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Active layer thickness (ALT) of permafrost changes significantly under the

combined influence of human activities and climate warming, which has a

significant impact on the ecological environment, hydrology, and engineering

construction in cold regions. The spatial differentiation of Active layer thickness

and its influencing factors have become one of the hot topics in the field of

cryopedology in recent years, but there are few studies in the Da Hinggan Ling

Prefecture (DHLP). In this study, the Stefan equation was used to simulate the

Active layer thickness in the Da Hinggan Ling Prefecture, and the factor

detection and interaction detection functions of geodetector were used to

analyze the factors affecting the spatial differentiation of Active layer thickness

from both natural and humanity aspects. The results showed that Active layer

thickness in the Da Hinggan Ling Prefecture ranges from 58.82 cm to

212.55 cm, the determinant coefficient R2, MAE, RMSE between simulation

results and the sampling points data were 0.86, 11.25 (cm) and 13.25 (cm),

respectively. Lower Active layer thickness values are mainly distributed higher

elevations in the west, which are dominated by forest (average ALT: 136.94 cm)

andwetlands (average ALT: 71.88 cm), while the higher values are distributed on

cultivated land (average ALT: 170.35 cm) and construction land (average ALT:

176.49 cm) in the southeast. Among the influencing factors, elevation is

significantly negatively correlated with ALT. followed by summer mean LST,

SLHF and snow depth. NDVI and SM has the strong explanation power for the

spatial differentiation of ALT in factor detection. Regarding interactions, the

explanatory power of slope ∩ snow depth is the highest of 0.83, followed by the

elevation ∩ distance to settlements. The results can provide reference for the

formulation of ecological environmental protection and engineering

construction policies in cold regions.
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1 Introduction

Permafrost generally refers to rock and soil that has been

frozen for two or more years under the surface. It is the product

of the energy exchange between the lithosphere and the

atmosphere (Schuur et al., 2008; Hu et al., 2017). ALT refers

to the thickness of the soil layer over permafrost that thaws in

summer and freezes in winter (Wu and Zhang 2010). Changes in

ALT are mainly due to the process of land-air exchange, and this

is the most active factor affecting the ecological environment in

cold regions. The transformation of water and ice, water

migration, and water-heat transport process in the freezing

and thawing process of the active layer will change land-air,

water-heat, and transport characteristics (Zhang and Wu 2012).

Therefore, the variation of ALT affects the biological, physical,

and geochemical processes involved in the hydrology and

ecosystems of a permafrost region. Importantly, as ALT

increases, carbon stored in permafrost is released into the

atmosphere in the form of greenhouse gases, which further

affects regional or global climate change (Cheng et al., 2019).

Under the trend of global warming, the thermal state of the

DHLP is unstable. The spatial differentiation of ALT and its

influencing factors are one of the important contents of regional

permafrost research, which is very important for the analysis and

detection of climate change.

According to the IPCC report, the global average

temperature will increase at a rate of 0.3°C/10a in the middle

of the 21st century, and the increase may be greater in high

latitude and high altitude regions (Serreze et al., 2000; Chapin

et al., 2005; Hinzman et al., 2005; Screen and Simmonds 2010;

Jeong et al., 2012). In recent years, the variation of ALT in

permafrost regions has attracted extensive research attention.

The seasonal variation of ALT mainly depends on climate,

elevation, SM, latitude, topographic characteristics, and

underlying surface properties (You et al., 2018). Lü et al.

(2007) investigated ALT in the Huzhong National Nature

Reserve in the Da Hinggan Mountains and analyzed the

influencing factors of the active layer above the permafrost.

The results showed that there is a complex relationship

between ALT and many environmental factors such as terrain

conditions, soil water content, and different biological

communities. Hou et al. (2010) studied the variation of ALT

in the Da Hinggan Mountains permafrost area under fire

disturbance and found that ALT in the burned area was

significantly larger than that in the unburned area. He et al.

(2018) studied the freezing and thawing process of the active

layer in the Nanweng’he River National Nature Reserve of the Da

Hinggan Mountains in northeast China, and the results showed

that the freezing-thawing process was greatly affected by soil

water content and vegetation. Bai et al. (2018) studied the spatio-

temporal variation of ALT in the northeast coniferous forest area

from 2000 to 2015, and found that ALT in the study area varied

from 1.18 m to 1.3 m. In total, there are few research studies on

the permafrost active layer in the DHLP. A lot of research studies

have been carried out on the active layer of the Qinghai-Tibet

Plateau, mainly focusing on the simulation of the ALT

distribution (Li et al., 2012; Zhang et al., 2016; Guo and

Wang 2017; Xu et al., 2017); the simulation of ALT changes

under future climate change (Zhang and Wu 2012; Chang et al.,

2018); the use of radar data to study ALT (Du et al., 2016; Cao

et al., 2017; Jia et al., 2017); and the active layer freezing and

thawing process (Tian et al., 2009; You et al., 2017; Shen et al.,

2018; Yang and Wang 2019).

The Kudryavtsev, Nelson, and Stefan methods are commonly

used in calculating ALT (Wang et al., 2009). Based on

temperature, the Kudryavtsev method comprehensively

considers the influence of snow cover, vegetation, SM, soil

thermal properties, and other factors on the active layer, but

this method needs more calculation parameters to be accurate,

and it is difficult to obtain the data for this method (Anisimov

et al., 1997; Shiklomanov and Nelson 1999). The basic principles

of the Nelson’s method and Stefan’s method are the same. The

difference is that the LST is calculated differently (Nelson et al.,

2001). The Stefan equation is a formula expression

approximating solution of the Fourier heat conduction

equation proposed by Austrian scientist Stefan in 1891. The

Stefan equation was originally used to simulate the freezing and

thawing process of lake ice in the Arctic region (Stefan 1891).

Berggren used it calculate the freezing and thawing of soil layers

in 1943, and then it was widely used in the field of cryopedology

(Berggren 1943). The Stefan equation has few parameters, a

simple form, and a reliable simulation effect. It is one of the

commonly used algorithms in the study of glaciology and

cryopedology (Nelson et al., 1997; Zorigt et al., 2016; Bai

et al., 2018). Klene (2005) considered the thermal

performance and topography of the thawing index, soil

moisture, and land cover characteristics of a study area, used

the Stefan equation to calculate the spatial variation

characteristics of ALT in the Arctic urbanization area, and

developed it into a regional probability stochastic model of

ALT. Zhang and Wu (2012) and Xu et al. (2017) used the

Stefan equation based on the thawing index to calculate ALT

in order to analyze the permafrost region of the Qinghai-Tibet

Plateau. They found that the Stefan equation could better reflect

the distribution and spatial variation of ALT on the Qinghai-

Tibet Plateau. Cai et al. (2020) used the Stefan equation to

simulate ALT in the pan-Arctic region. After comparing the

simulation results with the observed data of monitoring stations,

it was found that the results were consistent and the simulation

results achieved high accuracy.

The freeze-thaw cycle of the active layer of permafrost is a

complex process, which is affected by many factors. You et al.

(2018) show that the ALT of permafrost in Heilongjiang Province

is greatly affected by soil water content and vegetation at the

annual scale, while the contribution rate of latent heat and soil

water content to the long-term variation of active layer thickness
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is high at the inter-annual scale. Feng et al. (2016) and Zhang

et al. (2013) found that in addition to vegetation conditions, snow

depth and soil types also had significant effects on ALT in their

studies on the permafrost of the Qinghai-Tibet Plateau. Mölders

and Romanovsky (2006) and Nicolsky et al. (2007) studied the

ALT in Alaska permafrost and found that the accumulation of

topography and soil organic matter had a certain impact on the

ALT in high latitude regions. At present, there are hundreds of

research methods on spatial differentiation of geographical

factors, but the statistical methods for spatial differentiation

are very limited (Wang and Xu 2017). Geodetector is a

statistical method that can detect the spatial differentiation of

geographical factors and their driving factors. Compared with

other methods, geodetector has two advantages. On the one

hand, geodetector can detect both numerical data and qualitative

data. On the other hand, the geodetector can also detect the

interaction of two influencing factors on the dependent variable.

As long as there is a relationship, it can be displayed through the

geodetector (Xu and Bao 2022). Geodector is widely used in

research studies related to ecological environment changes and

social and economic development (Xie et al., 2020; Guo et al.,

2021; Xu and Bao 2022). For example, Heihe-Tengchong Line.

The core idea of this method is that if an independent variable has

an important influence on a dependent variable, then the spatial

distribution of the independent variable and the dependent

variable should also be similar (Dong et al., 2017; Xu et al.,

2021; Chen et al., 2022).

Although many research studies have shown that the Stefan

equation has achieved good results in the estimation of ALT,

there are few studies on the application of the Stefan equation to

study ALT in the DHLP. Its applicability in the DHLP needs to be

further studied. In this study, the MODIS LST product combined

with the Stefan equation was used to simulate ALT in the DHLP,

and the factor detection and interaction detection functions of

geodetector were used to analyze the factors affecting the spatial

differentiation of the ALT in the DHLP. The results obtained will

be helpful to the application and promotion of the Stefan

equation in studying the DHLP and in achieving accurate

mapping of ALT for a large area. Moreover, clarifying the

spatial differentiation characteristics and influencing

mechanisms of ALT can provide reference for the formulation

of ecological environmental protection and engineering

construction policies in cold regions.

2 Data and method

2.1 Study area

The study area was located at the southeastern margin of the

Eurasian tundra (50°12′N–53°34′N, 121°08′E–127°01′E), with
an area of about 8.3×104 km2, bordering Russia in the north and

connected to Hulun Buir City of Inner Mongolia in the

southwest, and straddling Inner Mongolia and the

Heilongjiang Province. Due to the complex terrain, high

latitude and far away from the ocean, controlled by the

Mongolian high pressure, it belongs to the cold temperate

continental monsoon climate, with obvious mountain

climate characteristics. The annual average temperature

is −2°C to −5°C in the southeast, 5°C to −7°C in the north,

and the extreme minimum temperature is −52.3°C, which is the

lowest temperature record in China. Annual precipitation from

south to north from 500 to 700 mm reduced to less than

200 mm (Guo et al., 2017). A large area of continuous

permafrost is distributed in the study area, compared with

high elevation permafrost, the DHLP permafrost is more

susceptible to climate warming (Zhang et al., 2021). The

main land cover type is forest (Figure 1).

2.2 Data

2.2.1 Temperature data
The temperature data used in this study was from the

MODIS 8-day land surface temperature (LST) product

(MOD11A2). The year of data acquisition was 2019, and

the spatial resolution used was 1 km. In this paper, LST

data were mainly used to calculate the ground surface

thawing index (GTI). After preprocessing the LST data, the

following formula was used to calculate the day/night surface

temperature (Cai et al., 2020):

LSTs � 0.02 × PV–273.15 (1)

Where LSTs is the land surface temperature (°C) and PV is the

pixel value of the MOD11A2 data.

FIGURE 1
Study area.
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In order to verify the availability of the MOD11A2 data, the

correlation analysis between the LST data of 19 meteorological

stations in the DHLP and theMOD11A2 data was conducted; the

correlation coefficient R2=0.85 indicated that the correlation

reached a high level. Moreover, the slope of the fitted curve

was close to one and passed the significance test (p <0.01). The
above results showed that it is feasible to use MOD11A2 data to

calculate GTI.

2.2.2 Permafrost ALT data
In this study, the permafrost data were mainly from the

ALT data gathered from the circum-Arctic region and from

the DHLP. Circum-Arctic ALT data were obtained from the

Global Terrestrial Network for Permafrost (GTN-P). GTN-P

was established in the 1990s to monitor the permafrost ALT

and changes in the spatial distribution pattern of permafrost.

Due to the lack of 2019 ALT data at some circum-Arctic

monitoring stations, so we selected the data of 40 monitoring

stations (see Supplementary File SA) in the circum-Arctic

region GTN-P for this study after screening. The ALT data in

the DHLP were manually measured and sampled in 2019. The

spatial locations of the monitoring stations in the circum-

Arctic and the sampling points in the DHLP are shown in

Figure 2.

2.2.3 Other data
In this study, global land cover data from the National

Geomatics Center of China were obtained with a spatial

resolution of 30 m (http://www.globallandcover.com/). This data

was provided by China to the United Nations for its first global

geographic information product for the public. Elevation data was

SRTM (The Shuttle Radar TopographyMission) data obtained from

the Geospatial Data Cloud (http://www. gscloud cn/) with a spatial

resolution of 90 m; slope and aspect data were extracted from

ArcGIS basis of elevation data. The Normalized Difference

Vegetation Index (NDVI) data used had a spatial resolution of

1 km and was from the monthly NDVI data product

MOD13A3 provided by the NASA website (https://www.

earthdata. nasa. gov/). The snow depth data used had a spatial

resolution of 0.25° and were obtained from the long-term series of

daily snow depth data set in China (1979–2021) provided by the

National Tibetan Plateau Data Center (http://data.tpdc.ac.cn). Data

on settlements and roads were obtained from the Resource and

Environmental Science and Data Center (https://www.resdc.cn/).

Surface albedo (ABD), surface sensible heat flux (SSHF), surface

latent heat flux (SLHF), and soil moisture (SM) data were obtained

from ERA5 (https://cds.climate.copernicus.eu/) with a spatial

resolution of 0.125°. The annual mean values of the above data

were calculated respectively, and the resolution was uniformly

resampled to 0.125°.

2.3 Methodology

2.3.1 Calculation of thawing index
Thawing index (TI) includes the air thawing index (ATI)

and ground surface thawing index (GTI). GTI values were

calculated from January 1 to December 31 for each year using

cumulative values of GST above 0°C over days or months

(using units of °C d) (Luo et al., 2018). The formula is as

follows:

GTI � ∑MT

i�1
Ti

∣∣∣∣ ∣∣∣∣ ·Di Ti > 0( ) (2)

Where Ti is the monthly mean temperature in the ith month and

Di is the number of days in the ith month.

FIGURE 2
Distribution of circum-Arctic monitoring stations and sampling points in the DHLP.
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2.3.2 Simulation of ALT
Stefan’s approximate solution method is the simplest and

most commonly used method for calculating the ALT at the

regional scale (Zhang et al., 1997; Zhang et al., 2005):

ALT � E
����
GTI

√
(3)

E �
�����
2ktnt
ρbωL

√
(4)

Where E is a newparameter containing various soil parameters, called

soil factor or the E factor, kt is the thermal conductivity of thawed soil

(W •m−1 •°C−1), nt is the n factor for the thawing season reflecting the

relationship between the air and surface freezing/thawing index, ρb is

the soil bulk density (kg •m−3), ω is the soil water content by weight

(%), and L is the latent heat of fusion (J • kg−1).

Peng et al. (2018) showed that the inter-annual variation of

the E factor was not obvious, and most monitoring stations had a

relatively constant E factor. In this study, we use the following

formula to obtain the E factors:

E � ALT/ ����
GTI

√
(5)

Based on the ALT data recorded by the GTN-P monitoring

station in the circum-Arctic region and the GTI of the corresponding

monitoring station obtained by theMODIS land surface temperature

product, the E factors of forest, cultivated land, grassland, wetlands,

and construction land were calculated (Table 1). Then, ALT in the

DHLP was calculated using these calculated E factors.

2.3.3 Accuracy evaluation
In this study, we used rootmean square error (RMSE) andmean

absolute error (MAE) to evaluate the accuracy of theALT simulation

results. The data used to verify accuracy is DHLP sampled data.

RMSE �

���������������
1
N

∑N
i�1

Hie −Him( )2
√√

(6)

MAE � 1
N

∑N
i�1

Hie −Him| | (7)

WhereHie andHim are simulated and observed data, respectively,

and N is the number of samples.

2.3.4 Pearson correlation analysis
In this study, Pearson correlation analysis method was used

to calculate Pearson correlation coefficient to reflect the

correlation degree of each influencing factor.

R � ∑n
i�1 xi − �x( ) yi − �y( )�����������∑n

i�1 xi − �x( )2
√ �����������∑n

i�1 yi − �y( )2√ (8)

Where R is correlation coefficient; n is the number of samples; xi
and yi represent the values of two variables respectively; �x and �y

indicate the average of the variables, respectively. The correlation

coefficient ranges from −1 to 1. Negative values represent

negative correlations, positive values represent positive

correlations, −1 and one represent absolute correlations. The

absolute value of the correlation coefficient indicates the degree

of correlation between two variables. The closer the value is to 1,

the closer the relationship is, and the closer the value is to 0, the

less close the relationship is.

2.3.5 Geodetector model
In this study, factor detection and interaction detection in the

Geodetector model were used to quantitatively analyze the

driving factors of ALT in the DHLP and the influence of

interaction between factors on ALT (Wang and Xu 2017).

The factor detector can measure the extent to which the

factor explains the spatial differentiation of ALT, and the

explanation power of the factor is expressed as the q value.

The formula is as follows:

q � 1 − 1
Nσ2

∑L
h�1

Nhσ
2
h (9)

where h = 1, ... L is the stratification of the influencing factor; Nh

and N are the number of units in layer h and the study area,

respectively; and σ2h and σ2 are the variance of layer h and the

study area, respectively. The q value represents the explanation

power of influence factors on spatial differentiation, and the

range is: [0,1]. A higher value of q indicates the stronger

explanatory power of the independent variable for the

dependent variable, and vice versa. The value q = 0 indicates

that the independent variable has no relationship with the

dependent variable, while q = 1 indicates that the independent

TABLE 1 E value of different land cover types.

Land cover type E (STD) Number of monitoring stations

Forest 0.029 (±0.009) 5

Wetlands 0.018 (±0.011) 7

Grassland 0.030 (±0.027) 15

cultivated land 0.033 (±0.012) 10

construction land 0.036 (±0.018) 3
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variable completely controls the spatial distribution of the

dependent variable.

Interaction detection can identify whether the interaction

between two factors increases or decreases the explanatory power

of ALT. In other words, it can assess whether independent

variables X1 and X2 together increase or decrease the

explanatory power of the dependent variable (Y), or whether

the effects of independent variables X1 and X2 on dependent

variable (Y) are independent of each other (Wang and Xu 2017).

There are five interaction types (Table 2).

3 Result

3.1 Comparison of simulated ALT with
sampling points data

In order to evaluate the accuracy of the simulated ALT by the

MODIS land surface temperature product and the Stefan equation

in the DHLP, the ALT data of 28 study area sampling points in

2019 were compared with the simulated values. The results showed

that the simulation results were in good agreement with the

sampling points data (Figure 3); the determinant coefficient R2

was 0.86, the absolute error distribution range was −24.48 to

26.69 cm, the MAE was 11.25 cm, the RMSE was 13.25 cm, and

the simulation accuracy reached a high level. These results support

using simulated ALT to reflect the spatial distribution of ALT in

the DHLP.

TABLE 2 Types of interaction between two factors.

Interaction Measure

Non-linear attenuation q (X1 ∩ X2) < Min (q (X1, X2))

Single factor non-linear attenuation Min (q (X1), q (X2)) < q (X1 ∩ X2) < Max (q (X1), q (X2))

Bilinear enhancement q (X1 ∩ X2) > Max (q (X1), q (X2))

Independence q (X1 ∩ X2) = q (X1) + q (X2)

Non-linear enhancement q (X1 ∩ X2) > q (X1) + q (X2)

FIGURE 3
Simulated and measured values 1:1 histogram (black solid line is y=x).

FIGURE 4
Spatial distribution of ALT in the DHLP.
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3.2 Spatial distribution characteristics of
ALT in the DHLP

Figure 4 shows the spatial distribution of ALT in the DHLP

for 2019. The ALT in the DHLP ranged from 58.82 to 212.55 cm

and showed a general trend of low in the west and high in the

southeast. ALT in the eastern Mohe and Huzhong were

significantly lower than that in other lower elevation regions,

which indicated that elevation may be one of the influencing

factors of ALT in the DHLP (Cheng et al., 2019). ALT was higher

for the cultivated land and construction land, and the other three

land cover types had relatively lower ALT values, among which

wetlands had the lowest value. The simulation results showed

(Table 3) that the average ALT in the DHLP was 138.83 cm, and

the average ALT of construction land was 176.49 cm, which is

significantly higher than the average ALT of the whole study area.

The min ALT for construction land was 152.91 cm, while the

max ALT for wetlands was only 83.70 cm; the min ALT for

construction land was 69.21 cm higher than the max ALT for

wetlands. The standard deviation (STD) of ALT in the whole

study area was ±9.27 cm, which indicated that there was a gap in

ALT among different land cover types. Even if the same land

cover type was affected by local factors, there would be a certain

gap. Among the five land cover types classified in this study, the

gap within the wetlands was the smallest, with STD of ±4.86 cm.

The gap in the construction land was the largest, with a STD

of ±11.36 cm. STD of grassland, forest, and cultivated land are in

the middle of the five land cover types. The STD of cultivated

land (±6.22 cm) and forest (±6.90 cm) was close to each other,

while that of grassland (±11.22 cm) was close to that for the

whole study area.

3.3 Influencing factors of ALT in the
permafrost region of northeast China

In this study, 16 influencing factors such as latitude, annual

mean LST, summer mean LST, winter mean LST, elevation,

slope, aspect, NDVI, SM, soil type, snow depth, ABD, SLHF,

SSHF, distance to settlements and distance to roads were selected

for study (Figure 5). Correlation analysis and the Geodetector

model (factor detection and interaction detection) were used to

explore the influencing mechanism of each factor on the

permafrost ALT in the DHLP.

3.3.1 Correlation between the influence factors
and ALT and factor detection

It can be seen from Table 4 that most of the influencing

factors are negatively correlated with ALT in the DHLP, and

only annual, summer and winter mean LST, slope and SSHF

show a positive correlation. Among all factors, elevation

(R = −0.42) had the highest correlation, followed by

summer mean LST (R = 0.40), snow depth (R = −0.40) and

SLHF (R = −0.40), latitude (R = −0.39), SM (R = −0.38), etc. In

addition to the above natural factors, the distance to

settlements (R = −0.39) among the socioeconomic factors

was also strongly correlated with ALT. It can be seen that

ALT is not only affected by natural factors, but also greatly

influenced by human activities, and this influence will

gradually deepen with the intensification of human

activities (Zhang and Wu 2012). The correlation between

winter mean LST, aspect, soil type, SSHF and distance to

roads and the ALT was not significant at the 99% and 95%

confidence intervals.

The explanatory power q value of each factor on the spatial

differentiation of ALT is shown in Table 4. As can be seen

from the q value statistics of all factors, the q value of NDVI is

the largest, reaching 0.45, which indicates that NDVI can

explain the spatial differentiation of ALT in the DHLP to a

degree of 45%, followed by SM, snow depth, latitude and

distance to settlements, etc. The q values were 0.44, 0.24,

0.24 and 0.17, respectively, which can explain the spatial

differentiation of ALT to a certain extent, but the

explanatory power of a single factor is not obvious.

3.3.2 Interaction detection
The interaction detector of the Geodetector model can be

used to detect the explanatory power of the spatial differentiation

of ALT in the DHLP under the interaction of various factors.

Table 5 shows the interactive detection results of ALT in the

DHLP. As can be seen from the q value in the table, each detected

factor is not independent, and the spatial differentiation of ALT is

the result of the joint action of many factors, and a single

influencing factor does not sufficiently explain the spatial

differentiation of ALT.

The 16 influencing factors selected in this study produced a

total of 120 interaction detections (Table 5). After the interaction

of the two factors, the explanatory power of each pair of

influencing factors on ALT spatial differentiation showed an

increasing trend, and the interaction q value was higher than that

for a single factor. Among the 120 interaction groups, two groups

had q≥0.8, 12 groups had 0.7≤q < 0.8, and 21 groups had 0.6≤q <
0.7. After factor interaction, there were two enhancement modes,

TABLE 3 ALT (cm) of different land cover types in the PRN China.

Average Max Min STD

DHLP 138.83 212.55 58.82 ±9.27

Forest 136.94 161.22 110.73 ±6.90

Wetlands 71.88 83.70 58.82 ±4.86

Grassland 145.34 171.97 114.49 ±7.38

Cultivated land 170.35 186.77 145.56 ±6.22

Construction land 176.49 212.55 152.91 ±11.36
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FIGURE 5
Spatial distribution of influencing factors: (A) Annual mean LST (°C), (B) summer mean LST (°C), (C) winter mean LST (°C), (D) Elevation (m), (E)
Slope (°), (F) Aspect (°), (G) NDVI, (H) Soil type, (I) SM (%), (J) Snow depth (cm), (K) ABD (%), (L) SLHF (w/m2), (M) SSHF (w/m2), (N) Distance to
settlements (km) and (O) Distance to roads (km).
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most of which were non-linear enhancement (88%) and a small

part of which were bilinear enhancement (12%). The average q

value of the bilinear enhancement is 0.43, and the average q value

of the non-linear enhancement is 0.49. In the bilinear

enhancement interaction, the explanatory power of NDVI ∩
SM is the highest (0.67), followed by latitude ∩ NDVI (0.65) and

NDVI ∩ distance to settlements (0.62), whose q value is above 0.6.

In the non-linear enhanced interaction, the explanatory power of

slope ∩ snow depth is the highest of 0.83, followed by the

elevation ∩ distance to settlements (q=0.81). After the

interaction detection of all the influencing factors, NDVI

showed the greatest enhancement of the explanatory power of

the influencing factors, followed by SM. The average q values of

the interaction between NDVI, SM and the other 15 influencing

factors were 0.67 and 0.64, respectively, and the explanatory

power of all factors was greatly enhanced after superimposed

with NDVI and SM. This indicates that NDVI and SM are the

dominant factors causing the spatial differentiation of permafrost

ALT in the DHLP in 2019. The above results indicate that the

spatial differentiation of ALT in the DHLP is not only controlled

by one factor but is the result of the joint action of many factors,

and there is a complex relationship between each factor.

Therefore, the interaction between these factors should be

fully considered when formulating relevant ecological and

environmental policies.

4 Discussion

4.1 ALT and influence factors

We found that ALT of the DHLP ranges from 58.82 to

212.55 cm, with an average thickness of 138.83 cm. Qin et al.

(2017) found that the average ALT on the Qinghai-Tibet Plateau

is about 230 cm. Compared with the Qinghai-Tibet Plateau, ALT

in the DHLP is thinner. The reason for this gap may be related to

the surface conditions. The surface vegetation on the Qinghai-

Tibet Plateau is sparse, with less water storage and drier soil,

which consumes less heat at the beginning of the seasonal

thawing of the active layer, resulting in thicker ALT

(Frauenfeld et al., 2005). Wu and Zhang (2010) also

confirmed that under the same annual average temperature

conditions, the soil in the Qinghai-Tibet Plateau was dry and

the average ALT was higher than that in the high latitude region.

In the five land cover types divided in this study, the ALT of

wetland is significantly lower than that of the other four land

cover types. This may be related to the higher soil water content

in wetlands (Zorigt et al., 2016). Under the same conditions, soil

with higher water content has higher heat capacity and slower

temperature change than soil with lower water content, and the

thawing process of active layer requires relatively more heat.

Therefore, the ALT of wetlands is much lower than that of other

land cover types (He et al., 2018). In addition, construction land

has the highest ALT. In this paper, construction land mainly

refers to settlements. Affected by human activities, the

underlying surface properties have changed, which affects the

normal infiltration of water and the process of water heat

exchange in the active layer (Cai et al., 2020). Meanwhile, the

active layer of permafrost absorbs both naturally occurring heat

and heat generated by human activities, resulting in a thicker

active layer than other land cover types (Luo et al., 2018).

In this study, the factors that have great influence on ALT in

the DHLP include elevation, SLHF, summer mean LST,

latitude, SM and snow depth. Lü et al. (2007) showed a

significant negative correlation between SM and ALT in the

Huzhong Nature Reserve, which was supported by the results

obtained in this study. However, in their study, elevation was

not significantly correlated with ALT, which may be related to

the size of the study area and the complexity of the terrain. The

Huzhong Nature Reserve with a gentle slope, and the elevation

difference is between 400 and 500 m, while the elevation

difference in the DHLP is 1,326 m, showing a significant

difference between the Huzhong Nature Reserve and DHLP.

Cheng et al. (2019) also pointed out that ALT decreases with the

increase of elevation. Moreover, Lloyd et al. (2003) found in

their study on the relationship between ALT and SM for

permafrost in Alaska that the relationship between ALT and

SM was not significant, which was different from the results of

our study and the study of Lü et al. (2007), which may be a

function of the different study areas investigated. Permafrost in

TABLE 4 Correlation coefficients and q values between influence factors
and ALT.

Factors R q

Latitude −0.39** 0.24

annual mean LST 0.30** 0.05

summer mean LST 0.40** 0.10

winter mean LST 0.12 0.02

Elevation −0.42* 0.14

Slope 0.23* 0.17

Aspect −0.04 0.13

NDVI −0.22** 0.45

SM −0.38** 0.44

soil type 0.01 0.01

snow depth −0.40** 0.24

ABD −0.23* 0.14

SLHF −0.40** 0.05

SSHF 0.22 0.06

distance to settlements −0.39* 0.17

distance to roads −0.14 0.11

‘**’ indicates p <0.01 (two-tailed); ‘*’ indicates p <0.05 (two-tailed).
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Alaska has a continuous distribution, while the permafrost of

the DHLP is a more complex type, discontinuous, and not as

well developed as it is in Alaska. In terms of factors controlling

permafrost development, the climate in Alaska is colder, which

is more conducive to the stable existence of continuous

permafrost. Additionally, the DHLP is located in the

southern edge of the Northern Hemisphere permafrost zone,

where the permafrost is extremely unstable and susceptible to

other controlling factors, so the influence of SM on permafrost

is more prominent.

There is a significant positive correlation between summer

mean LST and ALT in the DHLP, while winter mean LST is not

significant. This is related to the thawing time of the active layer

in the study area. The thawing of active layer mainly occurs in

summer, while the winter is the complete freezing period of

active layer (Zhang et al., 2005). In addition, there is a significant

negative correlation between snow depth and ALT, which may be

related to the reflection effect of snow on solar radiation. The

deeper the snow depth, the more latent heat it loses when

thawing. Under the same conditions, the deeper the snow

depth, the slower the thawing rate of the soil, which is more

conducive to the development and preservation of permafrost,

and the thinner the ALT (You et al., 2018). This also explains the

negative correlation between SLHF and ALT to a certain extent.

Luetschg et al. (2008) and Frauenfeld et al. (2004) also pointed

out that snow depth has the strongest influence on the active

layer of permafrost.

4.2 Limitations and future prospects

The Stefan equation, based on the one-dimensional heat

conduction equation, is an approximate method for

calculating ALT. It is assumed that all the heat absorbed by

the ground is used for permafrost thawing, and the temperature

change in the thawing area is linear. In reality, the heat transfer of

permafrost is controlled by many factors (Li et al., 2011). This

theoretical assumption brings some errors to the calculation

results, which generally result in being larger than the

measured values (Pang et al., 2006). In addition, this paper

only calculated ALT in the DHLP in 2019, and the research

period was short. Zhao et al. (2010) studies have shown that ALT

may change due to the change of temperature, vegetation, and

soil conditions in the current year, and there will be a gap

between years. Therefore, a long-term series over many years

of ALT in the DHLP should be calculated and analyzed in

additional research studies to clarify the temporal variation

of ALT.

TABLE 5 Interaction detection of each influence factor.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16

X1 0.24 — — — — — — — — — — — — — — —

X2 0.28a 0.05 — — — — — — — — — — — — — —

X3 0.32a 0.17a 0.10 — — — — — — — — — — — — —

X4 0.29a 0.20b 0.25b 0.02 — — — — — — — — — — — —

X5 0.35a 0.38b 0.28b 0.37b 0.14 — — — — — — — — — — —

X6 0.41a 0.29b 0.34b 0.33b 0.46b 0.17 — — — — — — — — — —

X7 0.45b 0.32b 0.66b 0.75b 0.62b 0.62b 0.13 — — — — — — — — —

X8 0.65a 0.62b 0.77b 0.63b 0.65b 0.77b 0.77b 0.45 — — — — — — — —

X9 0.56a 0.49a 0.60b 0.63b 0.69b 0.70b 0.75b 0.67a 0.44 — — — — — — —

X10 0.35b 0.21b 0.30b 0.27b 0.51b 0.37b 0.46b 0.57b 0.74b 0.01 — — — — — —

X11 0.59b 0.41b 0.40b 0.48b 0.77b 0.83b 0.56b 0.70b 0.57a 0.42b 0.24 — — — — —

X12 0.29a 0.32b 0.34b 0.30b 0.38b 0.52b 0.63b 0.69b 0.73b 0.32b 0.79b 0.14 — — — —

X13 0.42b 0.22b 0.33b 0.26b 0.43b 0.41b 0.50b 0.75b 0.60b 0.29b 0.47b 0.49b 0.05 — — —

X14 0.38b 0.29b 0.30b 0.30b 0.33b 0.41b 0.56b 0.56b 0.54b 0.26b 0.48b 0.44b 0.26b 0.06 — —

X15 0.41a 0.45b 0.67b 0.63b 0.81b 0.56b 0.48b 0.62a 0.65b 0.54b 0.70b 0.63b 0.50b 0.60b 0.17 —

X16 0.40b 0.26b 0.39b 0.35b 0.47b 0.54b 0.45b 0.69b 0.69b 0.43b 0.54b 0.43b 0.36b 0.39b 0.45b 0.11

Description of symbols: X1 (latitude), X2 (annual mean LST), X3 (summermean LST), X4 (winter mean LST), X5 (elevation), X6 (slope), X7 (aspect), X8 (NDVI), X9 (SM), X10 (soil type), X11

(snow depth), X12 (ABD), X13(SLHF), X14(SSHF), X15 (distance to settlements), X16 (distance to roads), ‘a’ is bilinear enhancement, and ‘b’ is non-linear enhancement. The diagonal is the

single factor q value.
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5 Conclusion

In this study, the Stefan equation combined with the MODIS

land surface temperature product was used to invert ALT for the

DHLP. The correlation between the influencing factors and ALT

was calculated, and the explanation degree of the spatial

differentiation of ALT by the combination of a single

influencing factor (latitude, annual mean LST, summer mean

LST, winter mean LST, elevation, slope, aspect, NDVI, SM, soil

type, snow depth, ABD, SLHF, SSHF, distance to settlements and

distance to roads) and double influencing factors was analyzed by

Geodetector. The results show that relatively thick active layer in

the DHLP in 2019 was mainly distributed on the cultivated land

and construction land in the southeast of the study area, while

ALT is relatively thin in the forest and wetlands regions such as

those found in the west. In general, ALT in the DHLP in

2019 ranges from 58.82 to 212.55 cm, with an average

thickness of 138.83 cm, which was lower than that of the

Qinghai-Tibet Plateau (230 cm). The most influential factor

on ALT in the DHLP was elevation, followed by summer

mean LST, SLHF and snow depth. Through the calculation of

Geodetector, when NDVI and SM were superimposed with other

factors, the explanatory power of other factors increased the

most, indicating that NDVI and SM were the leading factors

influencing the thickness variation of the active layer. In the

future, the factors NDVI and SM should be further considered in

ecological research and engineering construction projects

conducted in cold regions.
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