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Volcanic sulfur dioxide (SO2) satellite observations are key for monitoring

volcanic activity, and for mitigation of the associated risks on both human

health and aviation safety. Automatic analysis of this data source, including

robust source emission retrieval, is in turn essential for near real-time

monitoring applications. We have developed fast and accurate SO2 plume

classifier and segmentation algorithms using classic clustering, segmentation

and image processing techniques. These algorithms, applied to measurements

from the TROPOMI instrument onboard the Sentinel-5 Precursor platform, can

help in the accurate source estimation of volcanic SO2 plumes originating from

various volcanoes. In this paper, we demonstrate the ability of different pixel

classification methodologies to retrieve SO2 source emission with a good

accuracy. We compare the algorithms, their strengths and shortcomings,

and present plume classification results for various active volcanoes

throughout the year 2021, including examples from Etna (Italy), Sangay and

Reventador (Ecuador), Sabancaya and Ubinas (Peru), Scheveluch and

Klyuchevskoy (Russia), as well as Ibu and Dukono (Indonesia). The developed

algorithms, shared as open-source code, contribute to improving analysis and

monitoring of volcanic emissions from space.
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1 Introduction

The accurate retrieval of the source location and mass loading of volcanic plumes is

essential to study volcanic processes and mitigate the associated hazards. In particular,

Sulfur Dioxide (SO2) gas emissions are a key parameter informing on the eruptive activity

of volcanoes (Oppenheimer et al., 2014). An increase in SO2 flux is for instance often

considered as a precursor to volcanic eruptions. Likewise, decrease in SO2 emissions can

indicate changes in the volcanic conduit permeability (Edmonds et al., 2003), which can

lead to violent explosions (Matthews et al., 1997; Campion et al., 2018). Moreover, these

volcanic gases can have severe impact on human health (Sierra-Vargas et al., 2018;

Carlsen et al., 2021; Heaviside et al., 2021 and air traffic safety Bernard and Rose, 1990;
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Prata, 2009; Schmidt et al., 2014). In particular, injection of sulfur

dioxide in the atmosphere receives considerable attention due to

its subsequent conversion into aerosols and potentially strong

effects on global climate (Robock, 2000).

Space-based measurements of the atmospheric composition

have blossomed over the past 2 decades, from relatively crude,

prototype products, to refined products suitable for operational

monitoring and assimilation. These products include tropospheric

vertical column density of different gases, including SO2 (Carn

et al., 2017). In 2017, the Tropospheric Monitoring Instrument

(TROPOMI) was launched onboard the Sentinel-5 Precursor

satellite. Thanks to an improved spatial resolution at nadir

(i.e., 3.5 km × 7 to 5.5 km footprint) and a better SO2 detection

limit (by a factor of 4 with respect to previous sensors), it

significantly improved the possibility of detecting small SO2

volcanic emissions previously undetectable (Theys et al., 2017;

Theys et al., 2019). In turn, TROPOMI has been extensively used

to accurately measure SO2 masses and fluxes emitted from both

passive volcanic degassing and large explosive eruptions

(Corradini et al., 2021; Queißer et al., 2019; Pardini et al., 2020).

Nonetheless, the SO2-contaminated pixels have no data

regarding their origin nor source emission, meaning that only

manual inspection and interpretation by the user can determine

this. Yet it is of primordial importance to be able to discriminate

gas plumes originating from neighboring volcanoes, especially in

locations where multiple volcanoes are located in a relatively

small area. Various attempts have been made to automatically

obtain mass of SO2 emitted from active volcanoes. The

MOUNTS operational volcano monitoring system (Valade

et al., 2019) for example, which automatically processes

TROPOMI products over several tens of active volcanoes

worldwide, was using in its initial version a radius-based

approach to obtain SO2 mass values per volcano, whereby

SO2 contaminated pixels were classified based on their

distance to the source volcano. This method however presents

pitfalls as gas emissions coming from neighboring volcanoes

cannot be discriminated in a robust manner.

In general, SO2 source emission estimation is most often

performed manually, which is a tedious process involving

human work. Automating this process can make analysis of

eruptions significantly faster and more accurate, with the

ultimate goal to provide the derived information in near real-

time. Automatic plume detection algorithms for TROPOMI

products have been actively researched in the recent years, not

just for SO2 (Cofano et al., 2021), but also for other gas species

recorded by TROPOMI such as NO2 (Finch et al., 2022). This

work focuses on the retrieval of the gas source emission, rather

than on its detection in the TROPOMI product.

We present different algorithms that were developed to

retrieve the source of volcanic SO2-contaminated pixels. The

efficiency of these algorithms is tested at various active volcanoes

worldwide. The article is organized as follows: in Section 2, the

used materials and data are presented. In Section 3, the methods

developed to classify the source of SO2-contaminated pixels are

summarized. The shortcomings, strengths and the overall results

are presented in Section 4 while in Section 5 a discussion of the

results and areas of improvement are presented. Final

conclusions are then drawn in Section 6.

2 Materials and data

2.1 Sentinel-5P TROPOMI products of
case-study volcanoes

In this work, Sentinel-5P Near-Real-Time (NRTI) L2 SO2

products were used. NRTI products are suited for near-real-time

applications and are only available during 15-days after sensing,

after which they are merged and replaced by Offline (OFFL)

products. For an arbitrary pixel in the product, several relevant

data is available, including: vertical column density (VCD), which

correspond to SO2 gas density computed over vertical slices (1 km

thick slices at three different altitudes of the atmosphere), the

latitude and longitude of the pixel center point, and a SO2

detection flag, provided in the TROPOMI SO2 L2 product as

“sulfurdioxide_detection_flag”. This flag identifies pixels with a

high SO2 concentration (Romahn et al., 2022), by marking them

with either 0 for no detection, 1 for SO2 detection, 2 for clear

volcanic detection, 3 for detection close to a known anthropogenic

source, or 4 for detection at high SZA (potential false-positive). We

hereafter use the term “detection mask” to refer to the matrix of all

SO2-contaminated pixels (all the pixels marked with flag ≥1), which
is used as input to the algorithms presented here. Summing up the

pixels volcanic SO2 detection mask, using the vertical column

density (VCD), the total mass of volcanic SO2 plumes on the

image can be calculated (Valade et al., 2019). This total SO2 mass

can then be assigned to one or multiple source volcanoes.

The algorithms were evaluated on non-cropped L2 SO2

NRTI products collected by the monitoring system MOUNTS

(http://www.mounts-project.com, Valade et al., 2019) over seven

active volcanoes. These include: Sangay, Sabancaya, Nevado del

Ruiz, Etna, Popocatépetl, Dukono, and Yasur, as shown in

Table 3. These volcanoes were chosen based on their

sustained SO2 degassing activity, and based on the fact that

several are located in regions where other nearby volcanoes are

emitting contemporaneously. This allowed us to test the

algorithms capability to discriminate plumes originating from

different neighboring volcanoes. It is worth specifying that these

volcanoes are those used for the quantitative evaluation of the

algorithms, which implied generating hand-labeled ground truth

(see Section 2.2). The algorithms were then applied to a larger list

of volcanoes for qualitative evaluation, some of which are

presented in the paper (e.g., Scheveluch, Klyuchevskoy, Ibu,

Ubinas, Reventador). The products used for evaluation were

acquired during the year 2021. In order to decrease the overall

dataset, we selected 1 TROPOMI acquisition per day and per
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volcano, with 10-day interval between the products, resulting in a

total of 231 non-cropped TROPOMI products used for

evaluation. Given that the satellite orbit cycle repeat time is

16 days, this 10-day sampling allowed to sample various swath

positions for each volcano, while reducing the overall dataset size.

2.2 Ground truth

In order to evaluate the performances of the algorithms, the

entire set of volcanic SO2 detection masks was hand-labeled with

a unique label according to the source volcano, which was

manually determined based on available meteorological data

and volcano eruption records. These manual labels form the

“ground truth”, which is compared with the automated

classification results to obtain metrics of their efficiency. The

ground truth has the same size as the SO2 detection mask, but

instead of detection flags it contains either the source volcano ID

for each flagged pixel, or a label of false volcanic SO2 detection

(which may occur when SO2 pixels from anthropological sources

get detected by the sensor as a volcanic SO2 pixel–in this case the

pixel should not be assigned to any volcano).

2.3 List of volcanoes

The algorithms use a list of volcano-specific data, which consists

of the latitude, longitude, elevation, and a unique identification

number for several volcanoes. In this list, all the volcanoes from the

MOUNTS monitoring system (Valade et al., 2019) are included,

even those that are not present in our case study, as they play a role

in the way how some of the presented algorithms work.

2.4 Predicted plume trajectories

In order to obtain estimated trajectories of SO2 plumes, the

Hybrid Single-Particle Lagrangian Integrated Trajectory model

(HYSPLIT) is used. HYSPLIT is a numerical model that is used

to compute air parcel trajectories to determine how far and in what

direction a parcel of air, and subsequently air pollutants, will travel.

Lagrangian particle models compute trajectories of a large number of

so-called particles to describe the transport and diffusion of tracers in

the atmosphere (Stein et al., 2015). Combined with the archived

reprocessed GDAS meteorological models (NCEP, NWS, NOAA,

U.S. DOC, 2009), which are publicly available on NOAA’s FTP

servers, the estimated latitude and longitude of an air parcel can be

obtained along a specified time range with great temporal resolution

(Warner, 2018). Although reprocessed GDAS models are less suited

to near real-time applications than the forecast GDAS models, these

are expected to perform significantly better. The presented plume

trajectories used by the algorithms were computed on a 12-h time

range before/after sensing with 1-h temporal resolution. When

generating forward trajectories, the start time of the trajectory is

set to 1 h before the image acquisition time, and the backwards

trajectories are started exactly at the image acquisition time.

3 Methods

The goal is, using the input of non-classified pixels of the

volcanic SO2 detection map (as non-geocoded matrices), and the

additional wind and volcano information, to obtain an output of

classified pixels, which can provide information about which volcano

each pixel originates from. One volcano represents a class, meaning

that a pixel being classified to a volcano can be interpreted as saying

that the pixel originates from that specific volcano.

To reach this goal, eight algorithms are presented, as depicted

in Table 1, in ascending order of complexity. Two approaches are

tested, as shown in Figure 1: the first corresponds to binary

classification methods (BC), which can decide whether a pixel is

originating from a selected volcano (the queried volcano is

required as an input) or not, and the second corresponds to

multi-class classification methods (MC), which provide an

estimate for each pixel about which volcano it originates from

(no input volcano required). In the final subsection, the metrics

used for the evaluation of these algorithms are presented.

3.1 Binary-class classification algorithms

An intuitive approach is to select a volcano, and iterate

through the pixels with a binary decision algorithm that either

associates the pixel with the selected volcano, or leaves it

unassociated. Six binary-class classification algorithms are

tested, which we describe hereafter.

TABLE 1 Overview of all the tested methods.

Binary classification Multi-class classification

Pixel-based Cluster-based

No wind No wind With wind No wind With wind With wind No wind With wind

Radius search
classifier
(BC-1)

Flood-fill
classifier
(BC-2)

Flood-fill classifier
with wind data

(BC-3)

DBSCAN
classifier
(BC-4)

DBSCAN classifier
with wind data

(BC-5)

Reverse Trajectory
DBSCAN classifier

(BC-6)

Multi-class
DBSCAN classifier

(MC-1)

Multi-class Reverse
Trajectory DBSCAN
classifier (MC-2)
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3.1.1 Radius search classifier (BC-1)
The radius search classifier automatically associates every SO2

detection within a specified arbitrary radius (100 km by default in

this paper). The algorithm starts from the pixel at volcano center,

then it iteratively jumps onto the next nearest unassociated pixel,

as shown in Figure 2A. The distance of the pixel is then calculated

with Vincenty’s formulae using the ellipsoidal model WGS-84,

which provides better accuracy than a plain spherical model

(Vincenty, 1975). This process continues until the calculated

distance of the new pixel is above the specified radius.

FIGURE 1
Difference between binary and multi-class classification approaches. (A) Binary approach. (B) Multi-class approach.

FIGURE 2
Demonstration of the binary classifier algorithms. (A) Radius search classifier. (B) Flood-fill classifier. (C) Flood-fill classifier with wind data. (D)
DBSCAN classifier. (E) DBSCAN classifier with wind data. (F) Reverse Trajectory DBSCAN classifier.
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3.1.2 Flood-fill classifier (BC-2)
Flood-fill is a standard algorithm used to identify and change

adjacent values in a multidimensional array, based on their

similarity to an initial seed point. The conceptual analogy is the

“paint bucket” tool in many graphic editors. The Flood-fill

algorithm can be simply modeled as a graph traversal problem,

representing the given area as a matrix and considering every cell

of that matrix as a vertex that is connected to points around it. The

seed point for the algorithm is set by default to the pixel where the

volcano of interest is located. As the goal of the algorithm is to

classify pixels that are flagged with detected SO2-contamination,

the seed point has to be an SO2-flagged one on the detection mask

(then, pixels marked with flag ≥1 that are touching the seed point

are classified, and the filling continues until there are no additional

touching points). If the seed point above the volcano is zero

(meaning that there is no flagged SO2 contamination), the

algorithm searches for the nearest non-zero element within the

seed area (20 km chosen by default in this paper), and if it finds

one, it becomes the seed point, as shown in Figure 2B.

3.1.3 Flood-fill classifier with wind data (BC-3)
With the Flood-fill classifier (BC-2), the algorithm could only

have one seed point. This case further increases the number of

seed points via an extension where a predicted plume trajectory is

generated, starting from the top of the queried volcano. Every

point on this trajectory acts as a seed point, and if the trajectory

point on the SO2 detection mask is zero, the algorithm searches

for the nearest non-zero element in a seed area the same way as

with the original seed point, as shown in Figure 2C.

3.1.4 DBSCAN classifier (BC-4)
In the three previous algorithms, classification is done on a

pixel level, using only information that is available for that

individual pixel (i.e., values of pixels within the locality of

another pixel are ignored). With object-based classification,

the algorithms are working on a localized group of pixels,

taking the spatial properties of each pixel and their

relationship to each other into account. In this sense, an

example for a classification algorithm acts on of a group of

pixels, and the classification algorithm would accordingly output

a class prediction for pixels on a group basis.

In order to acquire clusters, the DBSCAN (Density-based

spatial clustering of applications with noise) algorithm is used.

Based on a set of points, DBSCAN can group together points that

are close to each other based on a (usually Euclidean) distance

measurement and a minimum number of points (Ester et al.,

1996). Furthermore, it is also capable of marking points in low-

density regions as outliers.

Similarly to the Flood-fill classifier (BC-2), the DBSCAN

classifier (BC-4) starts from a seed point and assigns new pixels to

the cluster in an iterative way, with the difference that it is not

filling pixels one-by-one, but rather whole clusters of pixels, as

shown in Figure 2D. The seed area, similarly to the Flood-fill

algorithms, is the pixel at the center of the volcano and its near

area (20 km chosen by default in this paper).

The algorithm generally requires two parameters. The first is

the parameter ε, which specifies how close points should be to

each other on a pixel grid to be considered a part of a cluster. If

the grid distance between two points is lower or equal to this

value, those two points are considered neighbors. The second

parameter is called minPoints, and it represents the minimum

number of points to form a dense region. For example, setting the

minPoints parameter as 4 means that at least 4 points are needed

to form a dense region. Setting the ε parameter low generally

produces more clusters, but it also results in an increased number

of outliers, as shown in Figure 3. We chose a value ε = 4.0 and

minPoints = 3 for our use case, which gave best results when

applied to the TROPOMI data set. These values were chosen

manually by testing several products, where noise points and

outliers were minimized while preserving as many clusters as

possible. In addition, DBSCAN makes it possible to assign

weights to each pixel. We used the SO2 column density value

of each pixel as weights when creating clusters. This improves

clustering in cases when multiple plumes originating from

neighboring volcanoes come to overlap. In such a case they

are forming a common plume, but as the SO2 density generally

tends to be higher around the center of the source volcanoes, the

distinct high-density areas (which are thus highly weighted) can

induce a separation of the unique plume into smaller clusters.

3.1.5 DBSCAN classifier with wind data (BC-5)
Similarly to the Flood-fill classifier with wind data (BC-3),

this case is an extension of the DBSCAN classifier where a

predicted plume trajectory is generated, starting from the top

of the queried volcano, as shown in Figure 2E. Every point of this

trajectory acts as a seed point, and if the trajectory point on the

SO2 detection mask is zero, the algorithm searches for the nearest

non-zero element in a seed area the same way as with the original

seed point.

3.1.6 Reverse trajectory DBSCAN classifier
(BC-6)

A reverse plume trajectory is started from the center of mass

of each cluster using the wind models, as shown in Figure 2F. The

position of the center of mass is computed in grid space (i.e., in

the non-geocoded matrix), weighted by the VCD values (raised

to the power of 4 to make the dense parts more dominant in the

positioning of the reference point in long plumes, as opposed to

the simple DBSCAN classifier, where the weights only serve the

cluster generation), and the latitude and longitude of the

corresponding pixel is then used to define the cluster position,

from which the trajectory is started. On the other hand, the

altitude from which the trajectory is computed is defined as the

summit altitude of the queried volcano. If a trajectory that was

started from a plume is within a specified distance of the queried

volcano (50 km by default in this paper), the cluster is associated
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with it. In the ideal case, the trajectory that starts from a cluster

that is actually originating from the queried volcano should go

right over the volcano.

3.2 Multi-class classification algorithms

The aforementioned algorithms have a common

shortcoming: when applied to a TROPOMI product that

covers an area that contains multiple volcanoes (which

happens frequently in areas with high volcano density), the

iterative use of binary classifiers can result in ambiguous,

overlapping classifications, as shown in Figure 4. For example,

if the predicted plume trajectories of two different volcanoes

intersect, i.e. contain the same pixels, those pixels are going to be

associated with both volcanoes. This happens frequently with

nearby volcanoes (e.g., Ibu and Dukono volcanoes, only 35 km

apart from one another). To prevent that, the algorithms should

be retrofitted based on the fundamental concept that a pixel can

only be associated with one volcano.

3.2.1 Multi-class DBSCAN classifier (MC-1)
The binary DBSCAN classifier algorithm could only associate

one cluster to a volcano, even though it is possible for multiple

clusters to originate from one source. To eliminate this problem,

first we build the clusters the same way as we did in the binary

DBSCAN case (BC-4), then we decide whether a cluster is going

to be associated or not. This algorithm does not use any wind

models, it only relies on the location of the volcanoes and the

generated clusters (see Algorithm 1 pseudo-code). The latitude

and longitude position of a cluster are equal to its calculated

center of mass (computed in grid space, as described in BC-6),

and the distance to the volcano is computed as the geodetic

distance to the volcano summit. The plume height does not play a

role in this case.

ALGORITHM1.Multi-classDBSCANclassifier algorithm (MC-1).

First, the cluster that is the nearest to any volcano on the

image is selected as a starting cluster, and its nearest volcano

FIGURE 3
Difference in the created DBSCAN clusters with touching plumes (Turrialba and Poás volcanoes, on 23.03.2021), depending on the ε value. (A)
ε = 4.0 (B) ε = 1.0.

FIGURE 4
Iterative use of binary classifiers on the same image can result
in overlapping classifications.
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becomes the “source volcano”. The algorithm associates the

nearest unassociated clusters until the new cluster’s nearest

volcano is not the source volcano anymore - in that case, it

checks how far the new cluster is from the nearest volcano. If it’s

above a specified tolerance (200 km by default in this paper), and

the new cluster is closer to the previous cluster than to the nearest

volcano, it keeps assigning it to the original source volcano. This

is to prevent another volcano of “hijacking” a plume in long

stretched plume groups, when the plume is already closer to

another cluster than to the original source volcano. Without this

addition, the algorithm would associate every cluster

automatically to the closest volcano. The procedure is

depicted in Figure 5A.

If the aforementioned conditions do not apply, meaning that

the next nearest cluster is farther than the specified tolerance

(200 km), or if it is closer to its nearest volcano than to the

previous cluster, the algorithm stops assigning clusters to the

original source volcano, and it selects a new source volcano to

start from. This is the volcano that is the nearest to any

unassociated cluster (similarly, at the beginning we started

at the smallest volcano-unassociated cluster distance, but at

that time all the clusters were unassociated). The clusters are

then being assigned the same way as with the original source

volcano. To keep track of the jumps (and to be able to select

the new source volcano), the number of source volcano

changes is stored. Optionally, clusters that are further away

from volcanoes and other clusters than a specified tolerance

can be left unclassified. This is to ignore occasional false

positives in the volcanic SO2 detection mask in the

TROPOMI product.

3.2.2 Multi-class reverse trajectory DBSCAN
classifier (MC-2)

This algorithm follows the same logic as the binary

Reverse Trajectory DBSCAN classifier (BC-6), with the

additional rule that every cluster has to be associated with

only one volcano (see Algorithm 2 pseudo-code). A reverse

plume trajectory is started from the center of mass of every

cluster using the wind models, as shown in Figure 5B. The

latitude and longitude position of a cluster are equal to its

center of mass, and the height of the plume, where the

trajectory is started from, is equal to the elevation of its

nearest volcano. As the TROPOMI L2 SO2 product does

not include plume height, using an input volcano’s

elevation as a plume height would make the algorithm

volcano-dependent, and with this solution we can overcome

that problem. The cluster is associated with the volcano that is

nearest to any point of the reverse trajectory. In the ideal case,

the trajectory goes right over the source volcano, which makes

this distance zero.

FIGURE 5
Demonstration of themulti-class algorithms. Themagenta dot represents the plume center of mass, and the colored ovals show the generated
clusters. (A) Multi-class DBSCAN classifier. (B) Multi-class Reverse Trajectory DBSCAN classifier.
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ALGORITHM 2. Multi-class Reverse Trajectory DBSCAN

classifier algorithm (MC-2).

3.3 Metrics for the evaluation

Evaluation of classification methods can be quite complex

because it is required to measure classification accuracy as well as

localization correctness. The aim is to score the similarity

between the predicted and annotated volcanoes (prediction vs.

ground truth). Over the years, a large variety of evaluation

metrics has been introduced. The presented metrics in this

work are common, widespread scores for performance

measurement in computer vision and remote sensing fields.

The main goal in metric selection was to minimize statistical

bias in evaluation.

All presented metrics are based on the computation of a

confusion matrix for a binary segmentation task, which contains

the number of true positive (TP), false positive (FP), true negative

(TN), and false negative (FN) predictions. In this context, a true

positive pixel is a detected SO2-contaminated pixel which was

correctly classified to the queried volcano, and a false positive

pixel is one that was incorrectly classified to the queried

volcano. Similarly, a true negative pixel is one that is

correctly not classified to the queried volcano, and a false

negative pixel is one that is incorrectly not classified to the

queried volcano. Generally, the value ranges of all presented

metrics span from zero (worst) to one (best). The selected

metrics are Accuracy, Precision, Recall, and the F1-Score, as

presented in Table 2.

• Accuracy represents the fraction of predictions that the

evaluated model got right.

• Precision shows the proportion of positive identifications

that were actually correct.

• Recall shows the proportion of actual positives that were

identified correctly.

• The F1-score is an overall measure of a model’s

effectiveness that combines precision and recall, by

calculating the harmonic mean. We use the harmonic

mean instead of a simple average because it punishes

extreme values. A classifier with a precision of 1.0 and a

recall of 0.0 has a simple average of 0.5 but an F1-score of 0.

That is, a good F1-score means that we have low false

positives and low false negatives, so we are correctly

identifying real threats and we are not disturbed by false

alarms. The aforementioned features make this metric well

suited for measuring the performance of the tested

algorithms.

4 Results

In this section, the performances of the proposed algorithms

are compared using the presented metrics. The algorithms were

all implemented in a Python environment. The source code of the

TABLE 2 The performance metrics used in the evaluation.

Measure Equation Domain Ideal
value

F1-score F1 � 2pPrecisionpRecall
Precision+Recall � 2pTP

2pTP+FP+FN [0,1] 1

Precision Precision � TP
TP+FP [0,1] 1

Recall Recall � TP
TP+FN [0,1] 1

Accuracy Accuracy � TP+TN
TP+TN+FP+FN [0,1] 1

TABLE 3 Contents of the evaluating dataset.

Name Latitude
[dec. deg.]

Longitude
[dec. deg.]

Elevation [m] Country Time range Temporal
resolution

Sangay −2.005 −78.341 5,286 Ecuador 01 Jan 2021–30 Nov 2021 10 days

Sabancaya −15.787 −71.857 5,960 Peru 01 Jan 2021–30 Nov 2021 10 days

Nevado del Ruiz 4.892 −75.324 5,279 Colombia 01 Jan 2021–30 Nov 2021 10 days

Etna 37.748 14.999 3,295 Italy 01 Jan 2021–30 Nov 2021 10 days

Popocatépetl 19.023 −98.622 5,426 Mexico 01 Jan 2021–30 Nov 2021 10 days

Dukono 1.693 127.894 1,229 Indonesia 01 Jan 2021–30 Nov 2021 10 days

Yasur −19.532 169.447 361 Vanuatu 01 Jan 2021–30 Nov 2021 10 days
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FIGURE 6
Plots of evaluation runs with different classifier algorithms on three volcanic scenarios. The plots represent 250 × 250 km regions. Magenta dots
represent cluster center of mass, and cyan lines are computed plume trajectories.
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algorithms is publicly available from a GitHub repository

(Markus, 2022a).

To verify that the accuracy improvement provided by the

proposed methods is significant, and to systematically

evaluate the performance of the proposed methods we

conduct an averaging of the results for different products.

We select TROPOMI SO2 products of seven volcanoes, with a

10-day temporal resolution across the year of 2021, as shown

in Table 3. The labeled ground truth and the configuration

files are publicly available (Markus, 2022b). We compute the

accuracy, precision, recall and F1-score for the presented

algorithms using the selected products within the specified

time range. The values are then averaged for the cases where

classification is possible (empty cases without detection are

not taken into account). The initial hypothesis is that the

multi-class methods reach a higher overall mean accuracy.

4.1 Evaluation

Figure 6 shows a series of TROPOMI SO2 images, overlaid

with the classification results of the 8 algorithms described

previously. Three cases were considered: Sangay (queried

volcano) vs. Reventador 2021-08-15 acquisition, Ubinas

(queried volcano) vs. Sabancaya 2021-04-27 acquisition

where a plume originating from Sabancaya traveled over the

Ubinas volcano, and Sheveluch (queried volcano) vs.

Kluchevskoy 2021-03-19 acquisition. Each row in Figure 6

shows the result of a given algorithm for all three cases. The

shades of white to yellow/red represent the SO2 gas

concentration, the gray pixels are the flagged SO2 detections

in the TROPOMI product, and the green/blue filled pixels are

the pixels that were associated with a volcano label according to

the color bar. The cyan lines are the wind trajectories, and the

magenta points represent the center of mass of a generated

cluster.

The results for each metric respective to the algorithms are

presented in Table 4. Results show that on average, the radius

search algorithm (BC-1) under-performs compared to other

methods. The precision of the algorithm is high, but the recall

value is comparatively low. The small value of recall indicates

that this algorithm is prone to under-segmentation (which

means it ignores pixels that should have been associated

with the volcano), while also not providing any prevention

from falsely associating SO2 pixels of nearby volcanoes. This

algorithm performs best in areas where the spatial density of

volcanoes is low, and/or where winds are low (i.e., plume stays

close to the volcano).

The second proposed method, Flood-fill (BC-2) shows a

higher degree of robustness with respect to the accuracy, and

is able to classify entire plumes, which the radius search

algorithm failed to achieve (see Figure 7). Still, it fails to

provide fully satisfactory classification as it is only able to fillTA
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interconnected plumes. Indeed, SO2 plumes often appear

discontinuous in TROPOMI imagery, thus making the

filling approach incapable of classifying the gas plume as a

whole. Small isolated SO2-contaminated pixels near the

plume are also left unfilled, as there is no direct

connection to the plume. The extension of the Flood-fill

algorithm with the air parcel trajectory (BC-3) starting

from the volcano achieves a better accuracy, because it is

able to fill disconnected plumes, thanks to the wind trajectory

which acts as an extended seed area. Although it still leaves

isolated SO2 pixels near the main plume unfilled, the bulk of

the plume can be successfully filled. Extension of the seed area

induces a significant increase in recall, but a small decrease in

precision can be observed. Informally, besides reducing

under-segmentation, the larger seed area caused the

algorithm to incorrectly associate pixels that were

originating from a different source, especially in areas of

multiple SO2 sources.

The cluster-based DBSCAN filling method (BC-4)

demonstrates higher accuracy and recall value with respect

to the pixel-based Flood-fill, as besides incorporating small

isolated SO2 pixels near the edges a plume, fragmented but

cohesive plumes are considered as one entity. Extending this

with the air parcel trajectory starting from the volcano (BC-

5) eliminates the under-segmentation problem when

multiple plumes are originating from one volcano, as

shown in Figure 8, increasing the recall value even higher

than the “Flood-fill with wind” algorithm. This method

performs well in most cases, i.e., when the plumes from a

volcano are not traveling over other volcanoes (in which case

the plume can be associated with multiple volcanoes).

Compared to the one-trajectory DBSCAN algorithm, the

binary reverse trajectory classification (BC-6) generally

under-performed in all metrics. Possible causes for this

include: the fixed time ranges of the trajectories (which

makes the trajectories fall out of the volcano search area,

causing under-segmentation), and/or the fact that the

trajectory is arbitrarily computed starting from the

volcano summit altitude. Addressing this problem would

require prior knowledge of SO2 layer height, which is

currently not provided in the product.

The multi-class DBSCAN algorithm (MC-1) achieves the

best overall metrics, with the highest F1-score and a better

accuracy. The main reference points of this algorithm are the

FIGURE 7
Comparison of two basic binary classifications (Sangay volcano, on 15.08.2021). (A) Radius search classifier. (B) Flood-fill classifier.

FIGURE 8
Difference in binary DBSCAN classifications (Etna volcano, on 17.06.2021). (A) Without wind. (B) With wind.

Frontiers in Earth Science frontiersin.org11

Markus et al. 10.3389/feart.2022.1064171

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1064171


volcano center points, making this algorithm vulnerable to

areas where the spatial density of volcanoes is high, but

performing well in general cases. The multi-class nature

eliminates false associations that are caused by the binary

classification, as shown on Figure 9C: no matter which

volcano we are starting from, the plume is always going

to be associated with one volcano. This is more robust than

the binary classifications (Figure 9A for Dukono and Figure 9B for

Ibu), where depending on the selected source volcano the plume is

being associated with the currently selected one. Basically the

multi-class algorithm answers the question “Which volcano

does this plume originate from?”, while the binary algorithms

are based on the question “Is this plume coming from the selected

source volcano?”.

FIGURE 9
Difference in binary floodfill (A,B) vs. multi-class DBSCAN (C) classifications in an ambiguous case (Ibu volcano, on 19.03.2021). (A) Binary flood-
fill with Dukono (27) as source volcano. (B) Binary flood-fill with Ibu (28) as source volcano. (C) Multi DBSCAN with Dukono (27) as source volcano.

FIGURE 10
Difference in multi-class classifications in an ambiguous case (Plume from Sabancaya traveling over Ubinas volcano, on 27.04.2021). (A)
Without wind data. (B) With the predicted trajectory.
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The wind-based multi-class algorithm (MC-2) performs

generally well in dense areas where plumes can travel over

other volcanoes, as shown on Figure 10. However it is prone

to errors in the wind models and the trajectories, which are

started from the height of the nearest volcano, instead of

using the actual SO2 plume height. Utilizing the multi-class

approach, the plume is always associated with the volcano

that is nearest to the trajectory starting from it, avoiding

overlapping classifications, as shown on Figure 11B, where

the small pixel cluster originating from the volcano Sheveluch

is classified correctly with the multi-class method, while the

binary approach fails (Figure 11A). The method generally

reaches good metric values, with the F1-score being the

second best in comparison, as the precision and recall

values are similarly high. These results demonstrate that

the multi-class method is capable of segmenting remote

sensing volcanic SO2 products to multiple sources, based

on both their physical features and external meteorological

information.

5 Discussion

Overall, the results follow intuitive expectations.

Contrary to expectations however, the multi-class

classification without wind performed slightly better than

the one which uses reverse trajectories. One possible cause for

this are the limitations of the meteorological models used.

GDAS has a 1-degree resolution, compared to GFS, which has

0.25. Using GFS models might improve trajectory prediction,

but with more data, the file size of the meteorological models

increases dramatically, reducing the portability of the wind-

based algorithms by a substantial amount (NCEP, NWS,

NOAA, U.S. DOC, 2009). For computational reasons, only

one trajectory is started from each cluster, dividing the

clusters and starting multiple trajectories has the potential

of improving the results, but it also greatly increases

computation time. The environmental characteristics of

tested volcanoes also play a role in the overall outcome. As

an example, the algorithms tend to perform better with

volcanoes where the plumes are generally less fragmented

due to stable, continuous degassing and less wind influence.

Furthermore, because the plume height is not retrieved from

the TROPOMI product but rather assumed to be equal to the

volcano summit altitude, the generated trajectories can suffer

errors, as the strength and direction of the wind changes with

the elevation.

5.1 Operational SO2 plume monitoring

The presented algorithms are relatively small and require

limited computing time, ranging from a fewmilliseconds to a few

seconds, with the wind-based algorithms having longer

computing times as the ones without wind data. As such, they

could be suited for near real-time operational volcano

monitoring tasks. As the multi-class classification algorithms

provides the best effectiveness/implementation complexity ratio,

they are recommended for implementation in operational

frameworks. Future work will focus on testing the algorithms

on a larger number and variety of eruptive plumes, with the aim

to implement them in monitoring systems such as MOUNTS

(Valade et al., 2019).

5.2 Areas of improvement

Considering the previously presented strengths and

weaknesses, the algorithms still provide room for further

research and development. A first aspect to improve in the

FIGURE 11
Difference in binary vs. multi-class DBSCAN classifications in an ambiguous case (Sheveluch volcano, on 19.03.2021). (A) Binary (DBSCAN with
wind, with forward wind trajectory). (B) Multi-class (Multi Reverse Trajectory DBSCAN, with reverse wind trajectory).
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multi-class classification algorithms is the way pixel clusters are

assigned to volcanoes. As of now, the assignment is based on the

distance between a cluster’s center of mass (in grid space), and the

volcano summit coordinates. Although this is efficient in a large

majority of cases (i.e., small gas plumes, and/or plumes where the

highest gas concentration is located nearby the volcano summit), it

can fail in the case of strong eruption plumes, where high gas

concentrations can extend several tens-hundreds of kilometers away

form the emitting volcano. Indeed, this can result in the plume

center of mass being off-centered with respect to the volcano, which

can potentially result in erroneous associations of the SO2 plume to

another non-emitting volcano closer to the plume center. An

alternative to the center of mass could be using the cluster

skeleton (Zhang and Suen, 1984), or the cluster shape to

determine the source emission point.

Secondly, the results can be possibly improved for strong

eruption plumes by incorporating near-real-time SO2 layer

height retrieval, which would make the reverse trajectory

calculation more deterministic and exact. As mentioned before,

because the plume height is not retrieved from the TROPOMI

product but rather assumed to be equal to the volcano summit

altitude, the generated trajectories can suffer errors. This could be

improved in the future via the SO2 Layer Height product (Hedelt

et al., 2019), which provides accurate information about the height

of the plumes, making reverse trajectory based algorithms more

accurate (Theys et al., 2022). There are promising developments

underway for that, as for major eruptions the TROPOMI SO2

Layer Height product is available. Because these products are a

separate entity distinct from the actual SO2 product, and because

they are only available for major eruptions, the algorithms have to

query for their presence to make sure that the layer height can be

retrieved. It should be stressed that using layer heights would be

very useful for explosive eruption plumes having high gas

concentrations and high altitudes; however they are likely to be

much less useful for passive degassing plumes having have lower

gas content and altitudes, as the layer height retrieval is more

complicated in these cases.

As the TROPOMI L2 SO2 product is being continuously

developed, the initial segmentation of volcanic SO2 detection

mask is improved as well, which results in easier cluster

generation, less outliers, and less false associations. This

enables the lowering of ε values without losing outliers,

although the increased number of clusters makes the

trajectory generation slower and more complicated.

In the compared methods each pixel is associated with exactly

one source. A future version should make a weighted attribution to

multiple sources per pixel for cases of merging plumes.

6 Concluding remarks

In this work, we havemanaged to classify volcanic SO2 plume

pixels in satellite imagery using classic clustering, segmentation

and image processing techniques. The developed algorithms can

be applied to SO2 L2 products from the Sentinel-5P TROPOMI

instrument, to help with the accurate source estimation of SO2

plumes originating from various volcanoes. Furthermore, besides

contributing to improving analysis and monitoring of volcanic

processes from space, these algorithms can be useful in other

general plume localization tasks. In particular, another potential

application of the presented methods is to identify anthropogenic

plume sources.
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