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Salt structures are crucial targets in oil and gas seismic exploitation so that one

fast, automatic and accurate method is necessary for accelerating salt structure

identification in the exploitation process. With the development of machine-

learning algorithms, geophysical scientists adopt machine-learning models to

solve problems. Most machine-learning models in geophysics require mass

data in the model training. However, the number of seismic images is limited

and the class-imbalance is often existed in actuality, causing the machine-

learning algorithms to be difficult to apply in exploitation projects. To overcome

the challenge of the seismic images’ volume, this work collects a two-

dimensional (2D) seismic images dataset and trains several U-net models

with the methods of inversion and multiple distillation. Moreover, self-

distillation is introduced to boost the model’s performance. A test using a

public seismic dataset and the case of salt detection in the Hith evaporite in

southern United Arab Emirates and western Oman shows the distillation

method is able to identify salt structures automatically and accurately, which

has great potential for application in actual exploitation.
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1 Introduction

Successful oil and gas explorations in the subsalt zone have made salt structures more

attractive targets (Davison, 2009). A salt structure is a crystalline aggregate of the evaporite

minerals halite, anhydrite, hydrated anhydrite, and gypsum, with other, non-evaporite minerals

(Hudec and Jackson, 2007). Salt structures are a special type of diapir, which form by flow

deformation of the evaporites under the actions of loading differences and buoyancy (Hudec

and Jackson, 2006), gravity (Jackson and Talbot, 1986; Rowan et al., 2012), or regional tectonic

stress (Brun and Fort, 2012, 2011; Pilcher et al., 2011). Salt structures have been deposited in

cratonic basins, synrift basins, postrift passivemargins, continental collision zones, and foreland

basins (Jackson and Talbot, 1986; Hudec and Jackson, 2007, 2006). Besides the deposition and
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kinetic differences among the salt structures, they can be divided into

allochthonous salt (Lehner, 1969; Watkins et al., 1975), salt sheets

(Jackson, 1995; Hudec and Jackson, 2006; Talbot and Pohjola, 2009)

and salt canopies (Talbot and Jackson, 1987; Jackson et al., 1994)

based on geometric variations.

The compactness (Warren, 2006; Schreiber et al., 2007) and low

permeability of the evaporite minerals (Liu et al., 2016)mean that the

salt structures are highly correlated with the formation of structural

reservoir systems (Seni and Jackson, 1983; Richardson et al., 2005).

Complicated pore systems have been found in salt lithology, which

are the basis for reservoirs (De Las Cuevas, 1997; Cinar et al., 2006;

Loncke et al., 2006). Moreover, except for being traps, salt structures

also facilitate hydrocarbon source generation and accumulation. Salt

is a poor conductor of heat, so it can prevent the loss of heat in subsalt

formations (Petersen and Lerche, 1996; Anissimov and Moscowsky,

1998). Concurrently, with the provided pressure from the overlying

salt formation, the thermal evolution of organic matter is promoted

(Mello et al., 1995; Petersen and Lerche, 1996; Nagihara, 2003). Based

on improvement of the thermal evolution, the source rocks

developed through the salt structures have excellent hydrocarbon-

generating conditions. In addition, the abundant fault systems

developed within the salt structures could be pathways for

hydrocarbon migration (Demaison and Huizinga, 1991). With

their gap layer development, potential for pore system

development, and hydrocarbon generation and migration, salt

structures are excellent oil and gas exploration targets.

Salt structure identification relies mainly on seismic data,

gravity analysis, and well logging data. On seismic images, the

geometrical, steep sides of the salt structure, seismic wave

propagation and velocity pattern analyses are fundamental salt

structure identification methods (Jones and Davison, 2014;

Asgharzadeh et al., 2018; Shahbazi et al., 2020). Considering the

physical property differences among the salt and the surrounding

sediment layers, methods to classify salt structure boundaries have

been adopted e.g., seismic attribution extraction (Di et al., 2019a;

2019b). Salt-structure detection has been aided by machine-

learning methods development, including normalized full

gradient machines (Soleimani et al., 2018), the oriented

gradients histogram combined with support vector machines

(Hosseini-Fard et al., 2022) and mostly, convolution neural

networks (CNNs) (Di et al., 2018; Gramstad and Nickel, 2018;

Karchevskiy et al., 2018). However, these methods require a

considerable amount of seismic data to calculate the seismic

attributes. Seismic data are limited in actual projects (belongs to

few-shot task) and the quality cannot be guarantee, so themachine-

learning algorithms are hard to build. In the field of computer

vision, the knowledge distillation method has been adapted in the

few-shot tasks (Wang et al., 2020). Chen et al., 2017 firstly

introduced the knowledge distillation method in objects

detection and proves the knowledge distillation could improve

the performances of models. For the classification of the targets and

the background, distillated knowledge from the targets and the

background could even reach higher precision (Wang et al., 2022).

Besides distilling the knowledge from pretrained state-of-the-art

(SOTA) large models, Zhang et al., 2019 proposed the self-

distillation method (named as “Be your own teacher”, shorten as

“self-teacher”) to regularize themodel training. The few-shot task in

the salt structure identification is also noticed and attracts wide

attention. To overcome the challenge of few-shot task, Sen et al.,

2019 trained a U-net like encoder-decoder model with label

perturbing strategy and the ensemble strategy. In recent years,

semisupervised learning methods (SSL) are adopted in the salt

structure identification to solve the small-sample problems. The

framework of SSL depends mainly on U-net like encoder-decoder

architectures withmixupmethod (Jia et al., 2022) and themultiview

shifting (Sen et al., 2020). The SSL is the nowadays popular method

for the salt structure identification.

To the best of our knowledge, this work firstly introduces the

mechanisms of the target flip, multiple and self distillations. To

exploit the effects of the knowledge distillation on the salt

structure identifications and establish an algorithm with lower

seismic data requirements, this study proposes a new workflow to

identify salt structures on seismic images in an imbalanced image

dataset. Our workflow attains high accuracy in several

experiments. Based on the actual case, our workflow is

suitable for use in practical oil and gas exploration.

2 Data and computing environment

To build the deep-learning model for salt identification, over

30,000 images are collected (the source about the images is in the

Supplementary Material). The segmented labels are masked by the

Labelme software (https://jameslahm.github.io/labelme/) on the

Anaconda platform (https://www.anaconda.com/). After

annotation and segmentation, the paired raw and masked images

are resampled into 100×100 pixels by the Cut tool (Supplementary

Material) on the PyCharm platform (https://www.jetbrains.com/

pycharm/).

In this study, all algorithms are built on an accessible cloud

service, Featurize virtual machines (https://featurize.cn/). The virtual

machines access anNVIDIARTX 3060with amemory of 12 GB and

Intel E5-2680 v4 central processing unit with six cores. All codes are

operated on the Ubuntu 20.4 system, with CUDA v11.2 and

PyTorch v1.10.

3 Methods

3.1 Task description

The image dataset for salt identification can be defined as:

D � Xi, Yi( ){ }i�1/n (1)
where D is the total images. X is the total raw seismic images and

Y is the total segmented seismic images.
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Considering that the seismic images contain two classes, salt

and nonsalt (marked as background), dataset D equals to:

D � dsalt, dbackgrund( ){ } (2)

Taking the form of Eq. 2 into Eq. 1, the dataset D can be

defined as:

D � {(xi, yi)salt, (xj, yj)backgrund}j�1/N
i�1/M (3)

M and N are the number of the seismic images and the

number of the background images. n equals M plus N.

Defining the x~
i as the prediction of the salt, the identification

process can be described as:

minLoss xsalt
i , x~

i( )∣∣∣∣∣x → xi, xj( )i,j�1/n (4)

3.2 U-net model

The U-net model was proposed by Ronneberger et al. (2015)

to segment medical images. The U-net model also has been

widely used in geophysics–machine-learning combined research

(Wager et al., 2013; Hu et al., 2019; He et al., 2022). In a U-net

model, the network takes two-dimensional (2D) seismic images

as input and the corresponding segmented labeled images as the

output data. The U-net model consists of two almost symmetrical

encoder–decoder paths. The U-net model schematic used in this

work is shown in Figure 1, including convolution layers, residual

connecting layers, the rectified linear unit (ReLu) (Xu et al.,

2016), maxpooling layers, and up-sampling and dropout blocks.

In the left-side down-sampling path, each layer consists of one

convolution layer, a residual connecting layer, and a combination

of the residual connecting layer and a Relu function. The

interlayer is a maxpooling layer and dropout block (Wager

et al., 2013). Via the fourth layer in the down-sampling path

and the interlayer, the data flow enters the middle layer and is

passed into the up-sampling path. The layers in the up-sampling

path have similar architecture to the layers in the symmetrical

down-sampling path; the difference is that the interlayer in the

up-sampling path is a combination of an up-sampling layer and a

dropout block. In this study, all U-net models in all stages share

same architecture and hyper-parameters.

FIGURE 1
The structure of the U-net model.
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3.3 Target flip

The collected and processed dataset has substantial class

imbalances between salt and non-salt seismic images. The ratio of

salt and non-salt images in the training datasets is approximately 1:

30. To reduce the bias in the training datasets, a series of data

augmentation methods is used before target flip, including flip,

rotation, scaling, crop, translation, adding Gaussian noise, and the

synthetic minority oversampling technique (SMOTE) (Chawla et al.,

2002). After the augmentation, the ratio of salt and non-salt images

reduces to approximately 1:10. In this ratio, a high risk of overfitting

and losing the target salt still exists. In epoch I, for batch size S, the

sampling process is sequential. To ensure at least one segmented

image exists in batch size S, the ratio of the background and salt

images would be:

Psalt|background � 1: S − 1( ) � 1
S − 1

(5)

Taking the actual ratio 1:10 into Eq. 5, the batch size S is 11.

This batch size would reduce the model generalization. In image

classification, S is usually 64 or even larger. Taking 64 into Eq. 5,

the ratio of salt and background is 1:63. Too many background

images (63 vs. 1) would trap the model in the features of the

background instead of the salt.

To avoid uncontrollable feature mapping, we train a U-net

model on the target flipped image datasets, aiming to build an

expert model to classify the background around salt tectonics.

Before target flipping, the target, salt (s) in the images is

transferred into the background (b). During the transferring,

the pixels can be represented as:

Pixel � Dsalt�1,background�0 � s11,/,jsi,/,qsp( ), b11,/,jbi,/,qbp( )[ ]Q
P

(6)

where P and Q are the length and width of the segmented salt

images. For binarized and segmented salt images, the pixel of the

salt, s and the pixel of the background, b can be replaced as 1and

0. Pixel can be replaced by:

Pixelbinary � 1p × q, 0p × q[ ]QP (7)

The inversed image is given by:

Pixelbinary & flip � 0p × q, 1p × q[ ]QP (8)

With the target flip, the U-net model for identifying the non-salt

part can be trained on datasets with more than 20000 images,

which would yield high confidence.

3.4 Multiple distillation

Knowledge distillation (Figure 2) aims to compress the complex

structure of models (Hinton et al., 2015). For a specific downstream

task, unrelated knowledge from the complex model would be

filtered by distillation (Lin et al., 2021). In a knowledge

distillation algorithm, the complex model would the teacher

model and the model trained by the special knowledge from the

teacher model would be called the student model.

The multiple distillation is a stock of several knowledge

distillation models from subsequent stages (Figure 3). For

instance, in Figure 3, the blue dashed box and subsequent

workflow, the stage 1 and 2 combine a distillation model to

fully extract the background features and use them to assist in the

salt feature mapping. During stage 1, the input data are the in

flipped 2D seismic images. The target is the background. The

input of stage 2 is the refined seismic images. The distilled

probability of the stages except for the stage 1 is:

FIGURE 2
The knowledge distillation diagram (modified from https://nervanasystems.github.io/distiller/knowledge_distillation.html).
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qi � exp zi/t( )
∑j exp zj/t( ) (9)

where z is the characteristic embedding matrix calculated by the

U-net.

The task for the target detection is a binary classification. The

distilled probability for the background can be transferred from

Eq. 9, as:

qbackground �
exp zbackground/t( )

exp zbackground/t( ) + exp zsalt/t( )
� 1

1 + exp
zsalt−zbackground

t( ) (10)

The basic loss is calculated by the cross-entropy function:

Loss � Cross − entropy ·( ) � −∑N
i

ci log qi( ) (11)

For instance, taking Eq. 11 into the normal knowledge

distillation loss between stages 1 and 2, the loss function

comprises two losses, where the two learnable parameters α

and β are introduced, the loss of stages 1 and 2 is:

Distillation Loss B, B′( ) � −α12∑
N

i

pt1
i log qt1i( )

− β12∑
N

i

pt2
i log qt2i( ) (12)

In stage 3, the input data are the whole set of 2D seismic

imagesD. The model from stage 2 becomes the teacher model for

the stage 3 model. Like the distilled probability of the

background, the distilled probability for the salt is:

qsalt � exp zsalt/t( )
exp zbackground/t( ) + exp zsalt/t( )

� 1

1 + exp
zbackground−zsalt

t( )
(13)

However, stage 3 needs to avoid the background feature

information. To amplify the influence of the background and

reverse the probability distribution, the reciprocal is used in the

logit function:

FIGURE 3
The diagram of the framework in this paper.
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Distillation Loss B′, S( ) � −α23∑
N

i

pt2
i log

1
qt2i

( )

− β23∑
N

i

pt3
i log qt3i( ) (14)

Stages 4 and 5 are similar to stage 2. The input data are the

unreversed 2D seismic images Drefine-inverse and Drefine for stage

4 and the whole set of 2D seismic images D for stage 5. The

distilled probability and distillation loss are the same as in

Eqs 9–13.

3.5 Self-distillation

Self-distillation is a special situation for the distillation

algorithm, where the teacher and student models are

combined into one ensemble. Self-distillation adopts the

information of the label to accelerate the model convergence

(Zhang et al., 2019). In this work, we adopt the self-distillation

block from Xu et al. (2020) and add self-distillation blocks among

the layers in the U-net model to reduce the risk of class imbalance

(Figure 3). The self-distillation block is a layer-series sliding

average parameter estimate. The ith self-distillation works after

the parameters are updated in the ith layer when the jth epoch is

completed. During the parameter updating in the i+1st layer, the

parameters θi from the ith layer would output a feature matrix (X,

θ)i. The (X, θ)i from the self-distillation and parameters θi+1 from

the i+1st layer would be combined to update θi+1. On the basis of

the cross-entropy function, the self-distillation loss can be

represented as:

Self − distillation Loss � Cross − entropy Xi, θ( )i, Yi( )

+ 1
m
∑m
j�1
MSE Xi, θ( )i, Yi( ) (15)

3.6 Workflow

The workflow of this research follows these steps:

1) The dataset is processed via target flip firstly. The target is the

background. After flipped, the dataset is fed to the U-net

model in the stage 1 with the assistance of self-distillation

during training.

2) When the training completes in the step 1, the flipped dataset

starts to be sent into the U-net model with the self-distillation.

During the training, the loss function is the distillation loss

(Eq. 12) plus the self-distillation loss (Eq. 15).

3) In the step 3, the inputting dataset is the normal segmented

images, where the target is the salt structure. The training process

is similar to that in the step 2. The loss function contains the

distillation loss (Eq. 14) and the self-distillation loss (Eq. 15).

Differently, the distillation loss here should be replaced by Eq. 14,

instead of Eq. 12. The aim is to guide theU-netmodel in the stage

3 avoiding extracting features of the background.

4) and (5) The step 4 and 5 are same. The normal dataset is fed

into U-net models and the loss function is the distillation loss

(Eq. 12) plus the self-distillation loss (Eq. 15).

The diagram of the workflow can be seen in Figure 4.

FIGURE 4
The diagram of the workflow.
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3.6.1 Ultrascale salt reconstruction
The seismic images size of 100×100 pixels is far less than

the size of the actual seismic images. For the training images,

the identification of real seismic images is an ultrascale

identification task. For the 100×100-pixel images, the

model initializes with a starting point first, then samples

the images, and forward calculates the possible label

classifications. To identify the salt structures at ultrascale,

the saved checkpoints from stage 5 are prepared first. Second,

the Cut program shears the ultrascale seismic images into the

size of 100×100 pixels. The cut images are sent to the model to

predict the salt zones. Last, the predicted cut images are

returned to the original size. The reconstruction algorithm

in shown in Table 1.

4 Results

4.1 Loss

The training process was conducted across 1,200 epochs

(120 training batches) with the one-cycle method (Smith,

2018). Four distillations among five stages reach stability

(Figure 5). The losses from the training and validation

datasets dropped synchronously and reach close agreement

after stabilizing, indicating that all distillation stages are not

overfitting with the self-distillation (Figure 5). For the first

distillation, the losses of the training and validation datasets

decrease from 0.6 to 0.3 (Figure 5A). Receiving the distilled

knowledge of the background, the loss curves start at 0.6 and

TABLE 1 The ultrascale salt reconstruction algorithm.

Ultrascale salt reconstruction algorithm

Input: 2D seismic images with raw size G (H, W)

Raw seismic image height H

Raw seismic image weight W

Output: Salt-identified 2D seismic images with raw size G~ (H, W)

1: Initialization: Image binarization B_G = Binary(G)

2: Generating start point P = Random (x, y)|x < H, y < W

3: Initialization: image location ID i(i=0), left image location ID l_i(l_i =0) and the left seismic image g (m=(0,0), n=(0,100), j=(100,0), k=(100,100))

4: for x ≤ H do

5: Generate the upper right point up_r_P = (x + 100, y)

6: for y ≤ W do

7: Generate the lower left point lower_l_P = (x, y + 100)

8: Generate the lower right point lower_r_P = (x + 100, y + 100)

9: New image new_img_i = Model (θ, B_G(P, up_r_P, lower_l_P, lower_r_P))

10: i+ =1

11: end for

12: end for

13: for max(j) < H-x do

14: for max(k)< W-y do

15: New image new_img_i = Model (θ, B_G(m, n, j, k))

16: j+ =1

17: end for

18: end for

19: for count_1, count_2 to i, j do

20: reorder new_img

21: end for
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drop to 0.1 in the steady state (Figure 5B). With the knowledge

from the second and third distillations and the self-distillation

blocks from the interlayer, the losses achieve 0.25 (Figure 5C) and

0.05 (Figure 5D).

4.2 Intersection over union

4.2.1 Stage 1
The U-net model detects the background regions in the 2D

seismic images in stage 1 with the assistance of the self-

distillation only. Visualization shows that the U-net model

could roughly identify the background and has poor

performance for border classification (Figure 6). The model

determines several strong reflection zones in the seismic

images as the background (green part, Figure 6). The average

intersection over union (IoU) for stage 1 is 0.45 for the

background detection, indicating that the U-net model

precision in stage 1 is lower than 50%.

4.2.2 Stage 2
The average IoU for stage 2 improves to 0.85, indicating that

the precision of the U-net model is close to 85%. With the

distilled background knowledge from the model in stage 1, the

background object identification performance improves by 40%,

suggesting the distillation effectively enhances the background

identification capability. Visualization (Figure 7) shows that the

U-net model in stage 2 could identify a complex seismic

reflection pattern instead of identifying a strong reflection as

the background signal.

4.2.3 Stage 3
In stage 3, the model starts to process 2D seismic images for salt

detection. With the distilled knowledge from stage 2, the model still

has poor performance. The average IoU for stage 3 is 0.58.

Visualization (Figure 8) shows that stage 3 could classify some

simple patterns of the salt but performs poorly for complex

patterns. The background zones are rarely regarded as salt,

indicating the previous knowledge of the background effectively

guides the model to extract the features of potential salt zones.

4.2.4 Stage 4
In stage 4, the model has stronger capability for identifying

salt with the distilled knowledge from stage 3. The average IoU

reaches 0.81, meaning nearly 80% of the salt occurrences are

identified in the seismic images. Compared with the visualization

of the stage 3 (Figure 8), the visualization in stage 4 (Figure 9)

shows that the model starts to pay attention to the inner weak

reflections on the basis of the stage 3 information.

4.2.5 Stage 5
The performance of the model in identifying complex

patterns improved during stage 5. The average IoU is 0.95.

The high areas of the intersection show that the model could

identify salt with high accuracy. The visualization also proves

that the model in stage 5 extracts the complex patterns of the salt

(Figure 10).

4.2.6 Ultrascale salt identification
In this work, the input for ultrascale salt identification is

the raw and unsegmented images with Gaussian noise. With

FIGURE 5
The distillation training and validation datasets (considering no bias in different stages, the parameters α and β in the distillation loss are set as 0.5.
Each batch has 10 epochs) (A) Stage 1; (B) Stage 2; (C) Stage 3; (D) Stage 4.
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the noise, the average IoU for the raw images is 0.92, which

means 92% of the predicted potential salt zones are correctly

identified. Figures 11A–F shows the high similarity between

the labeled and algorithm-identified salt zones. The distilled

model is robust for salt identification in the actual situation.

More important, the identification results prove that the

ultrascale salt reconstruction algorithm is feasible for

application to actual seismic images.

TGS salt Identification challenge
The inverse multiple self-distillation model was used in a

salt identification challenge (https://www.kaggle.com/

competitions/tgs-salt-identification-challenge), a

competition that was hosted by Kaggle. All images are

actual seismic images that were interpreted by geophysical

experts. The TGS salt identification challenge aimed to

explore salt deposits and involved 4,000 segmented seismic

images. Without any fine tuning, the average IoU of the

datasets is 0.85. The model trained by the collected images

accurately identified the salt (Figure 12). This accuracy ranks

at approximately 300 in the TGS competition. To further

compare the performance, we tested two more models. The

first used the training file of the TGS datasets to fine-tune the

pretrained model (stage5). The second used the inverse

multiple distillation and self-distilled U-net framework to

train a new model using the training file of the TGS datasets

(model-2). Model-1 reaches an IoU of 0.88 while model-2

also reaches 0.88. A performance of 0.88 would rank at

FIGURE 6
The stage 1 performance for background detection, with intersection over union (IoU) values (the green part is the background; in the
segmented images, the red part is the salt structure and the black part is the background).
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approximately 30 in the TGS competition, showing the

framework could improve the salt identification.

5 Salt identification in the United Arab
Emirates and Oman

We applied the trained U-net model to identify the salt

structure in 2D seismic images from the Upper Jurassic

petroleum-bearing system in the southern United Arab

Emirates (U.A.E.) and western Oman (Figure 13). The 2D

seismic data are limited and low quality. Moreover, because of

the lack of stratigraphy and logging data, identifying the Jurassic

salt with the conventional method is challenging.

The Hith Formation, which is the cap rock of the Jurassic

petroleum-bearing system in the Persian Gulf basin, is composed

of evaporite deposits (Martin, 2001; Haq and Al-Qahtani, 2005)

(Figure 13C). In the research area, the Hith Formation pinches

out in the southeastern U.A.E. (the foreland basin of the Oman

mountain) and the contemporaneous deposits in western Oman

vary into oolitic carbonates (Al-Husseini, 1997). Our well data

indicate that the pinch-out line is located between well 1 and well

2 (Figure 13B) and we use the saved checkpoints from the stage

5 to predict the disappearance point in the seismic images.

The prediction process is the same as for the ultrascale salt

identification. The model first selects a start point randomly and

identifies the salt (orange parts) in a field of 100×100 pixels

(Figure 14). Then the sheared images are reconstructed and

FIGURE 7
The stage 2 performance for background detection, with intersection over union (IoU) values (the green part is the background; in the
segmented images, the red part is the salt structure and the black part is the background).
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output as an input image (Figure 15). Our model successfully

predicts the Upper Jurassic Hith Formation. The results suggest

that the pinch-out line develops closer to well 1.

6 Discussion

The workflow with, target flip, multiple distillation, and self-

distillation has fair performance in the collected datasets, TGS

salt identification challenge, and practical salt prediction. To

analyze and evaluate the influence of different stages, target flip,

multiple and self distillations in the complex model, ablation

experiments are designed and the biases of different parts are

summarized.

6.1 Target flip extracts features of the
background

In our study, the target flip is to detect the features of the

background. We hope the knowledge of the background (non-

salt part) could be passed and facilitate the salt structure

identification. To investigate the influence of the target flip,

the two models to identify the background in the seismic

images are dropped from stages 1 and 2. Without the model

in stage 1, the losses in the training, validation, and test datasets

increase to 0.62, 0.65, and 0.72 and the IoUs decrease to 0.21,

0.18, and 0.12, respectively, in the collected dataset (Figure 16A).

After canceling the flip in stage 2, the losses in the training,

validation, and test datasets increase to 0.68, 0.59, and 0.77 and

FIGURE 8
The stage 3 performance for salt detection, with intersection over union (IoU) values (the blue part is the salt structure; in the segmented images,
the red part is the salt structure and the black part is the background).
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the IoUs decrease to 0.18, 0.17, and 0.10, respectively, which are

similar to the performances without inversion in stage 1

(Figure 16A). Also, the two stages are dropped

simultaneously. The losses in the training, validation, and test

datasets increase to 0.68, 0.69, and 0.80 and the IoUs decrease to

0.18, 0.18, and 0.09 in the collected dataset (Figure 16A). The

increasing loss and dropping IoU prove the significance of the

stages 1 and 2. The flips in stages 1 and 2 successfully extract the

feature of non-salt part in the seismic images and passed to the

down-streaming identification of salt structure. In addition,

Figure 16A shows the stage 2 benefits more for the salt

structure objection than the stage 1. Without the target flip

and the distillation between the U-nets of the stages 1 and 2,

the performance of the models to identify the salt structure would

substantially reduce. The IoU reduction because of the dropping

of the stage 1 and 2 indicates the target flip and consequent

continuous U-nets from the stages 1 and 2 effectively extract the

features of the background. From the feature maps in

Figure 17A,F,G, the heat maps show the regions from the

background are activated in the stages 1 and 2, approving the

background regions are successfully identified firstly.

Moreover, the flip-dropped model is also evaluated in the

TGS datasets. Without the flip, the performance of the model

deteriorates. The loss rises by approximately 0.08 and the IoU

falls by approximately 0.07 (Figure 16B). The difference in

the performance is caused by the quality of the datasets. The

collected dataset is directly cropped from articles

(Supplementary Material) so that many images only

FIGURE 9
The stage 4 performance for salt detection, with intersection over union (IoU) values (the blue part is the salt structure; in the segmented
images, the red part is the salt structure and the black part is the background).
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contain background, without salt tectonics. However, the

TGS datasets are selected and data-cleaned so that almost

no background-only images exist in the datasets. Practically,

the collected datasets are more likely close to the seismic data

gathered in the actual projects. The cleaned datasets cause the

volume to decrease and result in a loss of capability for model

training. Although only limited improvement is gained after

the target flip in the well-cleaned dataset, flips obviously

improves the model’s performance in the uncleaned

dataset, which is meaningful for actual applications when

facing expensive data collection.

In summary, target flip improves the model’s performance

when the datasets are extremely class imbalanced, which is

meaningful for the actual exploitation that lacks enough salt

images to complete the supervised learning.With simple flipping,

feature extraction by U-nets, and information transportation by

multiple distillations (details can be seen in Section 6.2), the few-

shot task could be solved by semisupervised learning. The stages

1 and 2 effectively utilize the detected background information to

guide the later stages to avoid the background region.

6.2 Multiple distillations transport
knowledge of background and salt
structures

Knowledge distillation is capable to transport the features of

specific zones in the seismic images from the upstream tasks and

FIGURE 10
The stage 5 performance for salt detection, with intersection over union (IoU) values (the blue part is the salt structure; in the segmented images,
the red part is the salt structure and the black part is the background).
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guide the downstream image classification task (Hinton et al.,

2015). In the salt identification task, the upstream identification

model extracts the background features and uses this knowledge

to avoid the background and identify the salt structures. With the

background feature map, the loss would not decrease to zero

when the input image does not contain the salt, so the gradient

disappearance is avoided. The feature maps of the end-to-end,

direct U-net indicate that for imbalanced datasets, models

without distillation are easily trapped in the strong reflection

features (Figures 17J,O). With the distilled knowledge of the

background (Figures 17A,F,K), the sequential U-net models

avoid extracting the background features (Figures

17B–D,G–I,L–N). With the previous distilled knowledge, the

model in stage 3 could locate the salt structure boundary (Figures

FIGURE 11
The ultrascale salt reconstruction algorithm performance for ultrascale salt identification (A) and (B) come from (Elfassi et al., 2019); (C) and (D)
come from (Maunde and Alves, 2022); (E) and (F) come from (Soto et al., 2022).
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17B,G,L). After receiving the boundary and background

information, models in stages 4 and 5 identify the salt with

high accuracy (Figures 17C,D,H,I,M,N). The feature maps

suggest the process of the target flip and multiple distillations

successfully guide the U-net models to extract salt structures

from the imbalanced dataset. During the knowledge transporting

process, the key is the distillation between the stages 2 and 3. As

mentioned in Section 3.4, Eq. (14), the weights of activated

regions extracted by the distillated U-nets on the target

flipped datasets are divided by one. At the same time, the

weights of the target regions, the salt structure, reach

relatively high via division because the regions of the salt

structure are inactivated (weights are relatively low). The

reciprocal in the distillation between the stages 2 and 3 guides

and steers the lateral U-net in feature mapping. In addition, the

three horizontal figures in Figure 17 also display the variation of

activated regions among the multiple distillations. Firstly, the

stages 1 and 2 activate the boundary and some inner regions of

the background (Figures 17A,F,K). In the stage 3, the distillated

knowledge of the background become the prompt for the salt

structure identification and the U-net model pays attention to the

boundary of the salt structure (Figures 17B,G,L). Similarly, the

multiple distillation in the stage 4 receives the prompt from

distillated knowledge from the stage 3 so that the U-net model in

the stage 4 activates the inner regions of the salt structure

(Figures 17C,G,M). Lastly, the U-net model in the stage

5 detects the feature of the salt structure on the basis of the

stage 4 and pays more attention on details of the salt structure

(Figures 17D,H,N).

6.3 Self-distillations accelerate model
convergence

The self-distillation mechanism reduces the influence of

gradient disappearance and overfitting (Zhang et al., 2019).

To investigate the influence of the self-distillation, the self-

distillation blocks are dropped in the model. Results show

that without the self-distillation, the losses increase during

the different stages and the loss increases to 0.18 in stage 5,

which is three times of the loss with the self-distillation blocks

(Figure 18A). Meanwhile, the average gradient of each layer

FIGURE 12
The algorithmperformance on the TGS dataset (in each cell, from the left, mid to the right, are the raw seismic images, segmented labels and the
predicted images. The predicted salt zone is the blue part).
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shows that the self-distillation mechanism benefits the

training by increasing the gradient (Figure 18B). Higher

gradients reduce the overfitting and accelerates the fitting

process.

6.4 Limitations and future directions

The multiple and self distillation model shows substantial

precision in the identification of salt structures. The most

FIGURE 13
The location of the research area (A) the distribution of Hith evaporite comes from (Al-Husseini, 1997); The detail of the research area (B) The
comprehensive stratigraphic histogram of the upper Jurassic in the western UAE (C) modified from (Al-Husseini, 1997; Ali and Farid, 2016)

FIGURE 14
The salt identification in a field of 100×100 pixels (every image is the prediction by themodel from stage 5; The orange part is the identified salt).
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significant advance with the new work flow is to switch the

target of the seismic images from the salt structure to the

background, which solves the gradient disappearance issue

and avoids the U-net model getting trapped in the strong

reflection features. However, two pivotal aspects require

improvements.

First, the time cost for training the model is high. The

multiple and self distillations model uses the image flip to

complete the data augmentation, distillation to pass along the

extracted features to aid the training of the model in the next

stage, and self-distillation to increase the gradient of the layers

in the models. For one U-net model, the training time cost is

FIGURE 15
The salt identification in the sections of well 1 and well 2 (reconstructed by the ultrascale salt reconstruction algorithm; the location of this
section is shown in Figure 13B).

FIGURE 16
The performance of models without inversion (A) collected dataset; (B) TGS dataset.
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1 h and 45 min at each stage. With five stages, the time cost

would be 8 h and 45 min. Compared with end-to-end models,

the structure of the inverse multiple self-distillation model is

complex. One possible solution for reducing the complexity of

the model and using the background features is multi-task

learning. With a reasonable joint loss function, one framework

would identify the background and the salt structure

simultaneously. We have tried to use a summation of the

two tasks (identifying the background and identifying the

salt) with different scale factors but the IoU for detecting

the salt is far from the IoU of the inverse multiple self-

distillation model. To realize the construction of an end-to-

end model that uses the information of the background in

seismic images to train the models, it will be necessary to build

a new loss function.

Furthermore, the time cost is also too high for the

deduction in the ultraresolution seismic images. In

practice, the models are required to react instantly when

deployed on the equipment. However, the inverse multiple

self-distillation model would take several minutes to identify

salt on images with thousands of pixels. Two methods may

solve the problem and accelerate the inference process. One

FIGURE 17
The obtained feature maps (from left to right, every column refers to the feature maps from different stage). Each line represents the feature
map from one 2D seismic image and corresponding label; each column represents the same stage.

FIGURE 18
The variations of the average gradient among stages (A) collected dataset; (B) TGS dataset.
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way is to use the end-to-end framework to train models.

Another is to improve the quality of the dataset by expanding

the scale of the sampling images.

Second, the multiple and self distillations model mislabels

some complex seismic images. A salt structure would develop

with faults. When there are more than two or three faults, the

reflection pattern disrupts the model classification and the model

would mislabel a fault as salt. To solve this problem, more seismic

images which contain both salt and faults should be collected in

the dataset.

In the future, we will combine the multitask learning

framework with self/knowledge distillation to improve the salt

identification performance of the models. In addition, we would

continue to add images to the dataset and clean the dataset so that

models can extract salt features at additional scales. Meanwhile,

considering the challenge of collecting seismic images that

contain both salt and multiple faults, simulations of salt and

faults would be added to the dataset.

7 Conclusion

This study has successfully developed a workflowwith several

U-net models, a flipping method, and multiple distillation and

self distillation blocks. The results show the promising potential

of machine-learning applications to actual salt identification via a

test of the TGS salt identification challenge and an actual case of

evaporite detection in the Jurassic Hith Formation in the

southern U.A.E. and western Oman.

Furthermore, by flipping the segmented target, the model

overcomes the overfitting and mode collision in the training of

the imbalanced dataset. The self/multiple distillation enables the

model to find the rare salt zones from the sequences of the salt

and the background boundary, the inner weak reflection zones,

and the edge weak reflection zones. The multiple-stage training

strategy is fit for the imbalanced seismic images and could also be

fit for actual exploitation.

In addition, the current limitations of this workflow are the

misidentification of the salt images with complex fault systems

and the prediction time. In the future, we will introduce more

complex fault images in the dataset and use the multitask

learning framework to build an end-to-end model to improve

prediction efficiency.
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