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The pebble formation formed by weathered quartzite and granite is usually of

high strength, strong permeability and poor self stability, which brings great

difficulties to shield tunneling. It is necessary to adjust the tunneling parameters

at any time to prevent the consequences of instability of the tunnel face, loss of

stratum and surface settlement caused by the imbalance of the soil bin

pressure. GA algorithm is embedded into PSO algorithm for parameter

optimization, and grey theory is combined to establish the prediction model

of soil chamber pressure based on grey least square support vector machine,

which can solve the problem of difficult control of tunneling parameters in

pebble stratum formed by weathered quartzite and granite. Research indicates:

GA-PSO-GLSSVM chamber Earth pressure prediction model enhances the EPB

chamber Earth pressure forecast accuracy in complicated strata by integrating

the global search capability of the GA algorithm, the quick convergence of the

PSO algorithm, and the anti-disturbance capability of the GM model. The GA-

PSO-GLSSVM model has high goodness-of-fit and accuracy compared with

other prediction models. This model can successfully prevent the a series of

undesirable consequences such as destabilization of the palm surface, missing

strata and settlement due to ground surface due to pressure imbalance in the

soil chamber pressure. The research results can provide reference for EPB

shield tunneling parameter control in Grade V surrounding rock.
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Introduction

Because of its broad applications and little influence on the environment, Earth

Pressure Balance shield (EPB) is frequently utilized in the building of subway tunnels. The

operational status of the shield technique must frequently be reflected by the tunneling

parameters since it is a closed process. In order to successfully manage ground settlement,
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ensure the stability of the tunnel face, reduce cutting tool loss,

and keep the shield in a favorable position, it is important to

choose the right tunneling parameters. The shield tunneling

parameters must also be modified and optimized in real time

when geological conditions change during the tunneling

process in order to guarantee the shield is tunneled

securely and effectively. Once the tunneling parameters are

improperly controlled, it is very easy to cause accidents such

as ground subsidence and building collapse, as illustrated in

Figure 1. Therefore, how to accurately predict and control the

tunneling parameters has always been the research focus in

the field of shield tunnel construction technology (Pan et al.,

2022). At present, many scholars have studied the variation

laws and theoretical calculations of cutter head torque, shield

thrust, grouting pressure, tunneling speed and other

parameters under different geological conditions during

EPB shield tunneling, and established mathematical and

physical models to predict tunneling parameters according

to Hooke’s law (Jie et al., 2017; Wei et al., 2017; Yang et al.,

2017; Zhao et al., 2017; Boukhari, 2020; Cao et al., 2020; Gao

et al., 2020; Al-Habahbeh, 2022; Lu et al., 2022; Lyu et al.,

2022). Although these models can reflect the analytical

relationship between tunneling parameters, shield

tunneling is a complex and changing process, and the

stratum it crosses is actually a non-uniform and

discontinuous non-linear elastomer. Therefore, this kind of

prediction model has certain limitations in engineering

applicability.

With the rapid development of big data and artificial

intelligence technology in recent years, deep learning

algorithms such as big data statistical analysis (Sekiya et al.,

2022; Wu et al., 2022), BP neural network (Zhou et al., 2015;

Cachim and Bezuijen, 2019; Wang et al., 2022a), genetic

algorithm (GA) (Ahangari et al., 2015), support vector

machine (SVM) (Wang et al., 2013; Wang et al., 2022b),

random forest (RF) (Zhou et al., 2017; Ge et al., 2022),

particle swarm optimization (PSO) (Liu et al., 2018; Elbaz

et al., 2022) have been applied in the prediction of shield

tunneling parameters. The rudiment of the concept of deep

learning is the deep belief network (DBN) proposed by Hinton

in 2006. This method adopts unsupervised layer by layer

training to improve the depth of network training, and has

achieved good application results. It is considered to be one of

the most potential deep learning algorithms after

unsupervised learning. The research above shows that the

accuracy of the prediction model established by these

intelligent algorithms is significantly higher than that of the

mathematical physical model, which has important

application value for EPB shield tunneling under different

geological conditions. The most crucial factor in ensuring the

normal tunneling of the EPB shield machine is the Earth

pressure inside the chamber. There have been studies done on

the prediction model of the Earth pressure within the

chamber, and Shangguan (2011) established the mapping

link between the Earth pressure inside the chamber and

controllable elements such propulsion speed. Based on a

genetic algorithm, Li and Cao (2012) projected the pressure

of the soil. There are currently two basic approaches for

building a prediction model for the Earth pressure within a

chamber using tunneling parameters. According to Hooke’s

rule of conservation of excavation and dumping volume of

soil, one is to develop a mathematical model of the Earth

pressure in chamber prediction (Liu et al., 2022). The

alternative way is to construct a prediction model of the

Earth pressure in a chamber based on tunneling

characteristics identified during the tunneling process using

neural networks and other more intelligent methods (Shi

et al., 2008; Liu et al., 2011). The instability of the tunnel

FIGURE 1
Ground subsidence caused by shield construction.
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face and loss of strata caused by the imbalance of Earth

pressure in the chamber will have a number of unfavorable

effects, including the elevation and settling of the

ground surface. The coupling action of tunneling

parameters such as cutter head torque, screw conveyor

speed, shield thrust, grouting pressure, etc. Results in the

dumping efficiency of the shield machine during the

tunneling process. The dumping efficiency is influenced by

the mechanical and physical parameters of the formation,

which change over time.

Sandy pebble stratum usually has high permeability, loose

structure, and extremely low cohesion, and its overall stability

is generally poor. During shield tunneling, it is bound to

change the stress state of the stratum near the excavation

face, causing stratum loss, and in serious cases, it will lead to

large ground subsidence and building damage, causing great

difficulty to shield construction. Because the Earth pressure in

chamber of EPB shield is often a nonlinear mapping

relationship with other tunneling parameters, it is difficult

to determine the functional relationship between the Earth

pressure in chamber and other tunneling parameters by

polynomial fitting. In view of this, this study integrated the

GA algorithm into the PSO algorithm for parameter

optimization, thoroughly examined the characteristics of

large interaction and strong coupling effect between shield

tunneling parameters combined with Grey theory, established

a prediction model of soil pressure based on Grey Least Square

Support Vector Machine (GLSSVM), the validity and

reliability of the prediction model are confirmed through

the sand gravel shield tunnel section project of Chengdu

metro line 17, using the actual monitoring data as the

training and test samples of the prediction model, which

serves as a reference for the EPB shield tunneling

parameter control in sandy gravel stratum.

Materials and methods

Mechanism and influencing factors of
surface subsidence in sandy pebble
stratum

During shield construction in sandy pebble stratum, due to

the jacking and extrusion of shield machine and the shear friction

between shield shell and soil, the equilibrium state of stratum is

disturbed and destroyed, the soil particles move, and the initial

stress of stratum changes and redistributes, causing stratum loss.

The ground loss Vs is calculated as follows:

Vs � Vs′πr
2
0 (1)

where, Vs is ground loss in m2, Vsˊ is ground loss ratio in % and r0
is outer diameter in m.

The loss of sandy gravel stratum caused by shield tunneling is

usually the sum of the loss of excavation face, the periphery of

shield machine and the tail of shield. When the shield top thrust

is extruded during shield tunneling, the soil moves sideways and

loosens up in a specific area in front of the excavation face, which

is what causes the formation loss at the excavation face, as

illustrated in Figure 2. Because the sand pebble stratum

contains a lot of pebbles and they are strong, the cutter head

and shield machine’s props frequently sustain significant wear.

Additionally, when the cutter is replaced or the machine pauses

when it runs into significant frontal obstructions, stratum loss

occurs. During tunneling, the shield machine will produce

varying degrees of friction, shear and extrusion with the

surrounding sand pebbles, and a certain thickness of shear

disturbance area will be formed around the shield, within

which the soil mass will move and cause formation loss, as

shown in Figure 3. Additionally, the gap between the outer

diameter of the cutter head and the outside circumference of

the shield shell and the overbreak of the shield brought on by the

attitude adjustment during the tunneling of the shield machine

would both result in the loss of the sandy gravel layer. At the

shield’s tail, there is a small opening between the segment lining

ring and the tunnel excavation wall. Deep soil disturbance and

formation loss will result from the soil disturbed by friction shear

moving to this gap. Because the sandy gravel stratum has such

wide pores and a high permeability coefficient, grouting cannot

be done effectively, which will impact the stability of the sandy

gravel stratum tunnel later on.

According to the settlement mechanism, the stress state of

the excavation surface, the gap between the soil and the shield

shell, the over break caused by deviation correction, the grouting

pressure at the tail of the shield and other influencing factors are

related to the control of the shield construction parameters,

mainly including the pressure of the Earth bunker, the

tunneling speed, the total thrust of the shield, the torque and

speed of the cutter head, the grouting pressure and amount in the

FIGURE 2
Mechanism of stratum loss during shield excavation.
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same step, and the posture offset of the shield. The working

pressure in the soil bin is not always consistent with the real

situation due to the weak flow plasticity of sand and gravel, which

will impair the stability of the excavation surface and, in severe

circumstances, cause surface settlement and collapse. Large

stones can easily remain in the soil bin during slag discharge

or migrate about, which can impact the shield machine’s ability

to maintain its position and attitude. The shield machine’s

inability to go forward once obstructed will have an impact

on the stability of the excavation surface. Another important

aspect impacting surface settlement is the shield tunnel’s depth,

which influences whether or not a pressure arch can be built on

top of the tunnel to limit soil particle movement and minimize

disturbance.

GA-PSO-GLSSVM prediction model for
the Earth pressure in chamber in sandy
pebble stratum

Based on deep learning algorithm based on statistical

learning theory, LSSVM replaces quadratic programming

optimization in support vector machine by solving linear

equations. LSSVM model is an adaptive model, which can

change the empirical risk from the first power to the second

power, and replace inequality constraints with equality

constraints (Lin et al., 2014; Zhang et al., 2022). Compared

with the traditional support vector machine, its advantage is

to improve the solution speed and simplify the complex

calculation. GLSSVM model is based on LSSVM and Grey

theory GM (1.1) to accumulate the original data, and then get

new sequence data that is less affected by disturbance factors and

has stronger regularity. The specific modeling process is as

follows:

1) Original data sequence:

x0
i � {x0

1, x
0
2,/, x0

l } (2)

Where, x0
i is ground settlement in mm, l =1, 2, 3 ...

2) Cumulative preprocessing data sequence by GM(1.1):

�x0 � {x1
1, x

1
2,/, x1

l } (3)

3) The high-dimensional feature space description of the data

sequence obtained from the previous learning sample set in

the LSSVM model:

min J(w, b, e) � 1
2
wTw + γ

2
∑n
i�1
e2i (4)

4) Linear functional relationship:

y(x) � wTφ(x) + b (5)

Where, A (xi, yi) (i =1, 2, . . . , n) is learning sample set, xi∈Rn is

learning sample, yi∈R is corresponding output prediction sample,

w is weight vector, J (w, b, e) is loss function, γ is fault tolerant

coefficient, ei is error, φ(x) is mapping function and b is offset.

The Lagrangian operator is applied to optimize w and e, and

the Lagrangian function is established:

L(w, b, e, α) � J(w, e) −∑n
i�1
αi{wTφ(xi) + b + ei − yi} (6)

Where, αi is Lagrange multiplier, and the differential solution of

Eq.4 is carried out. The linear equations are obtained according

to the optimal conditions of KKT (Karush Kuhn Tucker):

[ 0 ET

E Q + I/γ][ b
α
] � [ 0

y
] (7)

FIGURE 3
Mechanism of stratum loss around shield shell.
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Where, y= [y1, y2, . . . , yi]
T, E = [1, 1, . . . , 1]T, α=[α1, α2, . . . , αi]

T,

Q is kernel function for nonlinear mapping, whichQij = K (xi, xj),

i, j =(1, 2, . . . , n), and I is identity matrix. The regressionmodel of

LSSVM is obtained by solving the equations:

f(x) � ∑n
i�1
αiyiK(xi, xj) + b (8)

Through calculation, the predicted value of the cumulative

sequence is obtained: yn+k (k = 1, 2, . . . , n). The prediction model

of the original data sequence is obtained by progressive

reduction:

�x1 � yn+k+1 − yn+k (9)

Parameter optimization by PSO-GA

The choice of kernel function has an important impact on the

accuracy and accuracy of the prediction results of GLSSVM

regression model. GLSSVM regression model usually uses

Gaussian radial basis kernel function K (xi, xj) to analyze

nonlinear sample data, as follow:

K(xi, xj) � exp[ − 1
σ2
����xi − xj

����2] (10)

In order to correctly predict unknown data without a priori

reference value, the fault-tolerant penalty coefficient of kernel

function must be γ and kernel parameters σ2 adjust the two

parameters. At present, GA and PSO algorithms are commonly

used for parameter optimization, but neither of them can

guarantee the optimal solution. If the operator of GA

algorithm is embedded into PSO algorithm, and the GA

algorithm with excellent change ability is added to the

memory ability of PSO algorithm, the whole population can

converge rapidly towards the global optimization (Huang et al.,

2022). Suppose a group of particles in D-dimensional space, each

particle corresponds to a position X and velocity V that can

characterize its attributes. When the dth particle swarm iteration

is updated, the iteration of motion velocity Vi and motion

position Xi of particle i is updated as follows:

Vd
i � ωVd−1

i + c1r1(pBesti −Xd−1
i ) + c2r2(gBesti −Xd−1

i ) (11)
Xd

i � Xd−1
i + Vd

i (12)

Where, ω is inertia weight, i =(1, 2, . . . ,m), d =(1, 2, . . . , D), and

m is number of particles, D is search dimension, c1 and c2 are

acceleration factors, and their values determine the optimization

time, which is usually positive, pBesti is optimal position of

particle i, r1 and r2 are random constants between [0, 1].

The value of the inertia weight ω has a direct impact on both

the global and local optimization outcomes. The inertia weight is

determined as follows to better balance the local and global

search capabilities:

ω � ω max − t · ω max − ω min

t max
(13)

Where, ωmax is maximum inertia weight, ωmin is minimum

inertia weight, ωmin is maximum iterations, t is current

iterations. It can be seen that the combination of PSO and

GA for parameter optimization has the advantages of global

convergence of GA algorithm and rapid convergence of PSO

algorithm. The topological structure diagram of prediction

model for the Earth pressure in chamber is shown in

Figure 4, and the prediction process is shown in Figure 5.

Performance evaluation of prediction
model

The key to build the GA-PSO-GLSSVM bunker pressure

prediction model is to choose which tunneling parameters are the

input variables to predict the bunker pressure. According to the

EPB shield’s affecting elements, there is a strong correlation

between Earth bunker pressure and the total thrust, cutter head

torque, cutter head speed, propulsion speed, screw machine

speed, grouting volume, and grouting pressure (Liu et al.,

2010; Yu et al., 2020; Shen et al., 2022). However, under

different geological conditions, the relationship between

bunker pressure and tunneling parameters is also quite

different. It is necessary to determine the tunneling

parameters as input variables through correlation analysis

according to the actual engineering conditions, and build the

bunker pressure prediction model. The correlation between the

soil pressure within the chamber and different tunneling

parameters is quantitatively described in this study using the

Pearson correlation coefficient (PCC):

v �
∑p
f�1

(Yf − �Y)(Zf − �Z)�����������∑p
f�1

(Yf − �Y)2√ �������������∑p
f�1(Zf − �Z)2√ (14)

where, v is Pearson correlation coefficient, Y and Z are

parameters to be analyzed and p is number of data groups.

The mean absolute error (MAE), root mean square error

(RMSE), coefficient of determination (R2), and relative error

(MAPE) can be used to calculate the discrepancy data and the

actual monitoring data in order to assess the accuracy of the

prediction model. The prediction result of the prediction

model is more accurate and the prediction impact is

stronger if the value of the two error indicators approaches

0. The Earth pressure in chamber prediction model’s

topological structure, prediction method, and model

validity test are as follows:

MAE � 1
p
∑p
f�1

∣∣∣∣∣qf − zf
∣∣∣∣∣ (15)
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RMSE �
�������������
1
p
∑p
f�1

(qf − zf)2√√
(16)

R2 � 1 − ∑p
f�1(qf − zf)2∑p
f�1(zf − �z)2 (17)

MAPE � 1
p
∑p
f�1

(∣∣∣∣∣qf − zf
∣∣∣∣∣

�z
) × 100 (18)

where, qf is parameter prediction value of group f data, zf
measured values of parameters of group f data and �z is average of

all measured values.

Results and discussion

Project overview

The starting point of the tunnel between the fifth municipal

hospital station and Fengxi station in Chengdu Metro Line 17 is

located at the intersection of the north section of Fengxi Avenue

and Xifeng street. It is arranged along the north-south direction

of Fengxi Avenue, and double track tunneling is accomplished

using an Earth pressure balancing shield machine. The left line

tunnel is 1610.186 m long, the right line tunnel is 1611.485 m

long, and each of the left and right lines uses a separate EPB

shield machine. In this segment, the tunnel mostly travels

through dense pebble soil layer. The tunnel’s minimum plane

curve radius is 450 m, and its longitudinal slope gradient is

10.063‰. The tunnel’s inner diameter is 7500 mm, its outer

diameter is 8300 mm, the top of the tunnel is buried at a

minimum depth of approximately 9.5 m and a maximum

depth of about 20 m in this section. The mechanical

properties of the sandy gravel strata are exceedingly

complicated, and it exhibits low cohesion and a big gap

between its particles. Shield machine tunneling disturbs the

stratum significantly, hence it is important to precisely

manage the tunneling parameters. During shield tunneling,

one set of monitoring data can be obtained for each ring of

excavation. The data set is composed of total thrust, cutter head

torque, propulsion speed, screw machine speed, screw machine

torque, grouting volume and soil pressure. According to the

actual monitoring data, there are 1033 groups of data in this

section, and a total of 900 groups of data from 101–1000 rings are

taken for statistical analysis. In Table 1, the statistical distribution

is displayed.

A total of 635 groups of data from 220 to 855 rings are

selected for research. Because the shield parameters do not reflect

the general conditions of normal tunneling due to the fact that

the shield attitude has not yet been adjusted to the normal

position at the beginning of shield tunneling, and also during

the shield exit., as shown in Figure 6, and the distribution of the

Earth pressure in chamber is shown in Figure 7.

FIGURE 4
Topological structure diagram of prediction model for the Earth pressure in chamber.
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FIGURE 5
Prediction process of GLSSVM-PSO-GA prediction model.

TABLE 1 Statistical distribution of shield machine parameters in shield section.

Tunneling parameters Number of
samples

Maximum value Minimum value Average value Standard deviation

Total thrust (kN) 900 51,517 10,772 31,953 4172

Torque of cutter head (kN·m) 900 22,541 1729 12,187 2366

Speed of cutter head (rpm) 900 1.50 0.86 1.39 0.08

Propulsion speed (mm/min) 900 80 13 69 9

Screw speed (rpm) 900 10.88 1.09 6.37 1.56

Torque of screw (kN·m) 900 97 6 38 12

Grouting volume (m3) 900 22.77 1.50 11.52 2.45

Earth pressure in chamber (bar) 900 2.171 0.141 0.825 0.483
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FIGURE 6
Normal distribution of shield machine parameters.
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Correlation analysis of tunneling
parameters

The association between the soil pressure inside the chamber

and different tunneling parameters is expressed by the

Pearson correlation coefficient, and the results of Pearson

correlation coefficient is shown in Table 2. The calculations

show that the Earth pressure within the chamber is positively

correlated with the speed of the cutter head, the propulsion

speed, the torque of the screw, and the grouting volume and

negatively correlated with the total thrust, the cutter head

torque, and the screw speed.

Test the calculated correlation coefficient according to

requirement that the two factors are at the confidence level ɑ

when |r|≥rɑ. The following correlation shows that screw speed,

torque, and cutter head speed are all significantly correlated with

Earth pressure in the chamber at the level of 0.01, while total

thrust, propulsion speed, and grouting volume are significantly

correlated at the level of 0.1, and the correlation between screw

torque and Earth pressure in the chamber is negligible.

Therefore, the cutter head torque, speed, screw speed,

grouting volume, propulsion speed, and total thrust are the

input variables for the prediction model for the Earth pressure

in the chamber.

Establishment of prediction model

The training set consists of the first 535 of the 635 groups of

data, while the test set consists of the last 100. GM (1.1) model

accumulation preprocessing is performed on the learning sample

set data, and GLSSVM model is established. The crossover

operator and genetic operator of GA algorithm are embedded

in PSO algorithm, and the fault-tolerant penalty coefficient of

GLSSVM model kernel function is calculated γ and kernel

parameters σ2 optimize. The population size is 30, the number

of iterations is 300, the crossover rate is 0.6, the variation rate is

0.1, the value range for the two optimization parameters is [0.01,

1000], and the maximum and lowest values of the inertia weight

are 0.9 and 0.4, respectively. Local search capability and global

search capability c1=c2 =1.49445. GA-GLSSVM, PSO-GLSSVM

and GA-PSO-LSSVM are used to predict and analyze the data set

respectively. The change law of fitness MSE is shown in Figure 8.

According to the fitness curves of each model, GA-GLSSVM

model has stronger global search ability and PSO-GLSSVM

model has faster convergence speed. Embedding GA operator

into PSO algorithm can not only realize the global optimization

advantage of GA algorithm, but also give play to the advantage of

PSO to accelerate the convergence speed and improve the

goodness of fit of the model. When calculating the fitness, the

Grey theory GM (1,1) is used to accumulate the original data, and

the new sequence data with less influence of disturbance factors

and stronger regularity can be obtained. Gray superposition can

significantly increase the model’s prediction accuracy when

compared to GA-PSO-LSSVM and GA-PSO-GLSSVM. The

optimal parameter combinations of different models is shown

in Table 3.

Analysis and comparison of prediction
results

The optimized parameters of each model are brought into

LSSVMmodel for prediction and analysis. The data accumulated

by GM (1,1) model will get the accumulated sequence prediction

FIGURE 7
Distribution of the Earth pressure in chamber in sample data.

TABLE 2 Pearson correlation coefficient between chamber Earth pressure and excavation parameters.

Total
thrust

Torque
of cutter
head

Speed of cutter
head

Propulsion
speed

Screw
speed

Torque of
screw

Grouting
volume

Earth pressure in
chamber

-0.059 -0.211 0.192 0.061 -0.092 0.041 0.062

The critical values of the correlation coefficient rɑ are 0.055, 0.065 and 0.086 at the three confidence levels of 0.1, 0.05 and 0.01 respectively.
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value, and the prediction value is restored, that is, the original

data and the prediction data. The predictions’ outcomes are

displayed in Figure 9.

When compared, it can be seen that the PSO-GLSSVM

model’s prediction data is comparatively steady and fluctuates

only little, although the predicted result is lower than the

actual value. The GA -GLSSVM prediction results fluctuate

relatively large in the late stage, and the prediction results are

larger than the actual value. The benefits of the

aforementioned two models are taken into consideration in

the GA-PSO-GLSSVM model, and the forecast outcomes are

quite similar to the actual values. The GA-PSO-LSSVM

model’s predictions have low accuracy and great volatility.

After removing certain huge data points from the learning

sample set, the distribution of the remaining 524 data is

displayed in Figure 10 to demonstrate the model’s correctness.

In order to further verify the effectiveness of the anti-

volatility capability of the GA-PSO-GLSSVM model and to

illustrate the shortcomings of the GA-PSO-LSSVM model

with weak anti-volatility capability, the prediction results of

the GA-PSO-LSSVM model before and after removing the

volatile data are compared here. Make the model parameters

unchanged, take the first 424 data as the training set and the last

100 data as the test samples for GA-PSO-LSSVM prediction, and

the results are shown in Figure 11.

After excluding certain big values, the model’s prediction

data have less fluctuation and are more accurate when compared

to the GA-PSO-LSSVM prediction results in Figure 9. For the

original data samples, GM (1.1) accumulation processing of the

sample data in GA-PSO- GLSSVM model can effectively reduce

the impact of the fluctuation of the original data and improve the

prediction accuracy.

Due to its strong water permeability and poor self stability,

sandy pebble stratum is easy to cause stratum loss when

FIGURE 8
The fitness changes of different algorithms.

TABLE 3 Optimal parameter combinations of different models.

Model γ σ2

GA-GLSSVM 92.8865 92.8865

PSO-GLSSVM 33.9511 35.2236

GA-PSO-LSSVM 0.1476 10.7545

GA-PSO-GLSSVM 8.8016 61.1870
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disturbed. Therefore, there are many factors affecting the

pressure of the soil during the excavation process, especially

when encountering large-size pebbles or poor slag discharge, it is

easy to cause abnormal fluctuations in the pressure of the soil.

Through comparison study, it can be found that the GA-

GLSSVM, PSO-GLSSVM, and GA-PSO-LSSVM initial

prediction accuracy and effect are all rather excellent. The

difference between the projected value of the soil pressure in

the chamber and the observed value is significant when

encountering fluctuating data. As can be observed, the

prediction model’s learning effect is negatively impacted by

the quick shift in the tunneling scenario, which significantly

reduces forecast accuracy. The GA-PSO-GLSSVM model

weakens the influence of data fluctuation on the prediction

model, and it has significant applicability to predict the

pressure parameters of EPB shield in complex strata such as

sand and gravel.

Error analysis

The root mean square error (RMSE), mean absolute error

(MAE), mean absolute percentage error (MAPE), and the

coefficient of decision (R2) are used as assessment indicators

to assess the accuracy of the prediction model in order to further

examine the model’s dependability and accuracy. Table 4

displays a comparison of each model’s prediction accuracy.

The GA-PSO-GLSSVM model has superior stability, fitting

accuracy, and result accuracy than other models. As can be

shown, the GA-PSO-GLSSVM algorithm predicts the Earth

pressure in the EPB shield chamber accurately, and the effect

of the prediction after GM (1.1) pretreatment is superior to that

of the conventional prediction model.

Conclusion

The GA operator is embedded into the PSO model to

optimize the parameter optimization process of the data. This

approach combines the GA algorithm’s global search capability

with the PSO algorithm’s benefits of quick convergence, avoids

the parameter optimization falling into the local optimal

solution, and speeds up the operation efficiency. At the same

FIGURE 10
Excluding the data with large fluctuations of chamber Earth
pressure.

FIGURE 11
The prediction effect of GA-PSO-LSSVM model after
eliminating the data with large fluctuation.

FIGURE 9
Comparison of prediction effects of different models.
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time, GM (1,1) model is introduced into LSSVM model to

eliminate the impact of data fluctuation on the prediction

model and improve the accuracy of prediction model for the

Earth pressure in chamber by GA-PSO-GLSSVM.

Compared with the prediction results of GA-GLSSVM, PSO-

GLSSVM, GA-PSO-LSSVM and GA-PSO-GLSSVM, the

prediction results of GA-PSO-GLSSVM model are more

stable. Compared with the other three models, the root

mean square error, average relative error, average absolute

percentage error and resolvable coefficient are significantly

better than other models, and the prediction accuracy is

higher.

Through six tunneling parameters including total thrust,

torque of cutter head, propulsion speed, speed of screw,

torque of screw and grouting volume, the Earth pressure in

chamber of shield tunneling is predicted by using GA-PSO-

GLSSVM model. The actual monitoring data is used as the

training and test samples of the prediction model to confirm

its efficacy and dependability. This model can successfully

prevent the instability of the tunnel face and the loss of

stratum caused by the imbalance of soil pressure, which in

turn cause a series of adverse consequences such as surface

settlement, and serves as a reference for the control of EPB

shield tunneling parameters in sandy gravel stratum.
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