters are considered as r1 � 2, r2 � 2.5, α1 � 1,
and α2 � 0.05 (/cm).

4.2 Numerical convergence and validation of
the HAM solution

There are two ways to handle the convergence of HAM: one
is based on the Z− curves, and the other is by finding the squared

TABLE 1 Comparison between HAM-, HPM-, and OHAM-based approximations and numerical solution for the selected case for t � 0 h: (a) C1(x, t) and (b) C2(x, t). (a)
Species, C1(x, t) (b) Species, C2(x, t)

x (cm) t � 0 h

Numerical
solution

3rd order HAM-based
approximation

5th order HPM-based
approximation

Three-term OHAM-based
approximation

0 0 0.0000 0.0000 0.0000

250 267.6307 267.6299 267.6299 267.6299

500 286.5048 286.5039 286.5039 286.5040

750 230.0325 230.0318 230.0318 230.0319

1000 164.1700 164.1696 164.1696 164.1696

1250 109.8423 109.8421 109.8421 109.8421

1500 70.5532 70.5531 70.5531 70.5531

1750 44.0585 44.0585 44.0585 44.0585

2000 26.9518 26.9518 26.9518 26.9518

2250 16.2295 16.2295 16.2295 16.2295

2500 9.6523 9.6523 9.6523 9.6523

2750 5.6831 5.6831 5.6831 5.6831

3000 3.3185 3.3185 3.3185 3.3185

x (cm) t � 0 h

Numerical
solution

3rd order HAM-based
approximation

5th order HPM-based
approximation

Three-term OHAM-based
approximation

0 0 0 0 0

250 0 0.0005 0.0005 0.0005

500 0 0.0006 0.0006 0.0005

750 0 0.0005 0.0005 0.0004

1000 0 0.0003 0.0003 0.0003

1250 0 0.0002 0.0002 0.0002

1500 0 0.0001 0.0001 0.0001

1750 0 0 0 0

2000 0 0 0 0

2250 0 0 0 0

2500 0 0 0 0

2750 0 0 0 0

3000 0 0 0 0
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residual error (Liao 2012). It can be noted that for the system
of equations considered here, we have chosen Z1 � Z2 � Z. One can
indeed choose two different auxiliary parameters; however, it is
better to first consider a common Z to see the accuracy of solutions,
as this assumption simplifies the problem. Here, we calculate the
so-called Z − curves to find a suitable choice for the auxiliary
parameter Z , which determines the convergence of the HAM-
based series solution. In this regard, for a particular order of
approximation, we plot the approximate solution Ci(x, t) (or its

derivatives) at some point within the domain. The flatness of the
-− curve determines a suitable choice for the auxiliary parameter
-. In Figure 4, we plot the -− curves for 5th and 10th order HAM-
based approximations for the value Ci(1, 1). From the exact
solution, those quantities can be calculated, and it is observed
from the figures that the curves exhibit the flat nature for a specific
range of -. Any choice of -within this range determines an optimal
value for which the series solutions converge (Abbasbandy et al.,
2011).

TABLE 2 Comparison between HAM-, HPM-, and OHAM-based approximations and numerical solution for the selected case for t � 20 hr: (a) C1(x, t) and (b) C2(x, t). (a)
Species, C1(x, t) (b) Species, C2(x, t)

x (cm) t � 20 h

Numerical
solution

3rd order HAM-based
approximation

5th order HPM-based
approximation

Three-term OHAM-based
approximation

0 0 0 −1.6183 0

250 140.4908 140.6578 140.4567 141.3510

500 157.6763 157.7893 157.6617 158.9841

750 133.5315 133.5544 133.5323 134.9613

1000 101.2569 101.2147 101.2632 102.6167

1250 72.5128 72.4397 72.5181 73.7020

1500 50.2082 50.1308 50.2103 51.1863

1750 34.0330 33.9673 34.0324 34.7970

2000 22.7495 22.7023 22.7475 23.3180

2250 15.0663 15.0383 15.0643 15.4687

2500 9.9165 9.9046 9.9151 10.1857

2750 6.5007 6.5008 6.5003 6.6685

3000 4.2511 4.2586 4.2513 4.3454

x (cm) t � 20 h

Numerical
solution

3rd order HAM-based
approximation

5th order HPM-based
approximation

Three-term OHAM-based
approximation

0 0 0 −0.7254 0

250 70.9251 70.7487 70.9525 71.4407

500 79.2222 79.1049 79.2369 79.3371

750 66.7362 66.7144 66.7373 66.3508

1000 50.3063 50.3567 50.3017 49.5507

1250 35.7906 35.8784 35.7860 34.8341

1500 24.6059 24.7026 24.6035 23.5909

1750 16.5518 16.6392 16.5517 15.5772

2000 10.9746 11.0433 10.9759 10.0988

2250 7.2061 7.2536 7.2077 6.4560

2500 4.7005 4.7284 4.7018 4.0814

2750 3.0527 3.0646 3.0534 2.5566

3000 1.9770 1.9771 1.9771 1.5890
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Here, we test the performance of the HAM-based analytical solutions
for the present problem by comparing them with a numerical solution.
The numerical solution is obtained using an efficient MATLAB tool,
namely ‘pdepe’. This MATLAB routine uses the method of lines by
discretizing a parabolic PDE (single or system) in one space direction
(Skeel and Berzins 1990). For the parameters described in the previous
section, the pollutant concentrations are computed using pdepde for t � 0,
20, and 40 h. On the other hand,HAM solutions are computed for each of
the cases. The auxiliary parameter Z is chosen as −0.87. Figure 5 depicts
the pollutant concentration values for the selected cases. It can be seen

from the figure that the 3rd order HAM solution agrees very well with the
numerical solution.

4.3 Validation of HPM-based solution

The HPM-based analytical solutions for the selected test
case are validated over the numerical solution obtained using
pdepe of MATLAB. It is seen that the five-term HPM
series produces accurate results over the selected domain.

TABLE 3 Comparison between HAM-, HPM-, and OHAM-based approximations and numerical solution for the selected case for t � 40 h: (a) C1(x, t) and (b) C2(x, t). (a)
Species, C1(x, t) (b) Species, C2(x, t)

x (cm) t � 40 h

Numerical
solution

3rd order HAM-based
approximation

5th order HPM-based
approximation

Three-term OHAM-based
approximation

0 0 0 −1.8523 0

250 73.5227 72.6647 72.2756 76.3031

500 86.1393 86.6023 85.6178 86.3587

750 76.4081 77.7250 76.5445 74.4875

1000 60.9565 62.3186 61.3086 58.3735

1250 46.1183 47.0389 46.3814 43.9499

1500 33.8653 34.2290 33.9435 32.5570

1750 24.4288 24.3471 24.3591 23.9755

2000 17.4318 17.0942 17.2960 17.6135

2250 12.3584 11.9382 12.2277 12.9082

2500 8.7296 8.3447 8.6433 9.4223

2750 6.1556 5.8654 6.1230 6.8376

3000 4.3387 4.1579 4.3498 4.9247

x (cm) t � 40 h

Numerical
solution

3rd order HAM-based
approximation

5th order HPM-based
approximation

Three-term OHAM-based
approximation

0 0 −1.7574 −1.8424 −2.4474

250 95.3208 96.0586 96.4530 92.9257

500 110.6372 110.1981 111.1681 110.9119

750 97.1614 95.9354 97.1046 99.6570

1000 76.6791 75.3736 76.3932 79.9126

1250 57.3454 56.4095 57.0978 60.1912

1500 41.5970 41.1632 41.4886 43.5274

1750 29.6238 29.6214 29.6432 30.5633

2000 20.8592 21.1365 20.9503 20.9755

2250 14.5865 14.9910 14.6929 14.1301

2500 10.1591 10.5758 10.2443 9.3708

2750 7.0611 7.4205 7.1103 6.1314

3000 4.9045 5.1760 4.9188 3.9647
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Figure 6 compares the numerical solutions and the HPM-based
approximations.

4.4 Validation of OHAM-based solution

For the assessment of the OHAM-based analytical solution, one
needs to calculate the constants Di,j’s. For that purpose, we calculate
the residual as follows:

Ri x, t, Di,j( ) � Li Ci,OHAM x, t, Di,j( )[ ] +N i Ci,OHAM x, t, Di,j( )[ ]
+ hi x, t( ), j

� 1, 2, . . . , s

(67)
where Ci,OHAM(x, t,Di,j) is the approximate solution. When
Ri(x, t,Di,j) � 0, Ci,OHAM(x, t,Di,j) becomes the exact solution to the
problem. One of the ways to obtain the optimal Di,j’s, for which the
solution converges, is the minimization of squared residual error, i.e.,

J Di,j( ) � ∫
x,t( )ϵD

∑2
i�1
Ri

2 x, t, Di,j( )dxdt, j � 1, 2, ..., s (68)

where D is the domain of the problem. The minimization of Eq. 68
leads to a system of algebraic equations as follows:

zJ

zD1,1
� zJ

zD1,2
� ... � zJ

zD1,s
� 0 (69)

Solving this system, one can obtain the optimal values of
the parameters. We obtain the optimal values using the MATLAB
routine fminsearch, which minimizes an unconstrained multivariate
function. Three-term OHAM solution is computed and compared
in Figure 7 with the numerical solution obtained using pdepe to see
the effectiveness of the proposed approach. It can be seen that the
OHAM-based approximation agrees well with the numerical solution
for all cases.

4.5 Comparison between different solutions

This work develops three kinds of analytical solutions for two-
species pollutant transport equation using the homotopy-based
methods. In this section, we validated the performances of
different solutions. It is shown that all of them agree well with
the corresponding numerical solutions to the non-linear
problem. However, the methods have their own advantages or
disadvantages. Specifically, the HAM provides a great freedom
in choosing linear, non-linear operators, and auxiliary
functions subject to the choice of base functions. Further, the
convergence-control parameter present in HAM greatly
enhances the radius of convergence of the series and monitors

the rate of convergence. On the other hand, the OHAM
solution is an improved version of homotopy-based method
with the aim of obtaining an accurate approximation with just
two-three terms of the series. For a quantitative assessment, the
performances of different solutions are compared numerically in
Tables 1, 2, 3.

5 Concluding remarks

Here, we derive the HAM-, HPM-, and OHAM-based analytical
solutions for two-species transport equations with spatially varying
dispersion coefficient and seepage velocity. The same equations were
studied analytically using HAM by Chaudhary and Singh (2020). A
numerical solution is also developed using the MATLAB routine
pdepe. The proposed methods produce accurate solutions for all
the cases. This work shows the potential of HAM, HPM, and
OHAM in the context of obtaining a series solution for a system of
parabolic PDEs. The theoretical as well as numerical convergence of
the series solutions are provided.
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Appendix A. Convergence theorems

The convergence of the HAM- and OHAM-based solutions are
proved theoretically using the following theorems.

A.1 Convergene Theorem of HAM-Based Solution.
The convergence theorem for the HAM-based solutions given by

Eq. 45 can be proved using the following theorems.
Theorem A.1: If the homotopy series∑∞

m�0Ci,m(x, t), ∑∞
m�0

zCi,m(x,t)
zt , ∑∞

m�0
zCi,m(x,t)

zx , and ∑∞
m�0

z2Ci,m(x,t)
zx2

converge, then Ri,m( �Ci,m−1) given by Eqs. 37, 38 satisfies the
relation ∑∞

m�1Ri,m( �Ci,m−1) � 0.

Proof: The auxiliary linear operators was defined as follows:

Li Ci[ ] � ri
zCi

zt
(A1)

According to Eq. 4, we obtain:

Li Ci,1[ ] � ZRi,1 Ci,0
��→( ) (A2)

Li Ci,2 − Ci,1[ ] � ZRi,2 Ci,1
��→( ) (A3)

L Ci,3 − Ci,2[ ] � ZRi,3 Ci,2
��→( ) (A4)

Li Ci,m − Ci,m−1[ ] � ZRi,m Ci,m−1
�����→( ) (A5)

Adding all the above terms, we get:

Li Ci,m[ ] � Z∑m
k�1

Ri,k Ci,k−1
����→( ) (A6)

As the series ∑∞
m�0Ci,m(x, t), ∑∞

m�0
zCi,m(x,t)

zt , ∑∞
m�0

zCi,m(x,t)
zx , and∑∞

m�0
z2Ci,m(x,t)

zx2 are convergent, lim
m ����→∞Ci,m(x, t) � 0 and

lim
m ����→∞Ci,m′(x, t) � 0. Now, recalling the above summand and
taking the limit, the required result follows as

Z∑∞
k�1

Ri,k Ci,k−1
����→( ) � Z lim

m ����→∞∑m
k�1

Ri,k Ci,k−1
����→( ) � lim

m ����→∞L Ci,m[ ] � ri lim
m ����→∞Ci,m′ x, t( ) � 0 (A7)

Theorem A.2: If Z is so properly chosen that the series∑∞
m�0Ci,m(x, t), ∑∞

m�0
zCi,m(x,t)

zt , ∑∞
m�0

zCi,m(x,t)
zx , and ∑∞

m�0
z2Ci,m(x,t)

zx2

converge absolutely to Ci(x, t), zCi(x,t)
zt , zCi(x,t)

zx , and z2Ci(x,t)
zx2 ,

respectively, then the homotopy series ∑∞
m�0Ci,m(x, t) satisfies the

original governing Eqs 33, 34.
Proof: Theorem A.1 shows that if

∑∞
m�0Ci,m(x, t), ∑∞

m�0
zCi,m(x,t)

zt , ∑∞
m�0

zCi,m(x,t)
zx , and ∑∞

m�0
z2Ci,m(x,t)

zx2

converge then ∑∞
m�1Ri,m( �Ci,m−1) � 0.

Therefore, using the expressions Eqs 37, 38, and simplifying
further lead to:

r1∑∞
m�0

zC1,m

zt
−D∑∞

m�0

z2C1,m−1
zx2

− zD

zx
− v( )∑∞

m�0

zC1,m−1
zx

+ k1 + zv

zx
( )∑∞

m�0
C1,m−1 � 0 (A8)

r2∑∞
m�0

zC2,m−1
zt

−D∑∞
m�0

z2C2,m−1
zx2

− zD

zx
− v( )∑∞

m�0

zC2,m−1
zx

+ k2 + zv

zx
( )∑∞

m�0
C2,m−1 − k1∑∞

m�0
C1,m−1 � 0 (A9)

which is basically the original governing Eqs 33, 34. Furthermore,
subject to the initial and boundary conditions
Ci,0(x, 0) � fi(x), Ci,0(0, t) � fi(0), lim

x ����→∞Ci,0(x, t) � 0, and the
conditions for the higher-order deformation equation
Ci,m(x, 0) � 0Ci,m(0, t) � 0 lim

x ����→∞Ci,m(x, t) � 0, for m≥ 1, we
easily obtain ∑∞

m�0Ci,m(x, 0) � fi(x), ∑∞
m�0Ci,m(0, t) � fi(0), and

lim
x ����→∞∑∞

m�0Ci,m(x, t) � 0. Hence, the convergence result follows.
A.2 Convergence Theorem of OHAM-Based Solution.
Theorem A.3: If the series Ci,0(x, t) +∑∞

j�1Ci,j(x, t, Di,i), i �
1, 2, ..., s converges, where Ci,j(x, t, Di,i) are governed by Eqs 60, 61,
62, 63, 64, then Eq. 65 is a solution of the original Eqs 33, 34.

Proof: Based on the choice of the auxiliary function, suppose that
the series Eq. 65 is convergent. Then, we get:

lim
j ����→∞Ci,j x, t, Di,i( ) � 0, i � 1, 2, ..., s (A10)

One can write:

Ci,j x, t, Di,i( ) � Ci,0 x, t, Di,i( ) + Ci,1 x, t, Di,i( ) − Ci,0 x, t, Di,i( )[ ]
+ Ci,2 x, t, Di,i( ) − Ci,1 x, t, Di,i( )[ ] + ...

+ Ci,j x, t, Di,i( ) − Ci,j−1 x, t, Di,i( )[ ]
� Ci,0 x, t, Di,i( )
+∑j
k�1

Ci,k x, t, Di,i( ) − Ci,k−1 x, t, Di,i( )[ ], i
� 1, 2, ..., s (A11)

Using Eq. A11, one can obtain from Eq. A10:

0 � lim
j ����→∞Ci,j x, t, Di,i( ) � Ci,0 x, t, Di,i( ) +∑∞

k�1
Ci,k x, t, Di,i( ) − Ci,k−1 x, t, Di,i( )[ ], i � 1, 2, ..., s

(A12)

Eq. A12 can be rearranged as:

Ci,0 x, t, Di,i( ) + hi x, t( ) − hi x, t( ) + Ci,1 x, t, Di,i( ) − Ci,0 x, t, Di,i( )[ ]
+∑∞

k�2
Ci,k x, t, Di,i( ) − Ci,k−1 x, t, Di,i( )[ ], i

� 1, 2, ..., s (A13)

Using the property of the linear operator,
i.e., L[A1(x, t) + A2(x, t)] � L[A1(x, t)] + L[A2(x, t)] and
L(0) � 0, we have:
0 � Li 0( )

� Li Ci,0 x, t, Di,i( )[ ] + hi x, t( ) + Li Ci,1 x, t, Di,i( )[ ] − Li Ci,0 x, t, Di,i( )[ ] + hi x, t( )( )
+∑∞

k�2
Li Ci,k x, t, Di,i( )[ ] − Li Ci,k−1 x, t, Di,i( )[ ]( )

� Hi,1 x, t, Di,i( )Ni,0 Ci,0 x, t, Di,i( )[ ]
+∑∞

k�2
Hi,k x, t, Di,i( )Ni,0 Ci,0 x, t, Di,i( )[ ] +∑k−1

l�1
Hi,l x, t, Di,i( ) Li Ci,k−l x, t, Di,i( )[ ][⎛⎝

+Ni,k−l Ci,0 x, t, Di,i( ), Ci,1 x, t, Di,i( ), ..., Ci,k−l x, t, Di,i( )[ ]])
� ∑∞

k�1
Hi,k x, t, Di,i( )⎡⎣ ⎤⎦Ni,0 Ci,0 x, t, Di,i( )[ ] +∑∞

k�2
∑k−1
l�1

Hi,l x, t, Di,i( )
× Li Ci,k−l x, t, Di,i( )[ ] +Ni,k−l Ci,0 x, t, Di,i( ), Ci,1 x, t, Di,i( ), ..., Ci,k−l x, t, Di,i( )[ ][ ]

� Hi x, t, Di,i( )Ni,0 Ci,0 x, t, Di,i( )[ ]
+∑∞

k�2
∑k−1
l�1

Hi,l x, t, Di,i( )× Li Ci,k−l x, t, Di,i( )[ ] +Ni,k−l Ci,0 x, t, Di,i( ),[[
Ci,1 x, t, Di,i( ), ..., Ci,k−l x, t, Di,i( )]] � Hi x, t, Di,i( )Ni,0 Ci,0 x, t, Di,i( )[ ]

+∑∞
k�1

Hi,k x, t, Di,i( )∑∞
p�1

Li Ci,p x, t, Di,i( )[ ] +Ni,p Ci,0 x, t, Di,i( ),[[
Ci,1 x, t, Di,i( ), ..., Ci,p x, t, Di,i( )]] � Hi x, t, Di,i( )Ni,0 Ci,0 x, t, Di,i( )[ ]

+Hi x, t, Di,i( )
× Li ∑∞

p�1
Ci,p x, t, Di,i( )⎛⎝ ⎞⎠ + ∑∞

p�1
Ni,p Ci,0 x, t, Di,i( ), Ci,1 x, t, Di,i( ), ..., Ci,p x, t, Di,i( )[ ]⎡⎢⎢⎣ ⎤⎥⎥⎦

� Hi x, t, Di,i( )Ni,0 Ci,0 x, t, Di,i( )[ ]
+Hi x, t, Di,i( )× Li Ci x, t, Di,i( )( ) − Li Ci,0 x, t, Di,i( )( ) +Ni Ci x, t, Di,i( )( ) −Ni Ci,0 x, t, Di,i( )( )[ ]
� Hi x, t, Di,i( )Ni,0 Ci,0 x, t, Di,i( )[ ] +Hi x, t, Di,i( )

× Li Ci x, t, Di,i( )( ) − Li Ci,0 x, t, Di,i( )( ) + hi x, t( )[ ] + hi x, t( )[
+Ni Ci x, t, Di,i( )( ) −Ni Ci,0 x, t, Di,i( )( )] � Hi x, t, Di,i( ) Li Ci x, t, Di,i( )( ) + hi x, t( )[

+Ni Ci x, t, Di,i( )( )], i � 1, 2, ..., s (A14)

Now, since Hi(x, t, Di,i) ≠ 0, from Eq. A14 we have
Li Ci x, t, Di,i( )( ) + hi x, t( ) +Ni Ci x, t, Di,i( )( ) � 0, i � 1, 2, ..., s (A15)

which shows that Ci(x, t, Di,i) is the exact solution of Eqs 33, 34.
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