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The Daily Tropical Cyclone Probability (DTCP), defined as the probability of tropical
cyclone occurrence within 500 km of a location in 1 day, is proposed and used in
evaluating subseasonal to seasonal (S2S) predictions from the subseasonal to
seasonal Prediction Project Database, from May 1 to October 31, 1999 to 2010.
The ensemble forecasts are collected from eleven operational centers, the Bureau of
Meteorology (BoM), China Meteorological Administration (CMA), Environment and
Climate Change Canada (ECCC), European Centre for Medium-Range Weather
Forecasts (ECMWF), Hydrometeorological Centre of Russia (HMCR), the Institute
of Atmospheric Sciences and Climate of the National Research Council of Italy
(ISAC), the Japan Meteorological Agency (JMA), the Korea Meteorological
Administration (KMA), Météo-France/Centre National de Recherche
Meteorologiques (METFR), the United States National Centers for Environmental
Prediction (NCEP), and the United Kingdom Met Office (UKMO). In both observation
and these eleven forecast models, the daily tropical cyclone probability is modulated
by the Boreal Summer Intraseasonal Oscillation (BSISO), depicted by the two indices,
boreal summer intraseasonal oscillation 1 and boreal summer intraseasonal
oscillation 2. During boreal summer intraseasonal oscillation 1 phases 1, 5, 6, 7,
and 8, the daily tropical cyclone probability in the western North Pacific region is
~3.5 times higher. Similarly, during phases 1, 2, 3, 4, and 8 of boreal summer
intraseasonal oscillation 2, the daily tropical cyclone probability is ~2.5 times
higher. Among the eleven models, the European Centre for Medium-Range
Weather Forecasts model best reproduces the climatological daily tropical
cyclone probability and its modulation by the boreal summer intraseasonal
oscillation in the western North Pacific region, followed by the United States
National Centers for Environmental Prediction, the Korea Meteorological
Administration, the Japan Meteorological Agency models. Using the daily tropical
cyclone probability metric, the highest debiased Brier Skill Score of the eleven
models is from European Centre for Medium-Range Weather Forecasts, which
has a slightly less skillful prediction than the reference climatological forecast
with lead time 11–30 days. The skill of the eleven models is higher during the
non-active phases of tropical cyclone activity than their skill during the active phases.
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1 Introduction

The skill of synoptic weather forecast has improved steadily over
the last several decades because of the advancing capabilities of
numerical prediction models, data assimilation algorithms,
computational hardware, and the increasing amounts and types of
observational data (Bauer et al., 2015). An opportunity and recent
focus for the scientific and operational communities is to make
forecasts on Subseasonal to Seasonal (S2S) timescale (NAS, 2016).
Research questions regarding S2S forecasting include: what aspects of
weather and climate can we predict; what prediction skill should we
expect for these phenomena/features; how do we achieve the expected
skill; and how to make the best use of the predictable signals and
associated forecasts at S2S timescale? In present research, we focus on
the S2S prediction of tropical cyclones: what to predict for tropical
cyclones on S2S timescale; how to evaluate the S2S tropical cyclone
prediction; what aspects of the model contribute to the prediction
skill?

Regarding predicting tropical cyclones at medium range timescale
(e.g., 0–14 days), track and intensity are used to measure prediction
accuracy (e.g., DeMaria et al., 2014; Cangialosi and Franklin 2017).
However, when evaluating tropical cyclone prediction skill at S2S
timescale, such as between 11 and 30 days, metrics such as track and
intensity are not applicable anymore since the current S2S forecast
systems cannot predict tropical cyclone with the needed accuracy.
What aspects of tropical cyclones to predict and how to evaluate
prediction skill on S2S timescale still need further research (Camargo
et al., 2019).

On the S2S timescale, it is generally agreed that the tropical
intraseasonal oscillations, including the Madden Julian Oscillation
(MJO) and Boreal Summer Intraseasonal Oscillation (BSISO), exhibit
predictability (e.g., Kim et al., 2008; Waliser 2011; Neena et al., 2014a;
Neena et al., 2014b; Lee et al., 2015; Xiang et al., 2015). In addition,
research has shown that the MJO and BSISO can modulate the activity
of tropical cyclones (e.g., Maloney and Hartmann 2000; Goswami
et al., 2003; Camargo et al., 2009; Vitart 2009; Zhao et al., 2015; Jiang
et al., 2018). For example, during phases of intraseasonal oscillation
with enhanced convection in the western North Pacific Ocean in
boreal summer, there is a tendency for tropical cyclones to form in the
region (e.g., Zhao et al., 2015). Thus, our capabilities to predict the
MJO or BSISO out to 3–5 weeks provide the means to forecast tropical
cyclone activity.

In order to promote research, improve prediction skills and
expand the capacity of operational S2S forecasting, the World
Meteorological Organization (WMO) has launched a 5-year
Subseasonal to Seasonal Prediction Project (Vitart et al., 2017;
Vitart and Robertson 2018), which has recently been extended for
another 5 years (2019–2023). As part of the project, a S2S Prediction
Project Database was formed by collecting reforecasts from eleven
operational forecast centers. These eleven operational centers are the
Australian Bureau of Meteorology (BoM), the China Meteorological
Administration (CMA), the European Centre for Medium-Range
Weather Forecasts (ECMWF), Environment and Climate Change
Canada (ECCC), the Institute of Atmospheric Sciences and Climate
of the National Research Council of Italy (ISAC), the
Hydrometeorological Centre of Russia (HMCR), the Japan
Meteorological Agency (JMA), the Korea Meteorological
Administration (KMA), Météo-France/Centre National de
Recherche Meteorologiques (METFR), the United States National

Centers for Environmental Prediction (NCEP), and the
United Kingdom Met Office (UKMO). Using reforecasts from
systems of these centers, it was demonstrated that these systems
indeed have skill in predicting the BSISO up to two to 3 weeks,
although they tend to underestimate the BSISO amplitude as lead
time increases (Lee et al., 2015; Jie et al., 2017).

On the S2S timescale, different metrics were proposed to evaluate
tropical cyclone prediction skill. These metrics also reflect the level of
tropical cyclone prediction skill for that time. The count of tropical
cyclones during the tropical cyclone season was proposed at an early
stage and is still used at present (Camargo et al., 2019). The striking
probability of tropical cyclones for a specific period with a specified
distance was also proposed (Vitart et al., 2011). In Yamaguchi et al.
(2015), the metric used was the probability of the tropical cyclone
occurrence within a 300-km radius from a specific location during a 3-
day forecast time window. Their evaluation, however, was combined
together for each of the seven tropical cyclone basins, instead of
individual grid points. The metrics used by Vitart et al. (2010), Camp
et al. (2018) and Gregory et al. (2019) and Lee et al. (2020) is weekly
tropical cyclone occurrence over 15olatitude × 20o longitude boxes,
which might be too broad for societal applications. Different metrics
combined with different prediction evaluation methods will render
quite different tropical cyclone prediction skill scores (Camargo et al.,
2019). These differences caused difficulties in interpreting and
comparing these products among models, which is not convenient
for societal applications. As the S2S tropical cyclone prediction
products become operational and available to the stakeholders, it is
preferable to have a consistent metric across different centers for easy
interpretation and societal applications (Camargo et al., 2019).

Instead of using weekly tropical cyclone occurrence in 15olatitude ×
20o longitude boxes (Vitart et al., 2010; Camp et al., 2018; Gregory et al.,
2019; Lee et al., 2020), in the present research, we propose to use daily
tropical cyclone probability (DTCP) to evaluate tropical cyclone
prediction on S2S timescale. The DTCP is defined as the probability
of tropical cyclone occurrence within 500 km from a specified location in
1 day. The evaluation of DTCP is also conducted for each grid point on a
regular grid. As expected, the DTCP defined above is a high expectation
for current S2S forecast systems. However, the DTCP provides the
occurrence and movement information of tropical cyclones on a fine
scale in both space and time compared with the metrics used before and
its evaluation is for each grid point not for a large domain. This type of
information may be more beneficial for deploying resources to mitigate
the damages associated with tropical cyclones. By promoting the same
metric for different operational centers, their skills can be directly
compared (Camargo et al., 2019). The spatial distribution of
prediction skills associated with using DTCP can be analyzed, and this
information could be exploited when conducting grand ensemble
forecasts using forecast products from different systems.

This paper is organized as follows. After the introduction, Section
2 presents the data and methods used in this study, especially the
computation of DTCP and the debiased Brier Skill Score (Weigel et al.,
2007) to evaluate the performance of the systems in the S2S Prediction
Project Database. Section 3 analyzes the capability of these operational
S2S forecast systems in reproducing the modulation of DTCP in the
western North Pacific, compares their forecast skill of DTCP, and
investigates the relationship between model prediction skill and its
performance in representing climatological DTCP and its modulation
by BSISO. Section 4 summarizes our main findings and discusses the
limitations of current research.
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2 Data and methods

2.1 Tropical cyclone track observation and
BSISO indices

The tropical cyclone best track data used in the present research is
from the Joint TyphoonWarning Center, http://www.metoc.navy.mil/
jtwc, which provides the latitude, longitude, wind speed, and sea level
pressure of tropical cyclones for every 6 h (Chu et al., 2002). Our study
period is from 1999 to 2010, the common period of the reforecasts of
the WMO S2S Prediction Project Database (Table 1). Since tropical
cyclones tend to appear in boreal summer in the western North Pacific,
for each year we only analyze the period from May 1 to November 30,
with the last forecast starting from the end of October. We also only
use those tropical cyclones with sustained 10 min wind speeds greater
than 17.2 m/s at least once during their life cycle, which is a standard
criterion for separating tropical storms from tropical cyclones in the
Indian Ocean and western North Pacific Ocean (Holland 1993).

To describe the intraseasonal variability during boreal summer,
especially the variability in the south and east Asia monsoon region,
Lee et al. (2013) proposed BSISO index using multi-variable Empirical
Orthogonal Function analysis of 850 hPa zonal wind and outgoing
longwave radiation. The time series of the first four principal
components are used to construct two indices, BSISO1 and
BSISO2. The BSISO1 and 2 indices used are directly from the
website http://www.iprc.soest.hawaii.edu/users/jylee/bsiso/,
computed using NCEP/DOE Reanalysis II (Kanamitsu et al., 2002).
BSISO1 and BSISO2 describe different aspects of boreal summer

intraseasonal variability. These two indices are associated with
different spatial patterns of wind and outgoing longwave radiation
and temporal scales. The temporal scale of BSISO1 is around
30–60 days, while the temporal scale of BSISO2 is around 10–30 days.

2.2 S2S reforecasts

The details of the eleven S2S forecast systems in the S2S Prediction
Project Database are summarized in Table 1 which is based on Vitart
et al. (2017). The S2S forecast systems have a typical spatial resolution
of .25o to 2o degrees. Seven of them are coupled systems with a
dynamic oceanic component. The other four systems are not coupled.
These systems provide S2S reforecast with lead time varying from
33 to 62 days. In addition, each system has different forecast days and
frequencies for their reforecasts, with the number of ensemble
members varying from as few as 3 to as many as 33. Only two
systems (NCEP, CMA) made reforecasts every day. The number of
S2S prediction samples will influence the prediction skill evaluation in
subtle ways since tropical cyclones are rare events. The operational
year of these systems (last column in Table 1) is also different. In
comparing their skill for predicting tropical cyclone activity in the
western North Pacific, we used a common grid of 1o × 1o, a prediction
lead time of 30 days, prediction samples of common operational years
from 1999 to 2010.

The output from these systems in the S2S Prediction Project
Database was archived on a 1.5o × 1.5o grid every 24 h. Previous
research has shown that tropical cyclones, or close proxies, can be

TABLE 1 Details of eleven subseasonal to seasonal (S2S) forecast systems in the WMO S2S Prediction Project Database whose 30-day reforecasts from 1 May to
31 October 1999 to 2010 were used in present research. The lead time (column 2) is forecast lead time in days. The resolution (column 3) is longitude (o) and latitude
resolution (o) and the number of levels. The reforecast period (Rfc Period, column 4) is the period when reforecasts are run with reforecast frequency (Rfc Freq, column
5) and ensemble size (Rfc Ens. Size, column 6). The coupling status of these systems is indicated in the column 8 Coupled with Ocean and Coupled with Sea Ice. The
number of prediction samples is shown in column 9 and the operational year (column 10) shows the version of the system. Some of the columns are based on Table 1 of
Vitart et al. (2017).

System Lead
time
(day)

Resolution (°) Rfc
Period

Rfc
Freq

Rfc
(Ens
size)

Coupled
with ocean

Coupled
with sea ice

Prediction
samples

Operational
year

BoM 0–62 2 × 2, L17 1981–2013 6Times/
Mon

33 Yes No 432 2014

CMA 0–60 1 × 1, L40 1994–2014 Daily 4 Yes Yes 2208 2016

ECCC 0–32 .45 × .45, L40 1995–2012 Weekly 4 No No 324 2017

ECMWF 0–46 .25 × .25(0–10 days), .5 ×
.5 (after 10 days), L91

Past
20 years

2Times/
Week

11 Yes No 648 2015

HMCR 0–61 1.1 × 1.4, L28 1985–2010 Weekly 10 No No 324 2015

ISAC 0–31 .8 × .64, L41 1981–2010 Every
5 days

4 No No 448 2017

JMA 0–33 .5 x .5, L60 1981–2010 3Times/
Mon

5 No No 216 2016

KMA 0–60 .5 × .5, L85 1996–2019 4Times/
Mon

3 Yes Yes 288 2015

METFR 0–44 .7 × .7, L91 1993–2014 2Times/
Mon

15 Yes Yes 144 2016

NCEP 0–44 1 × 1, L64 1999–2010 Daily 4 Yes Yes 2208 2016

UKMO 0–60 .5 × .8, L85 1996–2010 4Times/
Mon

3 Yes Yes 228 2017
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identified and tracked in the output of these systems and used
successfully in the evaluation of the genesis (Lee et al., 2018) and
weekly tropical cyclone occurrence for 15olatitude × 20o longitude
boxes (Lee et al., 2020). The tracking algorithm used was developed by
Vitart et al. (1997) and further modified by Vitart and Stockdale
(2001). The algorithm was adapted for operational use at ECMWF
since 2011 (Vitart et al., 2011). The tracking algorithm defines a
tropical cyclone center at a local minimum sea level pressure center
where 1) a local vorticity maximum (> 3.5 × 10−5 s−1) at 850 hPa is
within 2o latitude, 2) a warm core with 500–250 hPa vertically
averaged temperature greater than .5°C is within 2o latitude, 3) the
two locations detected in (1) and (2) are within a distance of 8o

latitude, and 4) a local maximum thickness center between
1,000 and 200 hPa is within 2o latitude. The above criteria were
tested for an atmospheric general circulation model with a
resolution of 2.8o (Vitart et al., 1997) and the ECMWF Seasonal
Forecast System with a resolution of 1.875o (Vitart and Stockdale,
2001). The number of model tropical cyclones tracked using the above
criteria in the above ECMWF systems is consistent with the number of
tropical cyclones with wind speed greater than 17 m/s (Vitart and
Stockdale, 2001).

Different forecast systems usually have their own tracking
algorithm to identify tropical cyclones in their output (e.g., Camp
et al., 2018), which may render different results from the tracking
algorithm used in our research. However, the output in the S2S
Prediction Project Database was already archived on a 1.5° × 1.5°

grid, and it is not practical to use different tracking algorithm for
different forecast systems since the tracking algorithms used in
different systems and specific criteria are resolution-dependent. The
DTCP we used to quantify the evolution and movement of tropical
cyclones, only makes use of the location information of tropical
cyclones. The influence of using different tracking algorithms may
not be significant. On the other hand, all the S2S forecasting systems
are directly evaluated against the observed tropical cyclones.
Postprocessing, which is forecast system dependent and can
improve the prediction skill of a forecast system (e.g., Camp et al.,
2018; Lee et al., 2020), is not applied for any of the systems.

2.3 Definition of daily tropical cyclone
probability

The DTCP in the present research is defined as the probability of
tropical cyclone occurrence within 500 km of a grid point during a
particular day. The temporal and spatial criteria of 1 day and 500 km
from a specified location are selected for their simplicity in terms of
interpretation and application. Different criteria may also be used, like
1 week and 15olatitude × 20o longitude (Lee et al., 2020). It will render
different (and higher) prediction skills. However, with a narrow
temporal window and specific spatial information that is
straightforward to interpret, the metric DTCP can pinpoint the
genesis and movement of tropical cyclones.

The DTCP is computed on a common 1° × 1° grid over the western
North Pacific (0°-30°N, 100°-180°E) for both observation and model
outputs. The computation of DTCP is slightly different for ensemble
model output and observation. For a particular ensemble forecast
system, DTCP is computed for each day as the number of tropical
cyclones present in all the ensemble members within 500 km of a
location divided by the total number of ensemble members. If this

value is greater than 1, it is set as 1. As such, the computed DTCP on
each grid is the probability that a tropical cyclone would occur within a
radius of 500 km in the ensemble forecast in 1 day. Strictly speaking,
the above definition is the average of the number of tropical cyclones
capped by one as pointed out by one reviewer. The DTCP from
ensemble model output should be the number of members that have
tropical cyclones within 500 km of a location divided by the total
number of members. Since it is very rare to have two tropical cyclones
within 500 km in a model with course resolution of ~1o degree, we
ignore the difference of the two computations.

For observations, the DTCP is computed as the number of tropical
cyclones within 500 km of a location at 0GMT for each day. When the
number of tropical cyclones exceeds 1, it is set as one. Different from
the definition of tropical cyclone density used in Vitart and Robertson
(2018), which is the number of tropical cyclones within 200 km of a
location, DTCP defined in the present research is always less than or
equal to one, and can be interpreted as the probability a tropical
cyclone (or tropical cyclones) would occur within 500 km of a
particular location. Following the above definition, the occurrence
of a tropical cyclone can be treated as a dichotomous event. The DTCP
from an ensemble forecast and observation can be directly compared
and the forecast skill of tropical cyclones can be measured by debiased
Brier Skill Score (Weigel et al., 2007) which can account for the
difference in the number of ensemble members compared to the Brier
Skill Score proposed by Brier (1950).

As an example, Figure 1 presents DTCPs from eleven forecast
systems (Figures 1A–K) and from the observation (Figure 1L) on
20 May 2004. Forecast lead times for this case are selected from 11 to
20 days to focus on the S2S timescale and simultaneously have a
minimum difference in lead time among models. On this day, two
tropical cyclones are observed in the western North Pacific (Figure 1L),
located in the east of the Philippines, one around 12oN, the other
around 21oN. In observation (Figure 1L), the DTCP is 1 around the
neighborhood of these two tropical cyclones. The eleven forecast
models exhibit varying skills in predicting these two tropical
cyclones (Figures 1A–K), partly related to different lead times and
partly related to their skills in general. For this case, several models,
except JMA and HMCR, predict the existence of at least one tropical
cyclone. However, these models have various errors in the location of
these two tropical cyclones. It should be noted that some of the
forecast models tend to overpredict the number of tropical cyclones
(ECCC, METFR, NCEP, UKMO). Overall, the forecast results are
encouraging and it is plausible to directly compare the DTCP from
observation and forecast models to assess the prediction skill of
tropical cyclones in these models on the S2S timescale. If the
metric to evaluate the skill of tropical cyclone prediction is the
number of tropical cyclones within a region (say, 110E-150E, 0-
30N), eight of these 11 systems predict one or more tropical
cyclones within the region and would have some skills based on
this metric. However, the location information of the tropical cyclone
might be too broad to be useful for societal applications (Camargo
et al., 2019).

2.4 Debiased brier skill score

With the above definition of DTCP, the daily occurrence of
tropical cyclones can be treated as dichotomous events with 1 if
the event (tropical cyclone) occurs and 0 if it does not. The Brier
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Score can then be used as a measure of the accuracy of the tropical
cyclone prediction (Brier 1950),

〈BS〉 � ∑
2

k�1
∑
N

j�1
Ykj − Okj( )

2/N (1)

where 〈 · 〉 is the ensemble mean over prediction samples (j = 1,. . ., N)
and k = 1, 2 is the number of categories, Ykj is the prediction for
category k and sample j. Okj is the observed DTCP for sample j. The
value of 〈BS〉 changes from 0 to 2, with 0 as the perfect prediction and
2 as the situation when the prediction is wrong every time.

In order to assess the skill of a probability forecast, the Brier Skill
Score compares the forecast with a reference forecast, such as a
climatological forecast, and is defined as

1 − 〈BS〉
〈BSCL〉

(2)

in which 〈BSCL〉 is the Brier Score when a reference climatological
forecast is used to forecast DTCP. If the climatological DTCP is p for
one location, then the 〈BSCL〉 is 2p(1-p) in theory. In our evaluation of
the eleven forecast models, the theoretical 〈BSCL〉 computed from
climatological p as shown in Figure 2L is used instead of its estimate
from individual model prediction samples.

When ensemble forecasts are involved, small number of ensembles
tends to cause a negative bias in the value of the Brier Skill Score as
defined by Eq. 2. To remove the bias, a debiased Brier Skill Score
( BSSD) was proposed to evaluate the categorical event forecast
(Weigel et al., 2007). In our study, BSSD used to evaluate the
tropical cyclone probability forecast is

BSSD � 1 − <BS>
<BSCL > +D

(3)

In Eq. 3, D is

D � 1
M

p 1 − p( ) (4)

in which M is the number of ensembles and p is the observed
climatological DTCP defined above. The term D is used to correct
the negative bias when the number of ensemble members is small. As
evident from Eq. 4, the correction term D is reciprocal to the number
of ensemble members, which becomes small for a large ensemble size.
The debiased Brier Skill Score BSSD is used to compare the forecast
skill of DTCP of the eleven forecast models. The BSSD is computed for
each grid point, which is different from the practice such as in
Yamaguchi et al. (2015), in which the N in Eq. 1 is for grid points
in a region not for prediction samples. The area average BSSD is used
as a measure of tropical cyclone forecast for a specific region. Though
the BSSD is computed for the northwestern Pacific (0°-30°N,100°-
180°E), the area averaging is conducted only for the oceanic points of
the region in northern South China Sea and east of the Philippines
(10°-30°N,105°-150°E), where tropical cyclones tend to appear more
frequently.

2.5 Taylor score index

To quantify the skill of the S2S models for reproducing the
climatological DTCP and its modulation by BSISO, the Taylor
Score (TS) index proposed by Taylor (2001) was used,

TS � 4 1 + R( )4
σm
σo
+ σo

σm
( )

2
1 + R0( )4

, (5)

FIGURE 1
The daily tropical cyclone probability on 20May 2004 computed from reforecast outputs of the eleven forecast systems (A–K) and from observation (L).
The lead time of reforecasts, also shown in the figure, varies from 11 to 20 days.
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where R is the pattern correlation coefficient between themodel results
and observations, and R0 is the maximum attainable pattern
correlation coefficient between the model results and observations,
which was taken as 1 in the present research. The pattern correlation
coefficient of DTCP was computed using DTCP from each oceanic
grid point. The variables σm and σo are the standard deviations of the
modeled and observed spatial fields, respectively. The values of the TS
index were between 0 and 1. A larger value for this index indicates a
more similar model spatial pattern to the observations. The TS indices
for models in reproducing the climatological DTCP and its
modulation by BSISO1 and BSISO2 are shown in Table 2 and used
in Section 3.5.

3 Results

3.1 Climatological daily tropical cyclone
probability

In order to assess the tropical cyclone prediction in these eleven
models, we first evaluate their skill in reproducing the climatological
DTCP from 1999 to 2010. To have a robust comparison among eleven
models, the days from May 1 to October 30 of each year from 1999 to
2010 are all filled with the closest reforecasts. Thus, all the eleven
forecast models have the same number of reforecast of DTCP to
compare with observations. Figure 2 compares the climatological
DTCP from these forecast models (Figures 2A–K) and the
observation (Figure 2L). As expected, a large DTCP appears in the
northern part of the South China Sea and east of the Philippines. These

forecast models can more or less capture the spatial distribution of the
observed DTCP, although fidelity varies. Most of these models
(Figures 2D, F, G, I–K) can reproduce the DTCP east of the
Philippines, but underestimate DTCP in the northern part of the
South China Sea. The maximum observed DTCP is around .1
(Figure 2L), which means one would expect one tropical cyclone
every 10 days.

To qualitatively compare the skill of these models in reproducing
the observed climatological DTCP, the Taylor diagram is used
following Taylor (2001). The ECMWF model can represent the
spatial distribution of climatological DTCP the best, followed by
NCEP, KMA. and JMA, as shown in the Taylor diagram (Figure 3)
and Table 2. The capability of these models in reproducing
climatological DTCP will influence their forecast skills.

3.2 Modulation of daily tropical cyclone
probability by BSISO

Tropical cyclone variability in the western North Pacific is
modulated by intraseasonal oscillation (e.g., Vitart 2009; Zhao
et al., 2015; Nakano et al., 2021). To evaluate the performance of
the eleven forecast models in reproducing the modulation of tropical
cyclone variability by intraseasonal oscillation, the DTCP composite
for eight phases of BSISO1 and BSISO2 are compared with that from
the observation. The same method used in Section 3.1 is also used here
to have a 2184-day output from 1999 to 2010 between May 1 and
October 31. It should be noted that the composite for model output is
based on the observed BSISO index computed by Lee et al. (2013)

FIGURE 2
The climatological daily tropical cyclone probability based on the reforecasts from the eleven forecast systems (A–K) and from observation (L). For each
forecast system, the closest reforecast is used to fill each day from 1 May to 31 October 1999 to 2010, which is the period for averaging.
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using NCEP/Department of Energy Reanalysis Ⅱ (Kanamitsu et al.,
2002). When constructing composite for BSISO phases, only the days
when the magnitude of the BSISO index is greater than 1.5 are used as
in Lee et al. (2013).

Modulation of the DTCP by the BSISO is evident in observation
(bottom row of Figure 4). It is obvious that the DTCP is much more
prominent when BSISO1 is in phases 5, 6, 7, 8, and 1 than that in
phases 2, 3, and 4. Eleven models can reproduce this modulation
feature with various fidelity. Based on the Outgoing Longwave
Radiation (OLR) and 850 hPa wind anomaly patterns of different
phases of BSISO1 (Lee et al., 2013), it is evident that the enhanced

DTCP is associated with active convection in the northern part of the
South China Sea and western North Pacific and the low-level cyclonic
circulation that gradually moves northeastward when BSISO1 is in
phases 5, 6, 7, 8, and 1 (Figure 9 in Lee et al., 2013). From the observed
DTCP, the northeastward movement of large DTCP fields is quite
apparent for BSISO1 phases 5, 6, 7, 8, and 1. The observed average
DTCP over the northern part of the South China Sea and east of the
Philippines (10°-30°N, 105°-150°E) is ~3.5 times larger during the
active phases of the BSISO1 (phases 5, 6, 7, 8, and 1) than that during
the non-active phases (phases 2, 3, and 4).

Similarly, BSISO2 can also modulate the activity of tropical
cyclones. Figure 5 illustrates the composite DTCP during the eight
phases of BSISO2. When BSISO2 is in phases of 8, 1, 2, 3, and 4, the
DTCP is enhanced in the northern part of the South China Sea and
north of Taiwan (the bottom row of Figure 5). The average DTCP of
the northern part of the South China Sea and east of the Philippines
(10°-30°N, 105°-150°E) is ~2.5 times larger during the phases 8, 1, 2, 3,
and 4 than that during the phases 5, 6, and 7. Themodulation of DTCP
by BSISO, which would have been reproduced in forecasting models,
would certainly provide a source of predictability of tropical cyclone
activity at the S2S timescale.

To qualitatively compare the skill of these models in reproducing
the modulation of tropical cyclone activity of BSISO, the DTCP fields
for eight phases of BSISO over the northern part of the South China
Sea and east of the Philippines (10°-30°N,105°-150°E) are combined to
compare with the observation in Taylor diagrams (Figure 6A for
BSISO1; Figure 6B for BSISO2). From Figures 6A, B, it is evident that
the ECMWF model stands out as the best one to reproduce the
modulation of tropical cyclone activity by BSISO, followed by NCEP,
KMA and other systems. ECMWF has the highest Taylor Score in
reproducing the climatological DTCP and its modulation by
BSISO1 and BSISO2 (Table 2). The relationship between the model
performance in representing the climatological DTCP and the
modulation of tropical cyclone activity by BSISO and the skill of
S2S tropical cyclone forecast is discussed in Section 3.5 using these
Taylor Score indices.

TABLE 2 Averaged debiased Brier Skill Score of daily tropical cyclone probability (DTCP) of the eleven S2S forecast systems between lead time day 11–30 (column 2),
averaged debiased Brier Skill Score between lead time day 11–30 for the tropical cyclone active phases (column 2) and tropical cyclone non-active phases of BSISO1
(column 3). The Taylor Score indices of models for reproducing climatological DTCP are shown in column 4 and its modulation by BSISO1 in column 5 and BSISO2 in
column 6.

Center BSSD BSSD active BSSD non-active Climate DTCP BSISO1 BSISO2

BoM −.075 −.311 .091 .488 .354 .219

CMA −.195 −.400 −.055 .209 .405 .422

ECCC −.244 −.444 −.105 .684 .676 .578

ECMWF −.002 −.207 .134 .911 .814 .790

HMCR −.016 −.234 .123 .073 .062 .099

ISAC −.262 −.497 −.104 .467 .592 .621

JMA −.092 −.310 .068 .714 .619 .484

KMA −.358 −.564 −.214 .748 .719 .717

METFR −.083 −.310 .054 .676 .379 .303

NCEP −.133 −.348 .022 .817 .724 .727

UKMO −.181 −.380 −.019 .325 .632 .577

FIGURE 3
Taylor diagram comparison of averaged daily tropical cyclone
probability with observation. The ECMWF system can best reproduce the
climatological daily tropical cyclone probability, followed by the NCEP,
JMA, and KMA systems.
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3.3 S2S forecast skill of daily tropical cyclone
probability

From Figure 2, the climatological DTCP has large values
around the northern part of the South China Sea and east of the
Philippines (10°-30°N,105°-150°E). To evaluate the performance of
these models in terms of their skills in forecasting tropical cyclones,
the debiased Brier Skill Score BSSD averaged for the region is shown
in Figure 7. With the increase of lead time from 1 to 30 days, the
BSSD progressively drops to zero with a time scale of 3–12 days with
the longest one from the ECMWF model. The averaged BSSD from
11 to 30 days is below zero, as shown in Table 2 for these eleven
models since our evaluation criteria is strict compared with the one
used in Lee et al. (2020). Among the eleven models, ECMWF has
the highest averaged BSSD, −.002, from 11 to 30 days. A negative
BSSD indicates that the skill of the ECMWF model is slightly worse
than the reference climatological forecast. The skill score of
ECMWF is followed by HMCR, BoM, METFR, and JMA
(Table 2). The HMCR is a special case since it has the lowest
Taylor Score for reproducing climatological DTCP and its
modulation by BSISO1 and BSISO2. From Figure 2, the HMCR
model severely underestimates climatological DTCP and the model
makes predictions occasionally (Table 1). The case of HMCR shows

that if a model does not predict tropical cyclones at all and only
makes prediction occasionally, it might achieve a fake high skill. By
investigating the climatological DTCP of the model, this type of
forecast models should be easily picked up and not be confused
with a model that actually has skill. This practice might be
applicable when evaluating the forecast skill of other rare
extreme events at S2S timescale.

Regarding the performance of ECMWF, the results above can be
compared with that of Lee et al. (2018), Lee et al. (2020). Using the
same S2S Prediction Project Database but only for reforecasts from six
models, Lee et al. (2018) shows that the ECMWF model has the best
performance in predicting tropical cyclone genesis at weekly time
windows for all the tropical cyclone basins. Using weekly tropical
cyclone occurrence for 15o latitude × 20o longitude boxes, Lee et al.
(2020) shows that the ECMWF model has the highest prediction skill
in all the tropical cyclone basins. The temporal window and spatial
distance selection can impact significantly prediction evaluation
results.

In terms of the spatial distribution of BSSD, the eleven
forecasting models exhibit different regions where their forecast
skill is better than that of the reference climatological forecast.
Figure 8 presents the BSSD distribution at a lead time of 17 days for
all the eleven forecasting models, which shows the typical spatial

FIGURE 4
Composite daily tropical cyclone probability for eleven forecast systems in the Subseasonal to Seasonal Prediction Project Database and from
observation for different phases of BSISO1. The analysis period is from 1May to 31October, 1999 to 2010. The columns from left to right are for phases 1 to 8 of
BSISO1 when the square root of the sum of squares of principle component 1 and 2 is greater than 1.5. The rows from 1 to 11 are for different forecast systems
(BoM, CMA, ECCC, ECMWF, HMCR, JMA, KMA, METFR, NCEP and UKMO). The row 12 is for observed tropical cyclones whose wind speed is greater than
17.2 m/s during its life cycle. The daily tropical cyclone probability is much larger when BSISO1 is in phases 5, 6, 7, 8, and 1 than that in phases 2, 3, and 4.
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feature of BSSD distribution and presumably excludes the influence
of pre-existing tropical cyclones because it is very rare for a typical
tropical cyclone to last 17 days in the open ocean after its
formation. The regions where negative BSSD exist, indicating no
forecasting skill relative to the reference climatological forecast, are
different for each of these models. If we compare Figure 8 with
Figure 2, the regions where a forecast system has negative BSSD are
also the regions where the climatological DTCP of the system
shows large discrepancies compared with the observation. The
CMA system (Figure 2B) shows a systematic bias in reproducing
the observed DTCP (Figure 2L). The climatological DTCP of the
CMA system is located south of 18°N, which is systematically
shifted southward compared with that of the observation. The
negative BSSD region of the CMA system is also located south of
20°N (Figure 9B). Compared with the observation, the NCEP
forecast system tends to underestimate the DTCP east of 130°E
(Figure 2J vs. Figure 2L), the negative BSSD of the NCEP system
also appears in this region. The ISAC and JMA systems tend to
underestimate the DTCP in the northern part of the South China
Sea (Figures 2F, G). The negative BSSD regions of these two systems
are also present in the northern part of the South China Sea.
Interestingly, the positive BSSD regions of the HMCR system are
places where tropical cyclones do not occur with a considerable
probability, indicating that a system which does not forecast
extreme events at all may achieve a higher score than a

reference climatological forecast if it makes no-event forecast
each time. The BSSD of ECMWF system generally has positive
values in the northern part of the South China Sea, around Taiwan,
and east of the Philippines, where tropical cyclones often appear.
However, some of its skill is from the region east of 140°E, where
tropical cyclones do not occur very often.

3.4 Modulation of S2S tropical cyclone
forecast skill by BSISO

The modulation of DTCP by BSISO can also influence its
forecast skill. Here we consider the DTCP forecast with lead time
11–30 days and compare the skill between the active phases of
tropical cyclones (phases 8, 1, 2, 3, and 4) and non-active phases
(phases 5, 6, and 7) for BSISO1. We specifically examine the
influence in the ECMWF model given that it demonstrates better
forecast skills than the reference climatological forecast for lead
time longer than 10 days. Figure 9 compares the BSSD for active
and non-active phases of BSISO1 when the lead time is 11–30 days
to exclude the influence of pre-existing tropical cyclones.
Significant differences in the spatial distribution of BSSD are
readily discerned. The ECMWF model actually has better skill
for the non-active phases of tropical cyclones on the S2S
timescale. In the active phases, the region that exhibits better

FIGURE 5
The same as Figure 4 except it is for BSISO2, and the daily tropical cyclone probability is much larger when BSISO2 is in phases 8, 1, 2, 3, and 4 than that in
phases 5, 6, and 7.
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skill is located in central Philippines. The averaged BSSD for the
active phases is negative, while the averaged BSSD for the non-
active phases is positive. The averaged BSSD for the active and
non-active tropical cyclone phases of the other models also
exhibit higher skill for non-active phases (Table 2). The
averaged BSSD is higher during the non-active tropical cyclone
phases of BSISO1. Lee et al. (2020) have shown that the prediction
skill is higher when the predictions start from the active phases,
who were concerned with the existence and movement of tropical
cyclones inside a basin rather than its presence and movement on
a more finer spatial and temporal scale. The above analysis
indicates that the current S2S models have better skills for
situation of low tropical cyclone probability.

3.5 Relationship of model climatology and its
S2S prediction skill

To understand which factors can better explain the S2S prediction
skill difference among models, we compute the correlation coefficient
between the averaged BSSD of the northern part of the South China
Sea and east of the Philippines (10°-30°N,105°-150°E) and the Taylor
Score indices of models for reproducing the climatological DTCP and
its modulation by BSISO1 and BSISO2 (Figure 10). Since the HMCR
model is a particular case, this model is not included in the correlation
coefficient computation. The JMA model has BSSD starting from lead
time day 2. Thus, the correlation coefficient calculation starts from
lead time day 3. The significant correlation coefficient at 90% level is
also labeled with a red circle. In general, the correlation coefficients
between the model’s capability in reproducing the climatological
DTCP and its modulation by BSISO1 and BSISO2 are significant at
lead time day 3 and decrease as the lead time increases. Before lead
time day 10, the correlation coefficients between Taylor Score indices
of BSISO1 and BSSD and Taylor Score indices of BSISO2 and BSSD are
below zero. However, the correlation coefficient between Taylor Score
indices for reproducing climatological DTCP and BSSD is always
positive until lead time day 30. This might indicate that the model’s
capability in reproducing climatological DTCP can better explain the
BSSD difference among models.

4 Summary and discussion

In order to evaluate the evolution and movement of tropical cyclones
at the S2S timescale, especially 11–30 days, daily tropical cyclone
probability, or DTCP, is defined as the probability of tropical cyclone
occurrence within 500 km of a particular location within 1 day. By using
DTCP, the occurrence and movement of tropical cyclones can be treated
as dichotomous events in observation and ensemble S2S forecast models
and the debiased Brier Skill Score can be used to assess the prediction skill
of S2S forecast models for each location. Eleven forecasting models from
the WMO S2S Prediction Project Database are evaluated for their
capability in reproducing the observed climatological DTCP,
modulation of DTCP by the BSISO, and the forecast skill of tropical
cyclones on the 11–30 days timescale stemming from this modulation.
These eleven models are from the BoM, CMA, ECCC, ECMWF, HMCR,
ISAC, JMA, KMA, METFR, NCEP, and UKMO. The BSISO can
modulate the tropical cyclone activity. When the BSISO1 is in phases
1, 5, 6, 7, and 8, the DTCP is ~3.5 times larger than that in phases 2, 3, and
4 in the northern part of the South China Sea and east of the Philippines
(10°-30°N,105°-150°E). Similarly, when BSISO2 is in phases 1, 2, 3, 4, and
8, the DTCP is ~2.5 times larger than that in phases 5, 6, and 7. These
elevenmodels have various skills in reproducing the climatological DTCP
and its modulation by BSISO. Forecast models that faithfully reproduce
observed DTCP and its modulation by intraseasonal oscillation are also
better at forecasting tropical cyclones.

In the framework presented, the ECMWF model has the highest
debiased Brier Skill Score in predicting tropical cyclones at the
11–30 days timescale and is slightly less skillful than the reference
climatological forecast. This result remains the same even if we modify
the definition of Daily Tropical Cyclone Probability to Three-Day
Tropical Cyclone Probability since the reference climatological
probability used in the debiased Brier Skill Score is also increased
accordingly. Like other models, the ECMWF model has a better skill

FIGURE 6
Taylor diagram comparison of aggregated composite daily tropical
cyclone probability for eight phases of BSISO and observation, (A) for
BSISO1, (B) for BSISO2. The ECMWF system can best reproduce the
modulation of tropical cyclone activity by BSISO1 and BSISO2,
followed by the NCEP system.
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for the non-active phases of tropical cyclone, indicating that part of its
prediction skill comes from predicting lowDTCP conditions correctly.
The difference in S2S tropical cyclone prediction skill is positively
correlated with the performance of models in reproducing the
climatological DTCP. In addition, in order to make robust
evaluation of extreme events of S2S forecast, the number of

forecast samples needs to be large enough. Models that cannot
reproduce the climatological feature of extreme events and only
make prediction occasionally might achieve an artificially high
debiased Brier Skill Score and need to be treated with caution
when interpreting their prediction skill. This work is based on
earlier versions of the eleven forecast models from the S2S

FIGURE 7
Debiased Brier Skill Score (BSSD ) for ensemble forecast of daily tropical cyclone probability in the western North Pacific region. The analysis period is
from May 1 to Oct. 31, 1999 to 2010. The daily tropical cyclone probability forecast is evaluated for the region of 10o-30oN, 105oE-150oE. The abscissa is lead
time in days. The ordinate is debiased Brier Skill Score. The ECMWF system has positive debiased Brier Skill Score until lead time day 12.

FIGURE 8
The spatial distribution of debiased Brier Skill Score (BSSD ) on lead time 17 day for the eleven forecast systems (A–K). The positive debiased Brier Skill
Score indicates a better forecast than the reference climatological forecast.
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Prediction Project Database. Currently the Database was extended to
include reforecasts from the updated versions of these models and the
twelfth model was just added to the Database. In current research,
tropical cyclone forecasts have not been calibrated. Improvements in
prediction skill scores can be gained by correcting model systematic
errors. All these aspects should be further explored in future research.
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FIGURE 9
The spatial distribution of debiased Brier Skill Score (BSSD ) of the ECMWF system, (A) for the BSISO1 phase 1, 2, 3, 4, and 8when tropical cyclone activity in
the western North Pacific is active and (B) for BSISO1 phases 5, 6, and 7 when tropical cyclone activity is non-active. The ECMWF system has better skill during
non-active BSISO1 phases 5, 6, and 7.

FIGURE 10
The correlation coefficients of spatially averaged debiased Brier Skill Score (BSSD ) with Taylor Score indices of reproducing climatological daily tropical
cyclone probability (blue) and its modulation by BSISO1 (black) and BSISO2 (green). For details, see Section 3.1 and Section 3.2.
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