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Downward continuation (DC) of the gravity potential field is an important approach
used to understand and interpret the density structure and boundary of anomalous
bodies. It is widely used to delineate and highlight local and shallow anomalous
sources. However, it is well known that direct DC transformation in the frequency
domain is unstable and easily affected by high-frequency noise. Recent deep
learning applications have led to the development of image recognition and
resolution enhancement using the convolutional neural network technique. A
similar deep learning architecture is also suitable for training a model for the DC
problem. In this study, to solve the problems in existing DCmethods, we constructed
a dedicated model called DC-Net for the DC problem. We fully trained the DC-Net
model on 38,400 pairs of gravity anomaly data at different altitudes using a
convolutional neural network. We conducted several experiments and
implemented a real-world example. The results demonstrate the following. First,
several validation data subset and test data prediction results indicate that the DC-
Net model was sufficiently trained. Moreover, it performed better than the traditional
strategy in refining the upscaling of low-resolution images. Second, we performed
tests on test datasets with changing levels of noise and demonstrated that the DC-
Net model is noise-resistant and robust. Finally, we used the proposed model in a
real-world example, which demonstrates that the DC-Net model is suitable for
solving the DC problem and delineating the detailed gravity anomaly feature near the
field source. For real data processing, noise in the gravity anomaly should be reduced
in advance. Additionally, we recommend noise quantification of the gravity anomaly
before network training.
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1 Introduction

Downward continuation (DC) of the gravity potential field is an important processing and
interpretation approach used to enhance the local and shallow signal of a deep field source. It is
widely used in, for example, the exploration of minerals, oil and gas basin analysis, and assisted
navigation (Cordell and Grauch, 1985; Blakely, 1996; Adewumi and Salako, 2018). At present,
many algorithms exist for the DC problem, which can be roughly divided into three categories:
the spatial domain interpolation method (e.g., Cooper, 2004; Luo and Wu, 2016), the
wavenumber domain method (e.g., Liu et al., 2009; Zhou et al., 2022), and the integral
iterative method (e.g., Ma et al., 2013; Tai et al., 2016; Chen and Yang, 2022). Although
many existing methods have achieved certain effects in some geophysical interpretations, two
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unsolved problems remain in existing methods. One problem is
inevitable boundary errors. Because of the limitations of
geophysical observations, regardless of whether the DC operator is
solved in the space domain or wavenumber domain, the calculated
plane cannot be infinite, and the calculation of the Gibbs effect is
unavoidable, which results in boundary position errors (Pašteka et al.,
2012). The other unsolved problem is unstable calculation. The results
derived by the DC operator include more high-frequency
characteristics and short wavelength anomaly components than the
untransformed data because the result derived by the DC operator is
closer to the anomalous sources than the untransformed data.
However, the DC operator also significantly increases noise and
results in an unstable continuation computation (Zhang et al.,
2009; Zeng et al., 2011). Both problems can be attributed to the
incorrect solution of the DC operator.

Recent advancements in the development of deep learning (DL)
provide a good method for solving the aforementioned problems. The
DC operator can be regarded as the mapping relationship between two
gravity anomalies. DL can obtain the mapping relationship though a
massive data-driven approach, which provides the DL method with
the potential to achieve a more accurate predictive effect than
conventional approaches (Goodfellow et al., 2016). The
convolutional neural network (CNN) is gradually becoming the
most widely used computational approach in the DL field
(Alzubaidi et al., 2021). In the last few years, the CNN method has
been widely adopted in various geophysical scenarios (Bergen et al.,
2019), such as exploration geophysics (e.g., Yang and Ma, 2019; Yu
et al., 2019; Zhang et al., 2021; Wang et al., 2021), waveform
classification and seismic recognition (e.g., Zhao et al., 2019; Zhu
et al., 2019), and seismic image enhancement (Halpert, 2018; Wang
and Nealon, 2019).

Therefore, in this study, we introduce a dedicated model called
DC-Net that uses the U-net network (Ronneberger et al., 2015) for the
DC of the gravity anomaly to solve the problems in existing DC
methods. We trained the DC-Net model using many high-resolution
gravity anomaly maps located at a low altitude, with their low-
resolution counterparts at a high altitude. We then conducted
extensive experiments on validation datasets and test datasets to
illustrate the validity of the DC-Net model. We also used several
test datasets with changing levels of noise to test the noise resistance of
the model. Finally, we evaluated the method by applying it to a real
airborne gravity (AG) anomaly and compared two continuations
predicted by different trained models.

2 Methods

We divide the description of the methodology into two parts: DC
theory and the critical components of the DC network (DC-Net).

2.1 DC problem for gravity

The DC of the potential field is used to obtain the potential field
udown(x, y) at point (x, y, zdown) from a given potential field uup(x, y)
at point (x, y, zup). The positive Z-axis is downward and zup < zdown.

As shown in Figure 1, uup(x, y) and udown(x, y) represent one pair
of potential anomalies caused by the same set of underground density
anomaly bodies, where uup(x, y) is the far-field anomaly at a high
altitude, which only reflects the long wavelength components of the
anomaly sources, whereas udown(x, y) is the near-field potential
anomaly located at a low altitude, which reflects more lineated and

FIGURE 1
Schematic diagram of the DC problem.
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more detailed potential anomaly features because udown(x, y) is closer
to the potential field sources than uup(x, y).

Generally, the DC problem refers to the solution of the following
boundary value problem (Blakely, 1996):

z2u
zz2

+ z2

zx2
+ z2

zy2
( )u � 0,−h≤ z ≤ 0

u x, y, z( ) ∣∣∣∣ z�zdown � u,
down x, y( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩ , (1)

where h is the given continuation height, h = zdown - zup, and
u,down(x, y) is the measured gravity potential field at zdown. This is
an incomplete boundary value problem, and a unique solution exists
only when uup(x, y) is known. However, because of the limited
gravitational observations at zup, the DC problem only has an
approximate solution. According to continuation theory in Eq. 1, if
the gravity anomaly gup(x, y) caused by an unknown underground
field source is known in the observation plane zup, the gravity anomaly
gdown(x, y) below the plane can be computed using (Peters, 1949;
Chen and Yang, 2022):

gup x, y( ) � zuup

zz
� h
2π

∫ +∞

−∞
∫ +∞

−∞
gdown x, y( )

x − ξ( )2 + y − η( )2 + h2[ ]3/2 dξdη,
(2)

where (ξ, η) is the horizontal coordinate that defines the density of
anomaly bodies. Eq. 2 belongs to the first type of Fredholm integral
equation. No analytical solution exists for this integral. The DC
process for solving numerical solutions is ill-posed, and the
solution is usually unstable.

Recent advancements in the development of machine learning
(ML) provide a good approach for solving this problem. Different
from traditional methods, ML is a type of data-driven approach that
trains a regression model through complex nonlinear mapping with
adjustable parameters using a training dataset (Goodfellow et al., 2016;
Yu et al., 2019). In ML, the aforementioned DC problem can be
described as

gdown x, y( ) � f gup x, y( )( )
gtdown x, y( ) � Net gtup x, y( ) + Noise,⊛( )

⎧⎨⎩ , (3)

where f is the mapping function from gup(x, y) to gdown(x, y). This
means that if we give one gup(x, y), the DC gdown(x, y) can be
obtained by means of f(gup(x, y)). As the first part of Eq. 3 shows, in
the DC problem, f can be taken as the DC operator, which needs to be
solved by a certain approach, while, as the second part of Eq. 3 shows,
f can be learned from the training dataset gt

down(x, y), gt
up(x, y){ }

based on the ML method. Net represents the specific ML method. In
this study, we adopt the CNN method. Noise represents Gaussian
noise added to the training dataset. The mapping function f learns
from the training dataset with adjustable parameters, which can
minimize the deviation between the predicted data and observation
data:

min ĝdown x, y( ) − gdown x, y( )���� ���� � min ĝdown x, y( ) − Net gup x, y( ),⊛( )����� �����,
(4)

where ĝdown(x, y) is the prediction data and gdown(x, y) is the
observation data. Eq. 4 can be referred to as the loss function of
the network. In this study, we attempt to establish DC-Net based on
the CNN method to perform the continuation calculation for the

gravity field. We introduce the critical components of DC-Net in the
following subsections.

2.2 DC-Net

2.2.1 Structure of DC-Net
As shown in Figure 2, our DC-Net is primarily composed of four

components: pre-processing, encoder, decoder, and post-processing.
Pre-processing comprises two identical modules, each of which consists
of two convolutional layers and two normalization-activation layers.We
use this part to extract and activate the coarse pattern feature from the
low-resolution input. The encoder and decoder have three identical
modules. Each encoder module is composed of one convolutional layer,
followed by one normalization-activation layer and one pooling layer.
The role of the encoder is to prevent overfitting while maintaining high
sampling rates. Each decoder module is sequentially composed of one
deconvolution layer and one convolution layer, each of which is
followed by one normalization-activation layer. The function of the
decoder is to upsample the feature map size. However, post-processing
has two different modules. The first is composed of two convolutional
layers, followed by two normalization-activation layers, whereas the
second only has a single convolutional layer. This part is used to output
the result.

The success of DC-Net is attributed to some practical “tricks.”
First, rectified linear units (ReLUs) are used as the activation functions,
which simply involves the half-wave rectifier function f(x) =max (x, 0),
and can significantly accelerate the training phase. Second, the pooling
method is maximum pooling, which is an effective approach for
reducing overfitting when training a large CNN. Third, we
construct several normalization-activation layers, followed by
convolution and transposed convolution layers, which could
mitigate numerical instability successfully.

The detailed procedure of the DC-Net model is illustrated in
Table 1. We further use the PyTorch framework to complement the
aforementioned operations and finally achieve the CNN-trained DC-
Net model.

2.2.2 Loss function
During CNN training, we update the model parameters according

to the definition of the loss function. Therefore, selecting a suitable loss
function is critical for optimizing the updating of the model. There are
traditional loss functions, such as L1, L2, and perceptual losses. The
mean squared error (MSE) is one of the most common L2 loss
functions, and it has been widely used in ML (Mao et al., 2017;
Ghodrati et al., 2019; Zhang et al., 2020).We use theMSE loss function
to express the deviation between the predicted DC gravity anomaly
and the true value. Suppose there are N pairs of gravity anomalies
being used for training. The MSE loss function can be expressed as

MSELoss � 1
N
∑N
i�1

ĝdown x, y( ) − gdown x, y( )( )2. (5)

The aim of DC-Net is to minimize the loss function.

2.2.3 Metrics function
In addition to the loss function, there is another important

function: the metrics function. The metrics function is similar to
the loss function; both of them can be used to judge the performance of
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the training model. The only difference between the metrics function
and the loss function is that metrics function is not used when training
the model. Note that any loss function can be used as a metrics
function. Including several kinds of loss functions mentioned before,
metrics functions can be divided into several types, for instance,

accuracy metrics (Han et al., 2022), probabilistic metrics
(Branchaud-Charron et al., 2019), regression metrics (Geng et al.,
2020), and so on. Compared to other metrics functions, the relative
accurate function has a more intuitive expression and is more sensitive
to changes in the accuracy of the predicted results. Therefore, in our
DC-Net, we choose to use the relative accurate function to assess
model accuracy:

ε � 1 − ĝdown x, y( ) − gdown x, y( )���� ����2
ĝdown x, y( )���� ����2 + gdown x, y( )���� ����2. (6)

The range of this metrics function is from 0 to 1; the more accurate
the model prediction, the larger the value of ε.

3 Model training

3.1 Data generation

To train the DC-Net model, abundant training data need to be
used to build the mapping relationship between the input and
output. The quality of the training dataset directly determines the
DC results of the model. In our DC-Net, we require two subsets of
gravity data: one is the high-resolution gravity anomaly
gt
down(x, y) at a lower observation height, and the other is the

low-resolution gravity anomaly gt
up(x, y) at a higher observation

height.
In this study, we use a rectangular prism as the anomalous density

source and present the theoretical gravity anomaly using that density
model. The prism is bounded by planes parallel to the coordinate
planes and defined by the coordinates ξ1, ξ2, η1, η2, γ1, and γ2. Nagy
et al. (2000) provided a straightforward analytic relationship between
the gravity anomaly and density source:

g x, y, z( ) � G0ρ
�����∣∣∣∣∣(x − ξ) ln y − η( ) + r{ } + y − η( ) ln x − ξ( ) + r{ }

− z − γ( )arctan x − ξ( ) y − η( )
z − γ( )r

∣∣∣∣∣∣γ2
′

γ1′

∣∣∣∣∣∣η2
′

η1′

∣∣∣∣∣∣ξ2
′

ξ1′
, (7)

FIGURE 2
Structure of DC-Net.

TABLE 1 DC-Net algorithm.

Algorithm: Convolutional upscale module
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where (x, y, z) is the coordinate of the observation point; (ξ, η, γ) is
the coordinate of the density anomalous source; r is the distance
between them; (ξ1′, ξ2′), (η1′, η2′), and (γ1′, γ2′) are the integration ranges,
where ξ1′ � ξ1 − x, ξ2′ � ξ2 − x, η1′ � η1 − y, η2′ � η2 − y, γ1′ � γ1 − z,
and γ2′ � γ2 − z; ρ is the density of the anomalous source; and G0 is
the gravitational constant.

The size of each rectangular prism is 50 m × 100 m × 100 m. If the
given rectangular prism has unit density, Green’s function matrix can
be generated to map the discretized density bodies and gravity
anomaly at the observation level. To simplify the training process
of DC-Net, in our training model, we set zup and zdown to fixed height
values of 500 m and 0 m, respectively.

During DC-Net training, to ensure the diversity of gravity data
samples, we consider the numbers of distinctive dataset
distributions. First, the density models are composed of
rectangular prisms of different scales and arrangements, with
the density contrast varying randomly from 0.1 to 0.5 g/cm3.
Second, we also include gravity datasets with boundary features
in the training data to improve the prediction accuracy of
boundary anomalies. Third, as the high-pass filtering property
of the DC operator, we also add changing levels of Gaussian noise
to the training dataset.

3.2 Training

For model training, we repeated the aforementioned data
generation 76,800 times and finally used a total of 38,400 pairs of
gravity anomaly datasets to feed our model. We divided these samples
into three datasets: training dataset, validation dataset, and test
dataset. The training dataset was composed of 90% of the entire
dataset and the validation dataset was composed of a random selection
of 10% of the training dataset.

We used the designed CNN as introduced in Section 2.2 to
improve the generalization of our model. We set the maximum
batch number to 128 for the global enhanced upscaled module. We
used a low-resolution gravity image with 64 × 64 patches as single-
channel input in each mini batch. Then, we gradually increased the
number of channels to 64 during pre-processing and increased it to
1,204 in the encoder using three pooling processes while decreasing
the patch number of each image from 64 × 64 to 4 × 4. In the decoder,
we reduced the number of channels to 64 again and increased the
patch number of each image to 64 × 64 again using three transposed
convolution operations. Finally, in the output part, we set one gravity
data channel with 64 × 64 patches as the output after two convolution
operations.

For our training phase, we set the cutoff condition as the loss
function less than 10–4 or the maximum epoch number less than
1,000. Moreover, we used the maximum pooling method in the
backpropagation process to verify that the trained model was
not overfitted. Our training ended after 600 epochs. The loss
function curve and relative accuracy curve for the training
dataset and validation dataset are shown in Figures 3A, B,
respectively.

The loss function curves in Figure 3A show that both the training
loss curve and validation loss curve decreased smoothly to a steady
state as the training epochs increased. They gradually reduced to a
small value of approximately 10–4 after 600 epochs, which indicates the
successful convergence of our model. Furthermore, the training loss

curve (orange curve) shows a slightly higher convergence value than
the validation loss curve (blue curve), which means that the prediction
fitting precision was affected by the fitting precision of the trained
model and limited to a certain value.

The relative accuracy curves in Figure 3B show that the final DC
prediction results had an accuracy value of over 0.95. The relative
accuracy curve (orange curve) of the validation set shows almost the
same accuracy as that of the training dataset (blue curve), whichmeans
that our DC-Net model achieved sufficiently accurate predictions,
even for input that was not in the training set.

3.2.1 Synthetic test
We conducted several experiments to assess the effectiveness,

noise immunity, and usability of our DC-Net model. The
experiments and corresponding results are described as follows.

3.3 Validation datasets

We randomly selected a subset of the validation set to determine
whether the validation set could be accurately predicted by our DC-
Net model. The results are shown in Figure 4. As mentioned in Section
3.1, we set the two observation heights for all the training data to fixed
height values of 500 m and 0 m. The same setting is also used in the
validation data. Figure 4A is the map of the validation subset
composed of several low-resolution gravity anomalies at 500 m,
while Figure 4B is the map of the validation subset composed of
the corresponding high-resolution gravity anomalies at 0 m, and
Figure 4C shows the true value of gravity anomalies at 0 m. The
continuation distance between them is a fixed value of 500 m. By
comparing of the subset of validation data (Figure 4A), the prediction
results of the subset (Figure 4B), and the true value of the prediction
results (Figure 4C), we observed that our DC-Net has the ability to
recover the shape of all the high-frequency signatures of the gravity
anomalies. The predicted results (Figure 4B) are in good agreement
with their true values (Figure 4C). Furthermore, complex boundary
anomalies and gravity anomalies with significant noise pollution were
also well recovered. This fully confirms that our trained DC-Net model
has a good ability to avoid the phenomenon of the Gibbs effect and
noise contamination.

3.4 Test datasets

Subsequently, we conducted a test on a typical gravity dataset to
verify the effect of different DC methods: the damped frequency DC
(DFDC) method (Blakely, 1996), the Taylor series expansion DC
(TEDC) method (Tran and Nguyen, 2020), and our DC-Net model.

The fundamental principles of the DFDC method are follows: for
the continuation problem in Eq. 2, we assume that K(x, y) �
h/[2π(x2 + y2 + h2)3/2]. Thus, Eq. 4 can be written as

gup x, y( ) � ∫ +∞

−∞
∫ +∞

−∞
K x, y( )gdown ξ, η( )dξdη , (8)

which can be expressed in the form of

gup x, y( ) � K x, y( )pgdown x, y( ) , (9)

where * represents the convolution operation. Because convolution is a
simple multiplication in the frequency domain, Eq. 9 can be written as
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Gup u, v( ) � Φ u, v( )pGdown u, v( ), (10)
where Gup(u, v), Φ(u, v), andGdown(u, v) are the Fourier transforms
of gup(x, y), K(x, y), and gdown(x, y), respectively, and
Gup(u, v) � ∫+∞

−∞ ∫+∞
−∞ gup(x, y)e−2πi(ux+vy)dxdy, Φ(u, v) � e−2πh

����
u2+v2√

,

and Gdown(u, v) � ∫+∞
−∞ ∫+∞

−∞ gdown(x, y)e−2πi(ux+vy)dxdy.
Then, we can obtain the solution of the DC problem as

gdown x, y( ) � F−1 Gup u, v( )Φ−1 u, v( )[ ] . (11)
However, the DC problem is an ill-posed problem, and the

solution is usually unstable. To ensure the stability of the DC
calculation, the trade-off parameter λ is often introduced in
mathematics using the optimizedΦ′(u, v):

Φ′ u, v( ) � exp −2πΔz ������
u2 + v2

√( )
exp −4πΔz ������

u2 + v2
√( ) + λ 2π

������
u2 + v2

√( )4. (12)

The TEDC method is a newly published DC method for solve the
DC problem of the gravity field. It is proposed based on the
combination of the Taylor series expansion and upward
continuation methods at different distances. The fundamental
principles and computational details can be found in the paper
published by Tran and Nguyen (2020).

Based on this, we conducted a simple synthetic gravity data test on
two mainstream DC methods (DFDC and TEDC) and our DC-Net
model. The synthetic gravity data were not included in the training set,
and we conducted the tests independently. The corresponding results
are shown in Figure 5.

From the comparison of Figures 5B–E, we observed that the
gravity anomaly at 0 m derived from the TEDC method
(Figure 5C) is better than that from the DFDC method
(Figure 5D), but it is still quite fuzzy in comparison with the
true value shown in Figure 5B. In contrast, almost all the high-
frequency features of the gravity anomalies are recovered
successfully by our DC-Net model (Figure 5F). The gravity
anomaly predicted by the DC-Net model (Figure 5E) is more
consistent with the true value (Figure 5B) than those obtained by
the mainstream methods (Figures 5C, D).

Table 2 shows the different errors between the continuation
gravity anomaly results at 0 m altitude (Figures 5C–E) and the true

gravity anomaly at the same altitude (Figure 5B). By comparing the
different errors in Table 2, we can infer that the continuation high-
resolution gravity anomaly at 0 m altitude (Figure 5E) using the CNN
model is the most reliable by comparing it with the results of the other
two methods (Figures 5B, C). The MSE of the different errors for DC-
Net predictions is less than 0.0036 mGal.

This part of the experiment demonstrates that we obtained reliable
prediction results, even for data that were not included in the training
dataset, which could be explained as follows: during the training
process, our network was not only learning a one-to-one analogical
connection from the training sets, but also the DC law between them.

3.5 Noise effect

In practice, the observed gravity anomaly is usually severely
contaminated by various amounts of high-frequency noise caused
by disturbance factors, such as engine vibration, sensor drifts,
environmental noise, and irregular operations (Pajot et al., 2008).
An obvious problem with traditional DC algorithms is that they are
easily affected by high-frequency noise (Tran and Nguyen, 2020).
Therefore, it is necessary to test the robustness to noise of our CNN-
based model.

To ensure that the test was comprehensive, we trained the model
twice under the same CNN framework. We refer to the CNN model
applied to noise-free training sets as NFDC-Net and refer to the model
applied to training sets with changing levels of noise as DC-Net. In our
test, we set noise to a Gaussian stochastic type with the level randomly
selected between 0% and 6%. Using the two well-trained models, we
conducted eight experiments with four types of low-resolution gravity
anomalies contaminated by Gaussian noise with zero mean and with
the variances set to 0%, 2%, 5%, and 10% of the maximum amplitude,
as shown in Figures 6A–D, respectively. We predicted all the types of
gravity data using the NFDC-Net model and the DC-Net model
individually. The corresponding prediction results are presented in
Figures 6E–L.

The results in Figure 6 illustrate that the noise-free trained NFDC-
Net model accurately predicted the gravity anomaly without noise
(Figure 6E). However, it could not retrieve any useful information
from noise-contaminated input data, even when the contamination

FIGURE 3
(A) Loss curve and (B) accuracy metric curves.
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level was less than 2% (Figures 6F–H). This means that the noise-free
trained model failed for the prediction of noisy input. The DC-Net
model, which was trained with changing levels of noise, always
successfully recovered the high-resolution gravity anomaly at the
lower altitude (0 m) both for noise-free input (Figure 6I) and
noise-contaminated input (Figures 6I–K). Although the maximum
noise level of the DC-Net training sets was 6%, DC-Net still made an
effective prediction, even when the input noise was greater than 10%.
From these results, we can infer that model training with noise is
necessary and that our noise training strategy is effective.
Simultaneously, the noise immunity abilities of our CNN-based
models can be controlled by the training datasets to a considerable
degree.

Table 3 shows the MSE of the errors between the predicted gravity
anomaly and true gravity anomaly at 0 m altitude (Figure 5B). By

comparing the error results in Table 3, we can see that the predicted
near-field gravity anomalies at 0 m altitude using the DC-Net model
are more accurate than those predicted by the NFDC-Net model, and
the MSE of the different errors for the DC-Net predictions is less than
0.1338 mGal. Consequently, the DC-Net model has the ability to resist
noise and is robust.

3.6 Multi-times DC

Because we trained our CNN model using only one altitude
(500 m), it was difficult for the one-time prediction of our CNN
model to satisfy DC requirements with longer continuation
distances. Therefore, we implemented repeated continuation tests
using the DC-Net model. The test results are shown in Figure 7.

FIGURE 4
Validation dataset prediction effect display: (A) subset of the validation data composed of gravity anomalies at 500 m; (B) subset of the prediction results
composed of gravity anomalies at 0 m; (C) true value of gravity anomalies at 0 m.
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Figure 7 shows the results and errors of the twice DC
operation. First, we calculated the gravity anomaly at 500 m by
the once DC operation from the true gravity anomaly at 1,000 m
(Figure 7A). The predicted gravity anomaly at 500 m and the error
are shown in Figures 7B, C respectively. We then calculated the
gravity anomaly at 0 m by another DC operation using the gravity
anomaly at 500 m, which was obtained by previous DC
operations. The predicted gravity anomaly at 0 m and the error
are shown in Figures 7D, E. From the comparison of the predicted
gravity anomaly (Figure 7B) and the true value (Figures 6A, 5B) at
500 and 0 m, respectively, we found that the predicted results at
different heights are both in good agreement with the true values.
However, the predicted error at 500 m, which was obtained by the
once DC operation (Figure 7C), is smaller than that at 0 m, which
was obtained by the twice DC operation (Figure 7E). The errors
could dramatically increase by the accumulation of the DC
operation.

This part of the experiment confirmed that our network can be
used not only for the continuation distance of 500 m but also
longer distances. However, the difference error results
(summarized in Table 4) demonstrate an existing accumulative
error in the multi-time computation when the continuation
distance was increased. It should be noted that a continuation

distance that is too long may decrease the prediction accuracy to a
certain degree.

4 Application

A test site for AG systems has been established at Kauring,
which is approximately 100 km east of Perth, Western Australia.
The site was chosen to support AG system tests arranged by the
Geological Survey of Western Australia, Geoscience Australia, and
Rio Tinto Exploration (Lane et al., 2009). Projects to study
different methods to produce terrain correction (Zhdanov and
Liu, 2013), to upward continue the ground gravity data (Elieff,
2018), and to separate and interpret vertical gravity data (Liu and
Li, 2019) have already commenced.

To verify the validity test of our DC-Net model, we applied the
mainstream DC method based on Taylor series expansion (Tran and
Nguyen, 2020), which we refer to as the TEDCmethod, and two CNN-
based models (the NFDC-Net model and the DC-Net model) to the
gravity anomaly at the Kauring test site at 500 m altitude (Figure 8A).
We calculated this gravity anomaly using upward continuation from
the observed AG anomaly at the geoid (Figure 8B). We considered the
observed gravity anomaly at the geoid as the true value to which the
DC predictions should refer.

Figure 8C illustrates the gravity anomaly at the geoid derived from the
TEDC method. Figures 9A, C show the gravity anomaly at the geoid
predicted by the NFDC-Net model and the DC-Net model, respectively.
We then comprehensively compared the continuation results with the true
value (Figure 8A). From the comparison of Figures 8A, C, 9A, 9C, we can
see that gravity anomalies at the geoid predicted by the NFDC-Net model

FIGURE 5
DC results for differentmethods: (A) gravity anomaly at 500 m; (B) true value of the gravity anomaly at 0 m; (C)DCgravity anomaly at 0 musing the TEDC
method; (D) DC gravity anomaly at 0 m using the DFDC method with a filter equal to 1000; (E) DC gravity anomaly at 0 m using the DC-Net model; (F) error
between (B) and (E).

TABLE 2 MSE of errors between the continuation gravity anomaly results and the
true gravity anomaly using different methods at 0 m altitude.

Method TEDC DFDC (filter = 1,000) DC-Net

MSE 1.638 888.75 0.00372
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and the DC-Net model (Figures 9A,C) are more consistent with the true
value (Figure 8A) than that obtained by the traditional TEDC method
(Figure 8C). The error of the DC gravity anomaly at 0 m based on TEDC
method (Figure 8D) is larger than those predicted by theNFDC-Netmodel
and the DC-Net model (Figures 9B,D). The CNN-based models can
recover more high-frequency features of the gravity anomaly at the geoid

than the TEDC method. This high-frequency anomaly signal is useful for
increasing the accuracy of the structural interpretation. Although the actual
gravity anomaly data were formed by the superposition of many anomaly
bodies, the effectiveness of our two trained models was established.

Furthermore, the gravity anomaly at the geoid predicted by the
NFDC-Net model (Figure 9A) depicted more local partial anomalies than

FIGURE 6
Predicted results at 0 m using the NFDC-Netmodel and the DC-Net model for different gravity anomalies with different noise levels at 500 m: (A) noise-
free gravity anomaly; (B) predicted result using the NFDC-Net model for a noise-free gravity anomaly; (C) predicted result using the DC-Net model for a
noise-free gravity anomaly; (D) gravity anomalywith 2%Gaussian noise; (E) predicted result using theNFDC-Netmodel for a gravity anomaly with 2%Gaussian
noise; (F) predicted result using the DC-Net model for a gravity anomaly with 2% Gaussian noise; (G) gravity anomaly with 5% Gaussian noise; (H)
predicted result using the NFDC-Net model for a gravity anomaly with 5% Gaussian noise; (I) predicted result using the DC-Net model for a gravity anomaly
with 5% Gaussian noise; (J) gravity anomaly with 10% Gaussian noise; (K) predicted result using the NFDC-Net model for a gravity anomaly with 10% Gaussian
noise; (L) predicted result using the DC-Net model for a gravity anomaly with 10% Gaussian noise.
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those predicted by the DC-Net model (Figure 9C). The error of the NFDC-
Net model prediction (Figure 9B) was smaller than that of DC-Net model
prediction (Figure 9D). This may be because during the prediction process
using the DC-Net model, certain high-frequency signals were regarded as
noise instead of signals. Therefore, in practical applications, we recommend
performing noise quantification to constrain the noise level of the training
dataset before network training. We expect that this will prevent high-
frequency signals from being dropped as unreal noise in real cases.

5 Concluding remarks

In this study, we have proposed DC-Net for the gravity DC
problem using DL technology. We introduced the basic theory and
critical components of the proposed DC-Net. We performed several
synthetic tests and implemented a real application to assess the
effectiveness, noise effect, and usability of our DC-Net model. Our
main findings are as follows:

(1) The loss function and relative accuracy function curves
showed that our network was sufficiently trained. The
subset of validation data prediction results showed that a
certain number of distinctive boundary and noisy training
dataset fed into our DC-Net model ensured that our DC-Net
model had a good ability to avoid the Gibbs effect and noise
contamination for the DC problem.

(2) We performed DC tests derived from gravity anomaly data that
had a different morphological distribution from those in the
training dataset using our DC-Net model. The prediction
results demonstrated that our DC-Net model learned not only
the one-to-one analogical connection from the training sets but
also the DC law between them.

(3) DC tests for different gravity anomalies were contaminated
with 0%, 2%, 5%, and 10% Gaussian noise successively using
different trained models. The prediction results demonstrated
that the noise-contaminated trained DC-Net model
performed better than the noise-free trained NFDC-Net
model. Therefore, noise training is necessary for the DC
problem.

TABLE 3 MSE of errors between the predicted gravity anomaly and the true
gravity anomaly at 0 m altitude using different CNN models.

Noise level 0% 2% 5% 10%

NFDC-Net 0.0237 1.8236 4.252 9.353

DC-Net 0.00366 0.0107 0.0576 0.1338

FIGURE 7
Twice DC operation: (A) gravity anomaly at 1,000 m; (B) gravity anomaly at 500 m, calculated by the once DC operation; (C) the error between the
predicted gravity anomaly and the true gravity anomaly at 500 m; (D) gravity anomaly at 0 m, calculated by the twice DC operation; (E) error between the
predicted gravity anomaly and the true gravity anomaly at 0 m. The true gravity at 500 m is shown in Figure 6A, and the true gravity anomaly at 0 m is shown in
Figure 5B.

TABLE 4 MSE of errors of repeated DC operations.

Operation 1000 m->500 m 500 m->0 m

Twice DC operation 1.24×10–3 1.67×10–2
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FIGURE 8
(A)Observed gravity anomaly of the Kauring test site at the geoid. (B)Calculated gravity anomaly at 500 m altitude (Blakely, 1996). (C)DCgravity anomaly
at 0 m using the Taylor series expansion method (Tran and Nguyen, 2020). (D) Error between (C) and (A).

FIGURE 9
(A)Gravity anomaly at the geoid predicted by theNFDC-Netmodel. (B) Error between (A) and Figure 8A. (C)Gravity anomaly at the geoid predicted by the
DC-Net model. (D) Error between (C) and Figure 8A.
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(4) The prediction results of repeated DC indicated that our DC-Net
model remained valid even for repeated DC. However, there was a
cumulative error as the DC distance increased.

(5) The real-world application results demonstrated that the noise-
free trained NFDC-Net model predicted more local partial
anomalies than the noise-contaminated trained model.
Therefore, in a practical scenario, it is necessary to use noise
quantification to constrain the noise level of the training dataset.
This could prevent high-frequency signals from being dropped as
unreal noise.

(6) It is noteworthy that gravity anomalies caused by real
geological bodies are not in the training set, but our DC-
Net model could still have good DC predictions for real-world
data. It may be the case that CNN can provide not only the
simple mapping from gup(x, y) to gdown(x, y), but also the
inherent physical relationship between them. However, the
adaptability of our DC-Net model for more practical
geological DC problems needs to be verified by more
applications in the future.
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