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Centennial drought characteristics in Equatorial East Africa (EEA) is investigated

using the Standardized Precipitation Evapotranspiration Index (SPEI) derived

from the Climatic Research Unit (CRU) dataset. The spatial pattern of drought

distribution, as well as drought duration, intensity and frequency, are analyzed

for SPEI at a 3-month timescale for March-April-May (MAM) season. Rotated

Empirical Orthogonal Function (REOF), Mann-Kendall method (MK), and

wavelet analyses are used to study drought’s spatial pattern, trend, and

periodicity. The result of the principal component analysis returned six

homogenous drought sub-regions. A low drought frequency characterizes

EEA (<20%). The drought in the MAM season lasts between 2.2 and

2.8 months. Overall, the result showed a weak long-term drying trend for

most parts of EEA that were significant in some sub-regions and insignificant

in others. An increase in drought areal extent after the 1980s could be ascribed

to the increase in potential evapotranspiration (PET) and is consistent with the

negative trend in SPEI value over the six sub-regions. The apparent increase is

mainly attributed to the increase in moderate and severe droughts area rather

than extreme drought areas. The spectral analysis further reveals that inter-

annual drought variability with periodicities less than 8 years dominates in all

sub-regions of Equatorial East Africa, which is associated with the critical role of

El-Niño in driving the drought variations in EEA.
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1 Introduction

Drought is an extreme event characterized by a protracted

period of insufficient water supply emanating from erratic and

irregular rainfall distribution, high evapotranspiration and

higher demand for water than supply (Bhuiyan, 2009). Unlike

other meteorological disasters, drought developed slowly and is

only recognized once its effect on the environment and

population is felt. It places an immense burden on agricultural

production, water resource, energy production and causes

damage to the ecological environment (Iglesius et al., 2001;

Winslow et al., 2011). Droughts may emanate from a

combination of drivers of climate variability and

anthropogenic forcing and, as such, cannot be blamed on one

driver alone. Beyond the drought itself, the extent of the impact

depends on the vulnerability and exposure of societies. Poor land

management practices can also worsen the drought and lead to

soil degradation (Cook et al., 2009). Dai (2013) suggested that the

warming trend since the 1980s has led to the expansion of global

drought areas by about 8%. Many studies reported more frequent

and severe droughts in different regions in the 21st century as the

global mean surface temperature continues to rise (Sheffield

et al., 2012; Cook et al., 2015; Schwalm et al., 2017; Trenberth

et al., 2013).

Equatorial East Africa (hereafter, EEA) is among the

drought-sensitive regions owing to the large interannual

rainfall variability. The observed variability has been

characterized by the region’s increased frequency and intensity

of extreme events (Nicholson, 2014). In addition, as much as 69%

of East Africa may be classified as arid and semi-arid, with annual

rainfall less than 50% of the mean annual potential

evapotranspiration (UNDP/UNSO, 1997). The demand for

water resources is increasingly under pressure owing to

population growth and the region’s larger interannual rainfall

variability. Severe drought has occurred in East Africa in recent

decades, and the events have direly impacted socio-economic

activities in the region. Funk et al. (2014) reported that East

Africa experienced drought for 8 years between the 1990s and

2000s. The economic impact of drought has been significant. For

instance, Mogaka et al. (2006) estimated the 1998–2000 drought

episode over East Africa caused agricultural losses estimated to be

worth USD 370M. On the other hand, the 2008–2011 dry

conditions affected over 13 million people in the region and

led to a severe shortage of water, food and pasture, leading to loss

of life and livelihood (AghaKouchak, 2015; Uhe et al., 2017).

These losses and the impact of earlier severe droughts, such as

1983/84, highlight the region’s susceptibility to drought.

East Africa has shown a neutral to slight decline in rainfall

(Lyon and Dewitt, 2012; Yang et al., 2014; Tierney et al., 2015).

Nicholson (2014) reported that the first decade of the 21st

century experienced an increased frequency of below-average

rainfall that lasted over a longer time in the Greater Horn of

Africa (GHA) region. The reduction in rainfall, coupled with the

increase in regional temperature, has increased the frequency and

intensity of drought over the region. For example, Mpelasoka

et al. (2018) linked the region’s drought-like crises to rainfall

reduction. Several studies have attempted to explain the causal

mechanisms of these droughts and the observed rainfall

variability. For instance, it is a well-established fact that La-

Niña suppresses rainfall over East Africa (Ogallo, 1989). Lyon

(2014) reported that the post-1998 decline in rainfall is strongly

driven by natural multi-decadal variability in the tropical Pacific

Ocean rather than anthropogenic climate change. Hastenrath

et al. (2005, 2010) reported that the surface equatorial westerlies

were fast during the 2005 and 2008 droughts. Consequently, they

linked the 2005 and 2008 droughts to the fast-moving westerlies,

often accompanied by anomalously cold waters in the

northwestern and warm anomalies in the southeastern Indian

Ocean. Lyon (2014) further found that sea surface temperature

(SST) anomalies in the tropical Pacific and Indian Oceans shows

a strong association with October-November-December (OND)

season drought, especially in locations that have a bimodal

rainfall pattern. The study also reported that this influence

depended on the ability of ENSO to affect SSTs outside the

Pacific. Wainright et al. (2019) reported that the decrease in

rainfall results from the late onset and early withdrawal of

rainbands over East Africa. Williams and Funk (2011) link

the reduction in rainfall to the enhanced warming of Indian

Ocean sea surface temperature (SST), which they argue is driven

by anthropogenic emissions.

Defining drought is complicated due to its complex nature.

Among the indices developed to monitor and characterize

drought, the Standard Precipitation Index (SPI; McKee et al.,

1993), the Standardized Precipitation Evapotranspiration Index

(SPEI; Vicente-Serrano et al., 2010) and the Palmer drought

severity index (PDSI; Palmer, 1965) are the popular and the

commonly used. However, PDSI has limitations such as having a

fixed time scale, limited spatial comparability, and dependent on

data calibration (Wells et al., 2004; Andreadis et al., 2005). On the

other hand, SPI boasts simple calculations but is solely based on

rainfall. Indeed, Ntale and Gan (2003) recommended using SPI

over East Africa owing to its ability to produce more consistent

spectral patterns, modest data requirements and adaptability to

the local climate. However, while changes in rainfall patterns

broadly define drought, processes such as temperature and wind

speed determine water availability by controlling the

evapotranspiration rate, thus affecting the drought. Given this,

the SPEI drought index is adopted in the current study, which

incorporates a water balance making it suited to quantify drought

much better (Beguería et al., 2013).

Studies that give spatial and temporal variability of drought

in the region are limited. Most studies focus on explaining the

drivers responsible for a drought event or declining rainfall in the

region. In addition, most of the earlier studies are confined to

watersheds scale or larger areas (e.g. GHA) but with different

climate zones. Despite the increasing drought risk, the intrinsic
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characteristics of East Africa climate zones have been given little

or no attention in past drought studies. For instance, Mpelasoka

et al. (2018) found regional differences in the probability of

occurrence of drought year over the GHA region, while

Gebremeskel et al. (2020) reported differences in drought

trends for individual East Africa countries. This shows that

while a large-scale forcing may drive the regional drought, the

local response may lead to variation in drought intensity.

However, studies on the entire region or country level led to a

loss of information on the uniqueness of climate regime-specific

responses. Consequently, to address this, the current study

classifies East Africa into homogenous sub-regions using

principal component analysis and varimax rotation and

proposes the drought characteristics for each zone.

In addition, studies show that successive seasons are

uncorrelated over East Africa; thus, drought development in

one season does not guarantee its persistence to the next

season (Nicholson et al., 2014; Lyon, 2014). Given this, the

current study focuses on the spring season (March-April-May,

MAM) drought characteristics over East Africa using the

centennial drought dataset since 1901. The season locally

referred to as Masika, corresponds to the primary planting

season for major food crops across East Africa when moisture

availability is critical for the plant’s growth (Supplementary

Figure S1).

Specifically, the study aims to analyze the spatio-temporal

characteristics of drought events over EEA-during

1901–2020 using the SPEI index at regional and sub-regional

scales and further delineate the possible relationship between

SPEI and key regional climatic indices. The paper is organized as

follows. Section 2 describes the data and analysis methods, while

Section 3 discusses the region’s characteristics and dynamics of

droughts. Finally, Section 4 gives a summary and concludes the

research findings.

2 Study area, data and methodology

2.1 Study domain

The current study defines Equatorial East Africa (EEA) as

the area bounded by Kenya, Uganda, Tanzania, Rwanda, and

Burundi (28.5oE-42oE, 12oS-5.5oN) as shown in Figure 1.

Rainfall in most of EEA shows a bimodal seasonal

distribution pattern influenced by the seasonal movement

of the Inter-Tropical Convergence Zone (ITCZ; Mutai and

Ward 2000; Camberlin and Philippon 2002). This movement

of ITCZ is accompanied by a change in wind direction that

brings in moisture from the adjacent Indian Ocean. The

rainfall peaks occur in March-May and October-December

seasons and are separated by short dry periods in June and July

and January and February. The mean annual precipitation

varies from about 400 mm in the eastern and northern parts of

Kenya to more than 2800 mm over the Lake Victoria basin.

The region is dotted with lakes, key among them L. Victoria

which drives a local land/lake breeze that controls the

convective activities around the lake basin (Anyah et al.,

2006; Onyango et al., 2020). On the other hand, the

Kenyan highland deflects the cross-equatorial flow

strengthening it during boreal summer (Peagle and Geisler,

1986; Chakraborty et al., 2009).

2.2 Data

While in situ rainfall data remains the most accurate, the

gauge network density in EA is sparse, thus inadequate to

describe drought’s spatial distribution accurately. In addition,

the limited length and inconsistency in the observational data

(Schreck and Semazzi, 2004; Shilenje and Ongoma, 2016) limit

our ability to assess the long-time observed drought changes over

the region. In this study, the monthly rainfall and potential

evapotranspiration data from CRU TS 4.05 (Harris et al.,

2014) were used to calculate the drought index.

One of the reasons for using CRU data is because it

includes all the climate variables that allow for the SPEI

index computation. Secondly, all grid points have complete

data over a 120-year long period during 1900–2020 with

relatively higher resolution of 0.5° x 0.5°. Meanwhile, the

PET data from CRU uses the FAO-recommended Penman-

Monteith method that incorporates daily temperature,

radiation, humidity and wind speed. Moreover, the CRU

dataset performs relatively well in hydrometeorological

studies over East Africa. Ongoma and Chen (2017) found

that CRU data outperforms the GPCC dataset in reproducing

the East Africa rainfall cycle. The CRU dataset has also been

widely used for climate variability studies over East Africa,

including the rainfall decadal variation and the model

performance evaluation (e.g., Yang et al., 2014; Ayugi

et al.,2020; Mbigi et al., 2022). It is noted that, the spring

season in this study refers to March, April and May (MAM).

Monthly Nino3.4 and PDO indices data were obtained from

the NOAA Climate Prediction Center (https://psl.noaa.gov/

gcos_wgsp/Timeseries/).

2.3 Method

2.3.1 Definition of drought index
The study used SPEI to define drought during the MAM

season. The index was estimated using the monthly rainfall and

the potential evapotranspiration (PET) for 1901–2020. SPEI is

based on a water balance approach and uses the difference

between rainfall and potential evapotranspiration (PET) to

analyze the dry and wet spells over multiple timescales

(Vicente-Serrano et al., 2010). The index is computed by

Frontiers in Earth Science frontiersin.org03

Omondi and Lin 10.3389/feart.2022.1064940

https://psl.noaa.gov/gcos_wgsp/Timeseries/
https://psl.noaa.gov/gcos_wgsp/Timeseries/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1064940


subtracting potential evapotranspiration from corresponding

rainfall and summing up the result with a moving window of

width equivalent to the user-specified timescale known as the

accumulation period. The accumulated monthly values are then

fitted to a parametric statistical distribution where non-

exceedance probabilities are transformed into a standard

normal distribution (McKee et al., 1993; Guttmann, 1998).

The parameter of the Log-logistic distribution function is

adopted here to fit cumulative probability distribution

aggregated over 3-month rainfall time series. SPEI values were

computed using the R package developed by Vicente-Serrano

et al. (2010).

To obtain the drought classification, the SPEI drought

index was firstly calculated from CRU hydrometeorological

observations, then the drought category was further classified

based on the predefined threshold on the SPEI index value as

defined by Vicente-Serrano et al. (2010), and was shown in

Table 1. We adopted the run model (Yevjevich, 1967) to define

the drought-related characteristics for our study period. Here,

drought is considered anytime the SPEI value equals or less

than −1 and ends when the value is above this threshold. Once

a drought event is detected, it is assigned drought

characteristics. These are drought duration, the number of

consecutive months in which the SPEI value remains below

the threshold value. At the same time, the area under the curve

represents the magnitude of drought severity. The ratio of

drought severity to its duration gives the drought intensity.

SPEI3 values from May 1901–2020 were used to analyze

drought in this study.

2.3.2 Rotated empirical orthogonal function
analysis

Due to the high dimensionality and non-linearity of

hydrometeorological data (Hannachi et al., 2007), the

Empirical Orthogonal Function (EOF) is commonly used to

systematically decompose data into a smaller set of variables

that explain most of the original variance. However, EOF often

exhibits subdomain instability, domain shape dependence, and

sampling problems that may hamper their utility in isolating

individual modes of variation (Richman, 1986). Consequently,

the Rotated Empirical Orthogonal Function (REOF)

methodology has been applied to the SPEI dataset in this

study to identify the regions with similar drought features.

REOF is computed by the rotation of eigenvectors obtained in

the EOF analysis to achieve a more stable localized pattern that

retains its orthogonality. The number of EOF retained for

rotation is decided based on the rule of thumb (North et al.,

1982) and the cumulative proportion of variance explained by the

principal components.

2.3.3 Wavelet analysis
In general, the variation of SPEI can be analyzed using

Fourier transform. However, owing to the intricacy of factors

from which the drought arises, its time series may exhibit non-

stationary properties (Abdourahamane, 2018). The time series of

REOF is analyzed in a time-frequency domain using continuous

wavelet transform (CWT) to identify the periodicity. CWT

transforms the temporal drought variability pattern onto a

time-frequency plane where their duration and dominant

periodicities can be easily identified.

Further, the study investigated the relationship between the

Niño3.4 index, a leading mode of regional interannual variability,

and SPEI using wavelet coherence (WCO; Torrence and Compo,

1998; Grinsted et al., 2004). WCOmeasures the time and scale of

interaction between two processes as a function of frequency and

may be taken as a decomposition of the correlation coefficient

across multiple timescales (Casagrande et al., 2015). We adopt

the Morlet wavelet function due to its ability to balance time and

frequency. The analysis was tested for significance using Monte

Carlo techniques at a 95% confidence level. The WCO values

range from zero to one, and a closer value to one shows a higher

correlation.

2.3.4 Trend analysis
The long-term wetting and drying trend were estimated at

each grid point over EEA for the study period 1901–2020 using

the non-parametric Mann-Kendall test (MK; Mann 1945;

Kendall 1975). The MK test is a non-parametric test that

applies to all types of distribution. Due to its low sensitivity,

MK does not require samples to conform to any particular

distribution. It is also less sensitive to the missing values

making it appropriate for studying hydrometeorological

variables. The mathematical description of the MK method

can be found in Gao et al. (2020).

3 Results

3.1 Regionalization of spring drought
characteristics over EA

In order to clarify the sub-regional difference in drought

characteristics over EEA, this study adopted the maximum

TABLE 1 SPEI classification.

SPEI value Drought classification

SPEI ≤ −2.00 Extremely dry

−1.99 ≤SPEI≤-1.5 Severely dry

−1.49 ≤SPEI≤-1.0 Moderately dry

−0.99 ≤SPEI≤ 0.99 Near normal

1.0 ≤SPEI≤ 1.49 Moderately wet

1.5≤SPEI≤ 1.99 Severely wet

SPEI ≥ 2.00 Extremely wet
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loading rule (Vincent Serrano, 2006) to identify the sub-regional

boundaries for drought analysis. Figure 2 presents the spatial

pattern of the top six dominant REOF modes that were well-

demarcated and shows clear spatially disjunctive patterns that

did not overlap when a loading threshold of ±0.05 was applied.

The six modes explained approximately 77.9% of the total

variance in the original SPEI series. The leading mode of

variability explains 18.5% of the total variance and has a

maximum magnitude in northeastern Kenya. The second

mode represents the south of Lake Victoria basin, central and

western Tanzania and explains 18.3% of the total variance. The

third mode represents Kenya and Tanzania’s coastal strip and

explains 12.9% of the total variance. The fourth mode explains

10.1% of the total variance and has its center in western Kenya,

Central and northern Uganda. The fifth mode has its maximum

magnitude in southern Tanzania and explains 9.9% of the total

variance. Lastly, the sixth mode has the largest magnitude in

south Uganda, Rwanda and Burundi.

For brevity, the zones were named as follows; Northern

Kenya (NK; REOF1), Central Region (CR; REOF2), Coastal

Strip (CS; REOF3), Northern Uganda (NU; REOF4), Southern

Tanzania (ST; REOF5) and Western Sector (WS; REOF6). We

further performed a Spearman correlation between the rotated

principal component (RPC) for each dominant REOF mode and

the averaged SPEI values corresponding to each region. The

correlation coefficients were generally higher than 0.70, except

for the NU Region, with a coefficient value of 0.46. The high

correlation coefficients between any two corresponding regions

imply that the demarcation is appropriate for studying regionally

homogeneous drought characteristics.

3.2 Spatial pattern of drought
characteristics

The estimated SPEI values were used to characterize drought

based on frequency, intensity and duration for the analysis

period. The spatial distribution of drought characteristics over

EA is shown in Figure 3, with lower drought frequency (<20%)

found over the region. More specifically, the frequency is

relatively lower in the WS sub-region, with a value below

14%. Conversely, CR, NU, ST, and NK sub-regions have a

relatively higher frequency (15–20%) of drought occurrence

(Figure 3A). The frequency has a maximum magnitude of

~20% in the CR region at the border of Kenya and Tanzania.

On the other hand, Figure 3B reveals that drought in the MAM

season lasts between 2.2 and 2.8 months. Drought rarely occurs

in all months of the season as it coincides with the long rainfall

season when the region receives its maximum rainfall. Higher

drought duration occurs mostly in NU, with a large portion of the

sub-region having an average duration of 2.7 months. Parts of the

western CR and southern WS sub-regions also experience a high

FIGURE 1
Geographical location and elevation map for East Africa and Equatorial East Africa.
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average drought duration of 2.6 months. The CS region shows

the lowest drought frequency relative to the other sub-region,

with the highest duration of approximately 2.2 months.

Figure 3C shows that CR and NK sub-regions exhibit

relatively lower drought intensity (~1.44/month) than the rest

of EEA, while the WS shows the largest intensity (1.6/month).

Generally, the higher frequency and lower intensity of drought in

the CR and NK sub-regions indicates that the zones experience

more droughts that are less intense, probably due to the reduced

rainfall received in the season. In contrast, the NU sub-region

showed higher frequency that lasted a relatively longer duration

hence the large drought intensity over the region during the

MAM season.

3.3 Spatial distribution of drought trends

The spatial distributions of the drought trend for the entire

study period are mapped in Figure 4. The linear trend of MAM

SPEI3 majorly returned drying over EA. The trend is

insignificant at a 95% confidence level in most parts of EA

except southwestern Tanzania, northern Tanzania and parts

FIGURE 2
Spatial patterns of the six leading Rotated Empirical Orthogonal Function (REOF) modes of SPEI3 over equatorial East Africa. (A) is the leading
mode representing NK, (B) the second mode representing CR, (C) the third mode representing CS, (D) the fourth mode representing NU, (E) the fifth
mode representing ST and (F) the sixth mode representing WS. The solid blue line indicates the boundary of sub-regions based on the spatial pattern
of the leading REOFs. CC gives the temporal correlation coefficients between the rotated principal component and the corresponding
averaged SPEI values over the sub-region.
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of northern Kenya and Uganda, where the magnitude is

about −0.008/yr (Figure 4B). The result shows that most

regions had a mild to moderate increase in drought.

Conversely, a small region north of Lake Victoria Basin and

southeastern Tanzania shows a weak wetting trend of about

0.002 years−1. Lake Victoria is known to control the diurnal

variation of rainfall in the surrounding area, making the basin

wetter than the surrounding. Skliris et al. (2016) found that the

Lake makes its basin wetter relative to other regions through the

“amplification of the water cycle” that occurs at a slower rate due

to global warming. Figure 4B reveals a mixture of an increasing

and a decreasing trend in drought duration that is largely

insignificant over EA. CS sub-region mainly shows an increase

in drought duration with an annual trend reaching 0.008/yr for

FIGURE 3
Spatial patterns of MAM seasonal mean (A) drought frequency (B) Drought duration and (C) drought intensity over Equatorial East Africa during
the 1901–2020 period. The solid red line indicates the boundary for various sub-region.

FIGURE 4
Spatial pattern of Mann-Kendall (MK) trend for (A) SPEI, (B) Drought duration and (C) Drought Intensity over equatorial East Africa during the
1901–2020 period. Cross-hatching shows regions where trends are significant at a 95% confidence level.
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some areas that exhibit a significant trend. Similarly, the NK

sub-region shows a positive trend in most parts but appears

insignificant, with an annual trend value of about 0.004/yr.

Figure 4C shows that drought intensity also shows a

combination of both downward and upward trends. The

reduction in intensity is mainly located in northwestern

Kenya (~0.006/yr) and parts of western CR sub-regions

(~0.003/yr), where the trend is significant. The decreasing

trend is mainly located in WS and western parts of NU sub-

regions, where the trend is as high as 0.007/yr.

3.4 Temporal variation of drought indices
over EA

The time series of SPEI in different sub-regions may help

understand the temporal evolution of drought indices at a sub-

domain scale and their regional differences. Figure 5 gives the

temporal evolution of SPEI over the six sub-regions. The linear

trend line and the local regression (LOESS) curves with 11 years

are fitted to the SPEI time series to represent the linear and non-

linear patterns of SPEI. From Figure 5, we can find that the

SPEI3 drought index shows considerable inter-annual variation

between wet and dry years. Meanwhile, the 11-year loess curve

reveals that negative SPEI3 values have dominated the SPEI

evolution since the 1980s in all sub-regions. This indicates that a

large portion of EEA is gradually becoming drier in recent

decades. The evolution of the SPEI drought index reveals the

widespread drought events over EA in 1902, 1921, 1924/25, 1933,

1943, 1949, 1953, 1955, 1961, 1969, 1971/73, 1976, 1983/84,

1992/93, 2000/01, 2004/05, 2007/09, 2011/2012, 2014, and 2017.

The drought events identified in the second half of the 20th

century correspond well with the findings of previous studies

(e.g., Nicholson, 2014; Agutu et al., 2017).

Regarding the regional differences, even more, drought

years were identified in different years. For instance, the NK

FIGURE 5
Temporal evolution of SPEI3 over six sub-regions of equatorial East Africa (A)NK, (B)CR, (C) CS, (D) ST, (E)NU and (F)WS. The red line shows an
11-year smoothed LOESS line, and the trend (blue) shows the rate of change of SPEI based on the Mann-Kendall trend test. p values with an asterisk
(**) show statistically significant trends at a 95% confidence level.
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sub-region had drought events in 1928/29,

1938,1945,1976,1980, and 1999 (Figure 5A); CR had

droughts in 1909 and 1993 (Figure 5B); CS had droughts in

1961 and 1962 (Figure 5C). For ST, more drought can be

found in 1919, 1954, 1957, 1964, 1970, and 1988 (Figure 5D);

for NU in 1905, 1939, 1943, and 1953 (Figure 5E) and WS in

1901, 1904, and 2020 (Figure 5F). Generally, many years

identified as having sub-regional droughts had negative

SPEI values in some of the sub-regions that did not satisfy

our drought threshold. This indicates that while there would

be a large-scale driver of drought in a particular year, each

zone’s distinct interaction with the local physical mechanism

may suppress or enhance the dry condition. The time

evolution of SPEI shows a weak negative trend in all the

sub-regions. The trend is significant in CR (0.005/yr.), CS

(0.006/yr.), and ST (0.005/yr.) and insignificant in NK (0.003/

yr.), NU (0.001/yr.) and WS (0.004/yr.).

3.5 Temporal variation of the drought area

The areal drought extent was computed as a ratio of grid points

with SPEI values less than −1 to the total number of all the grid

points in that sub-region. Figure 6 shows the time series of

percentage drought areas for the six sub-regions of EEA, we can

find that the area affected by drought fluctuated significantly year by

year, with magnitude ranging between 0% and 95% for the six sub-

regions during the study period. Meanwhile, increasing trend of

drought affected areas can also be found for all six sub-regions.

The variability of the drought area suggests that the positive

linear trend observed may not be monotonous during the entire

study period. Moreover, the high percentages of drought areas

experienced in the later stages of the study period are likely to

affect changes in the slope of the linear fitting. Consequently, we

performed a non-linear trend analysis using singular value

decomposition (SSA) for each sub-region separately. We chose

FIGURE 6
Temporal Evolution of percentage area under drought (PAD) for (A) NK, (B) CR, (C) CS, (D) ST, (E) NU and (F)WS sub-regions of the equatorial
East Africa. The blue line denotes the reconstructed area under drought using the leading SSA principal component, while the black curve is the trend
in the percentage drought area.
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a window frame of 11 years and reconstructed the time series

using the dominant mode to represent the time evolution of the

series better. Figure 6 reveals a gradual rise in the area under

drought for NK, CS, ST, and NU sub-regions, while the CR and

WS show a flat curve, with relatively smaller increasing trends.

The percentage drought areas can further be categorized into

four classes, i.e., moderate, severe and extreme drought area. For

each category, the percentage area is obtained by comparing the

total number of grids under that specific category to the total

number of grids in each year. The result revealed that the total

increase of percentage drought area is dominated by an increase

in the area under moderate and severe droughts, rather than that

under extreme drought (Supplementary Figure S2).

In most regions with larger increasing trend of percentage

drought area extent, large spatial extension of drought can be also

found after the 1980s. Previous study suggested that the decadal

variation of rainfall anomalies in East Africa could be linked to

the Pacific decadal oscillation (PDO; Bahaga et al., 2018). To

understand the potential linkage between drought variation in

EEA and PDO, the time series of the PDO index and 11-year

running mean SPEI3 drought index over EEA region during

1900–2020 is presented (Supplementary Figure S3). It is found

that the correlation between PDO index and SPEI drought index

is weak during the whole study period, with temporal correlation

coefficient of only 0.17. However, the correlation increase to

around 0.88 after 1980. These suggest that the PDO signal can

enhance the drought extension after 1980s, but this relationship

is not significant over the whole time period.

3.6 Contribution of PET and rainfall to the
drought

Based on the SPEI definition, the driving factors considered

were rainfall and PET and, thus, their contribution to the total

drought area. However, the influence of PET and rainfall on SPEI

depend on their independence from one another (Cook et al.,

2014). To quantify the contribution of rainfall and PET on SPEI-

based drought changes, we adopted the detrending method

described by Hamlet and Lettenmaier (2007), which references

the SPEI by incorporating changes in either variable. To isolate

the impact of rainfall, we calculated the SPEI index using the

original data that retained the transient changes in rainfall and

detrended PET and named it SPEI-PRE. Similarly, to isolate the

impact of PET, SPEI was calculated using detrended rainfall and

the original values of PET and referred result as SPEI-PET.

As shown in Figure 9, the combined effects of rainfall and

PET on drought either reinforced the area under drought (mid-

20th century) or acted in opposition (beginning and end of the

20th century) to mitigate the effect of each other for most regions

in EEA. Additionally. Figure 7 also reveals that in the first half of

the 20th century, the percentage of drought area computed using

detrended rainfall (PET) was higher (lower) than the observed

conditions in all six regions. Consequently, the findings suggest

that lower PET values reduced drought intensity. However, the

result reverses in the post-1975 period, where the increase in PET

had a positive effect on drought, indicated by the rise in drought

area calculated using varPre. Therefore, the apparent increase in

areal drought extent in the post-1980s may be attributed to the

high evaporative demands that exert greater stress on an already

declining rainfall, thus exacerbating the drought severity. The

impact of PET was pronounced in CR, NK, WS, and NU regions

(Figure 7).

To explore the impact of PET on areal drought extent further,

we compared the area under drought computed using SPEI to

that SPI index (Supplementary Figure S4). The result shows

divergent evolution of the percentage of land area affected by

drought defined by the two indices. Furthermore, the result

indicates that since the 1950s, the SPEI index has

progressively identified more drought extent, thus pointing to

the role of PET in the increase of drought coverage in all the sub-

regions. Therefore, the apparent growth in drought areal extent

in the post-1980s may be attributed to the high evaporative

demands that exerted significant stress on an already declining

rainfall, thus exacerbating the drought severity.

3.7 Variability of spring drought and its
relationship with climate indices

REOF helps identify drought variability patterns but fails to

provide information on the periodicities of the observed variabilities.

Consequently, we apply the wavelet analysis to isolate dominant

periodicity in the drought records and identify the coherence

between drought and teleconnection indices. Figure 8 shows the

result of the wavelet power spectrum of spatially averaged

SPEI3 over the six sub-regions. The thick black line encloses

values that have passed the red noise test at a 95% confidence

level as determined by the Monte Carlo process (Jevrejeva et al.,

2003). However, the Cone of Influence (COI) gives the region

potentially influenced by the edge effect of data during wavelet

transformation, and the area inside it provides an accurate time-

frequency representation of the data. In contrast, the area outside it

suffers from edge effects, thus unreliable.

For the NK sub-region (Figure 8A), a significant power

region exists in the 3 years band in the 1920s, increasing to a

periodicity of 6 years in the 1940s before decreasing and decaying

by 1955. In addition, there is a strong amplitude between the

1970s and 1985 in the 4 years band and a weak amplitude in the

8 years band between 1940 and 2000s. Figure 8B shows that for

the CR sub-region, significant power regions are distributed in

the 3–6 years band between 1920 and 1950 and a 9–14 years band

between the 1960s and 1990s. Figure 8C shows intermittent wave

spectra between 1901 and 1980 in the CS sub-region. A weak

8–12 years band exists between 1960 and 2010, as well as a strong

band outside the cone of influence in the 30–48 years band.
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Figure 8D shows the local wavelet spectra in the 2–7 years band

for the NU sub-region. The result appears weak throughout the

study period except in 1920, 1930–1950, and 1980–1985. For the

ST sub-region, the local wavelet spectra are in the 2–6 years band

and 8–30 years band between 1950 and 2000 (Figure 8E). The

inter-annual periodicity decreases from the 6 years to 2 years

band from the 1980s. The sub-region also has a significant

wavelet power in the 30–48 years band outside the cone of

influence. In contrast, Figure 8F shows that WS has the

weakest periodicity of all the sub-regions throughout the

study period, with a reduced level of activities in pre-1920

and post-2000. In general, the regular periodicity is relatively

stable at 2–6 years, indicating a large inter-annual variability

within the period 1920–1980, while a decadal (8–16 years)

variability also exists in some sub-regions. This suggests that

inter-annual periodicities (<6years) dominate drought variability

across EA. Overall, CR, CS, and ST sub-regions revealed the

strongest interannual variations with maximum yellow regions.

Over EEA region, the dominant inter-annual (2–6 years)

oscillations observed in the periodicity are mainly modulated

by the El-Niño southern oscillation (ENSO; Ogallo, 1989; Kiladis

and Diaz, 1989; Nicholson and Kim, 1997; Indeje et al., 2000).

Consequently, we explore the interdependency between

SPEI3 and the Niño3.4 index using cross-wavelet

transformations. In case of any association between the two

indices, a slowly varying phase lag is expected, and the

phenomenon would be phase-locked, i.e., the phase arrows

point only in one direction for a given wavelength (Grinsted

et al., 2004). The use of arrows expresses the relationship between

the two factors. The arrows pointing east reflect the in-phase

relationship, whereas the arrow pointing west indicates an out-

of-phase relationship. Conversely, arrows pointing upward

(downward) indicate drought lag (lead) the index by a quarter

cycle and reveals a non-linear relationship. Higher wavelength

transforms coefficients correspond to a stronger correlation

between drought and the Niño3.4 index.

FIGURE 7
Temporal evolution of the percentage area under drought conditions computed for (A)NK, (B)CR, (C)CS, (D) ST, (E)NU and (F)WS sub-regions
of Equatorial East Africa. The green time series represent the original SPEI, blue computed by varying rainfall and red computed by varying PET.

Frontiers in Earth Science frontiersin.org11

Omondi and Lin 10.3389/feart.2022.1064940

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1064940


Figure 9 shows the result of cross wavelet transformation

between Niño3.4 and SPEI with high wavelet coherence larger

than 0.6 shown with arrows. As shown in Figure 9A, NK showed

high energies between SPEI and Niño3.4 in the 8–12 years

frequency band in 1920–1960 years; and 4–6 years in the

1930s. The observed coherence between Niño3.4 and SPEI

was in-phase during the periods as arrows points to the east.

However, from 1970 to 1990, the two indices were out of phase

within the 3–5 years period band. Nevertheless, the coherence in

the later period failed the significance test. In the CR sub-region,

a significant correlation between the indices appeared

intermittently from the 1920s to 1990s in the 2–6 years band

(Figure 9B). In the beginning, the two indices were in-phase,

followed by Niño3.4 leading SPEI and later an antiphase

relationship. Figure 9C shows that the CS sub-region

exhibited a statistically significant relationship between SPEI

and Niño3.4 between 1940 and 1970; however, the former

index led the latter by about 3–4 months. The anti-phase

association infers no or weak influence on drought by the

ENSO. Another high power appears in the 16–24 years band

where the relationship is in-phase. NU sub-region shows a

scattered high coherence between the two indices within a

2–6 years band with in-phase coherence between

1920–1940 and Niño3.4 leading SPEI by 3–4 months in the

1950s and 1980s (Figure 9D). Figure 9E reveals that SPEI

were out of phase with Niño3.4 in the 1920s over the ST sub-

region with high energies lasting 2–6 years. Another statistically

significant high power is evident in the 1970s and 1980s, where

SPEI lags Niño3.4 by 3–4 months lasting between 9 and 15 years.

Over the WS sub-region, significant high power was

concentrated in the 2–6 years band and was in-phase between

1920–1940, while the variability of SPEI lagged that of Niño3.4 in

1960 (Figure 9F).

In general, the 2–6 years oscillation is more robust, suggesting a

strong inter-annual coherence between drought and ENSO, and this

is consistent with findings by previous studies (Rodhe and Virji,

1976; Nicholson and Entekhabi, 1986). It is suggested that ENSO

can produce anomalous diabatic heating/cooling over the western

FIGURE 8
Wavelet power spectra of averaged SPEI time series over (A)NK, (B)CR, (C)CS, (D) ST, (E)NUand (F)WS sub-regions of equatorial East Africa. The solid
dark contour denotes the 95% confidence level against the red noise. The cone of influence (COI) is shown as a semi-circle with a dark shade.
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Pacific Ocean, creating a dynamically forced anomalous ascent/

descent in the region, thus modifying the walker-type zonal

circulation in the equatorial Indian Ocean (Goddard and

Graham 1999; Mutai and Ward, 2000). Pohl and Camberlin

(2011) also reported that the interannual variability of rainfall in

all season except the boreal summer over EEA are strongly

controlled by zonal wind shear between 850 mb and 150 mb

level over the equatorial Indian Ocean, which was closely

correlated to ENSO in all seasons.

4 Discussion and conclusion

The current study gives a simple but complete picture of

meteorological drought characteristics over EEA during the MAM

season based on SPEI3 using a long-term CRU dataset. MAM was

chosen because it corresponds to the primary planting season for

major food and because the season is the best candidate for

investigating the observed rainfall decline’s impact on drought

characteristics. SPEI index is relatively easier to characterize but

FIGURE 9
Squared wavelet coherence between the spatially averaged SPEI for (A) NK, (B) CR, (C) CS, (D) ST, (E) NU and (F) WS sub-regions and MAM
Niño3.4. The colour increment from blue to red denotes the increasing coherency between the two indices. Phase arrows pointing right indicate
signals are in phase, whereas left-pointing arrows indicate an antiphase relationship. Arrows pointing upward (downward) shows lead (lag)
relationships between the two signals. The black contour designates the 95% confidence level against red noise, and the cone of influence (COI)
is shown as a black semi-circle with a lighter shade.
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provides subtle information on drought behavior vital to drought

mitigation and water resource management. The Meteorological

drought discussed herein is the precursor for other types of

drought. Therefore, the knowledge of its temporal variability

may reveal the susceptibility of an area to different drought

types. The evolution of SPEI during the period of study points

toward an increase in spatial coverage of drought areal extent.

Most of this increase was observed in moderate and severe

drought, while extreme drought remained stable during the

observation period. The result of REOF identified six distinct

spatial patterns that partly resemble the MAM daily rainfall

homogeneous sub-regions identified by Indeje et al. (2000). The

observed variation may be attributed to the SPEI calculation,

which uses PET that is influenced by other climatic factors.

The sub-regions identified may be helpful in regional drought

risk assessment and management. SPEI3 used was able to capture

the major drought events documented over EEA. For the study

period, the notable droughts occurred in 1902, 1921, 1924/25,

1933, 1943, 1949, 1953, 1955, 1961, 1969, 1971/73, 1976, 1983/84,

1992/93, 2000/01, 2004/05, 2007/09, 2011/2012, 2014, and 2017.

Although there is no apparent pattern in the occurrence of

these events, the first 2 decades at the beginning of the 20th

century are marked by a persistent period of positive SPEI

values. The opposite has been true from the late 20th century

to recent decades, signaling the increase in drought events in

the region. The recent increase in drought has been linked to

warming in the western Pacific Ocean that is associated with

the cold PDO phase (Williams and Funk, 2011; Funk et al.,

2014).

The warming extends the warm pool into the eastern

Indian Ocean, creating an anticyclonic flow that disrupts

the moisture flow to EA by enhancing subsidence over

EEA. A similar decline in rainfall has also been reported in

Africa’s monsoon region (Han et al., 2019). Non-etheless,

Bahaga et al. (2018) found that the Greater Horn of Africa (a

larger part of eastern Africa) receives above (below) normal

rain during warm (cold) PDO phases. However, the

correlation coefficient between PDO and drought variation

is pretty weak, when only Equatorial East Africa region is

considered. Consequently, this points to a complicated

relationship between decadal pacific variability and drought

over Equatorial East Africa in MAM season, and care should

be taken when analyzing such a relationship.

EEA region generally experienced increased drought

frequency between 1981 and 2020, with the drought-

afflicted area remaining at an average above 30% for most

of the sub-regions. Such an increase in areal extent increases

the community’s vulnerability through reduced portable

water and food production. Additionally, the strength and

direction of the SPEI trend seemed to change depending on

the period chosen. However, the trend magnitude weakened

considerably when the entire study period was considered. We

further analyzed how changes in rainfall and PET influence

SPEI. The contribution of rainfall was dominant over the

contribution of PET on SPEI variation; however, the latter has

contributed positively to the increase in drought areas in the

post-1980 era. The implicit assumption from the above result

is that factors that drive droughts, such as temperature, have

changed over the decades. Indeed, the comparison between

the percentage of land affected by drought using SPI and SPEI

indices showed a progressive divergent evolution. The

difference between the two indices shows the percentage of

land area affected by drought should the phenomenon be

defined using the water balance rather than rainfall alone. The

result suggests that before the 1970s, changes in drought were

primarily related to the rainfall variability over the region.

Besides the decline in rainfall during the MAM season,

evapotranspiration has exacerbated the spread of drought.

These findings are coherent with rainfall and temperature

evolution over EEA, where studies have reported general

temperature increases and reductions in rainfall (Ongoma

and Chen, 2017). While the SPEI value shows a decreasing

trend, it lacks clear evidence of substantial significant changes.

This result agrees with the findings of Mpelasoka et al. (2018),

who reported a lack of significant changes in the long-term

probability of the annual occurrence of drought over the larger

greater horn of Africa.

The result of spectral analysis of the cyclic behavior of MAM

drought reveals that 2–6 years cycles are frequent in almost all sub-

regions suggesting that inter-annual periodicities (<6 years)
dominate drought variability across EA. The periodicity nature of

drought signifies good news for policymakers as this implies ease of

predicting the drought phenomenon. Analyses of drought using

wavelets show a significant relationship withNiño3.4 at a periodicity

of 2–6 years that occurs intermittently throughout the study period.

The strength of influence of Niño3.4 varies from one period to

another and from one sub-region to another. Onyutha andWillems

(2017) reported that although the large-scalemechanism responsible

for droughtmay be the same, its characteristicsmay be influenced by

the local land-atmosphere feedback response determined by

topography and the presence of water bodies (Funk et al., 2015;

Wainwright et al., 2019).

Data availability statement

All the CRU TS 4.05 data used in this study are available at

https://crudata.uea.ac.uk/cru/data/hrg/index.htm#current. Nino

3.4 and PDO indices are available in NOAA Climate Prediction

Center website at https://psl.noaa.gov/gcos_wgsp/Timeseries/

Author contributions

ZL: conceptualized, supervised, reviewed and edited the

manuscript while the AO curated the data, did formal analysis

Frontiers in Earth Science frontiersin.org14

Omondi and Lin 10.3389/feart.2022.1064940

https://crudata.uea.ac.uk/cru/data/hrg/index.htm#current
https://psl.noaa.gov/gcos_wgsp/Timeseries/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1064940


and drafted the original manuscript. Both authors have read and

agreed to the published version of the manuscript.

Funding

This study is jointly supported by the Chinese Academy of

Sciences Strategic Priority Research Program (Grant No.

XDA19030403), the National Natural Science Foundation of

China (Grant Nos. 42075166 and 41975119), and NSFC Research

Fund for International Young Scientists (Grant No. 42150410394).

Acknowledgments

The authors are grateful to theUniversity of East Anglia Climate

Research Program for the CRU dataset and NOAA Climate

Prediction Center for the Nino3.4 and PDO data used. OA

acknowledges the support of the CAS-TWAS President

Fellowship and the CAS-TWAS Center of Excellence for Climate

and Environment Sciences for the infrastructure to conduct the

study. We also thank the anonymous reviewers for their helpful

comments and suggestions.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/feart.2022.

1064940/full#supplementary-material

SUPPLEMENTARY FIGURE S1
Major planting season for various food crops in EA. Adopted fromFAOGIEWS
- Global Information and Early Warning System (Accessed 28 March 2022).

SUPPLEMENTARY FIGURE S2
Evolution of percentage area under drought for NK (A–D), different sub-
regions for moderate drought (left column), severe drought (mid
column) and extreme (right column). Figures CR (E–H), CS (I–L), ST
(M–P), NU (Q–T) andWS (U–X) The blue denotes the reconstructed area
under drought using the leading SSA principal component, while the
black curve is the trend in the percentage drought area.

SUPPLEMENTARY FIGURE S3
Time series of PDO (red) and Equatorial East Africa spatially averaged SPEI
(green) for MAM. An 11-year moving average has was applied to both series. R
denotes the correlation coefficient between the PDO and SPEI time series.

SUPPLEMENTARY FIGURE S4
Difference in percent area under drought calculated as the difference
between MAM SPEI and SPI for (A) NK, (B) CR, (C) CS, (D) ST, (E) NU and
(F) WS sub-regions of the equatorial East Africa.
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